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Abstract9

Many physical models undergo phase transitions as some parameter of the system is varied. This10

phenomenon has bearing on the convergence times for local Markov chains walking among the11

configurations of the physical system. One of the most basic examples of this phenomenon is the12

ferromagnetic Ising model on an n× n square lattice region Λ with mixed boundary conditions.13

For this spin system, if we fix the spins on the top and bottom sides of the square to be + and14

the left and right sides to be −, a standard Peierls argument based on energy shows that below15

some critical temperature tc, any local Markov chainM requires time exponential in n to mix.16

Spin glasses are magnetic alloys that generalize the Ising model by specifying the strength17

of nearest neighbor interactions on the lattice, including whether they are ferromagnetic or an-18

tiferromagnetic. Whenever a face of the lattice is bounded by an odd number of edges with19

ferromagnetic interactions, the face is considered frustrated because the local competing objec-20

tives cannot be simultaneously satisfied. We consider spin glasses with exactly four well-separated21

frustrated faces that are symmetric around the center of the lattice region under 90 degree ro-22

tations. We show that local Markov chains require exponential time for all spin glasses in this23

class. This argument extends to the ferromagnetic Ising model with mixed boundary conditions24

described above, which behaves like spin glasses with frustrated faces on the boundary. The25

standard Peierls argument breaks down when the frustrated faces are on the interior of Λ and26

yields weaker results when they are on the boundary of Λ but not near the corners. We show27

that there is a universal temperature T below whichM will be slow for all spin glasses with four28

well-separated frustrated faces. Our argument shows that there is an exponentially small cut29

indicated by the free energy, carefully exploiting both entropy and energy to establish a small30

bottleneck in the state space to establish slow mixing.31
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1 Introduction39

The celebrated Ising model on the Cartesian lattice is a fundamental model for ferromagnetism
and one of the simplest models demonstrating an order-disorder phase transition. Each
configuration σ in the state space Ω = {−1,+1}n2 consists of an assignment of a + or −
spin to each of the vertices, and the Gibbs (or Boltzmann) distribution assigns weight

π(σ) = e−βH(σ)/Z(β),

where
H(σ) = −

∑
(i,j)∈E

σiσj

is the Hamiltonian (or energy) of the system, β = 1/T is inverse temperature, and Z(β) =40 ∑
σ∈Ω e

−βH(σ) is the normalizing constant known as the partition function. In Sections 3 and 441

it will be convenient to write the probability of a configuration in terms of λ = e2β = e2/T ,42

where λ can be seen as the weight assigned to edges whose endpoints are assigned like spins.43

Physicists characterize when there is a phase transition in a physical model by asking44

whether there is a unique limiting conditional distribution on finite subregions as the lattice45

size grows. The Gibbs distribution is defined as any limiting measure, but this limit might46

not be unique. For example, for the Ising model on Z2 at sufficiently low temperatures,47

the probability of an interior vertex being assigned + will be much higher if the boundary48

vertices were hard-wired to be + than if they were hard-wired to be −, and this difference49

persists in the limit. The infinite volume Ising model was solved exactly by Onsager in 194450

[23], showing that there is a critical value βc = ln(1 +
√

2)/2 such that for β < βc (i.e., high51

temperature), the limiting distribution is unique, and for β > βc (i.e., low temperature),52

spins on the boundary of the region persist and there are multiple limiting distributions. The53

all-plus and the all-minus boundary conditions are known to be extremal measures [1, 12].54

A related effect has been observed in the context of mixing times of local Markov chains for55

the Ising model on finite lattice regions with free boundaries (i.e., boundary vertices can take56

on either spin). The mixing time τ(M) of a chainM, i.e., the number of steps required so57

that the distribution over configurations is close to its stationary distribution, also undergoes58

a phase change. When β is small, local dynamics are known to be efficient [18, 19, 15], while59

when β is large, local chains require exponential time to converge to equilibrium [31]. At60

low enough temperature, the Gibbs distribution strongly favors configurations that have61

predominantly one spin, and it will take exponential time to move from a mostly + state to62

a mostly − one using moves that only change o(n2) sites at a time [17].63

Mixing times of Markov chains are known to be sensitive to boundary conditions. For64

example, local chains on Ising configurations are conjectured to converge in polynomial time65

at all temperatures for the “all +” boundary condition where all vertices on the boundary66

are hard-wired to have + spins. While still open, Martinelli [16] showed mixing is indeed sub-67

exponential at all temperatures with all + boundary conditions and subsequently Lubetsky68

et al. [15] showed that the chain converges in quasi-polynomial time. However, a standard69

Peierls argument can be used to show that when there are mixed boundary conditions with 470

connected components of like spins on the boundary, alternating “+,−,+,−”, then the chain71

again will be slow at low temperatures. In particular, for mixed boundary conditions where we72

fix the boundary to be + on the vertical sides and − on the horizontal sides, then the chain73

provably requires time exponential in n at sufficiently low temperature. For “p-shifted mixed74

boundary conditions” where we rotate the mixed boundary conditions clockwise by p units,75

We explain this in Section 3. More powerful machinery such as the approach of Dobrushin,76
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24:2 Slow Convergence of Spin Glass Models

Kotecký and Schlosman [6] for the Ising model establish bounds on the temperature below77

which convergence is slow, but they do not easily extend to other cases we consider.78

Similar questions can be examined in the context of spin glasses, or magnetic alloys that
are a natural generalization of the ferromagnetic and antiferromagnetic Ising models. We
are given a graph G = (V,E) and a set of couplings Jij ∈ {−1,+1} for each edge (i, j) ∈ E.
The state space is Ω = {−1,+1}V , where a configuration assigns a spin to each vertex in V .
For a spin glass configuration σ ∈ Ω, the Hamiltonian is defined as

H(σ) = −
∑

(i,j)∈E

Jijσ(i)σ(j)

and the Gibbs distribution is defined as for the Ising model as π(σ) = e−βH(σ)/Z(β).79

When all the Jij = +1, this model is precisely the ferromagnetic Ising model on G; when80

all the Jij = −1, it is antiferromagnetic. In general, the behavior of a spin glass is much81

richer than simple models of magnetism because of the presence of frustration, or competition82

between local interactions. In the case of G = Λ, a square region in the lattice, a face of Λ is83

frustrated when Jij = −1 for an odd number of edges around the face. No setting of the sites84

on the corners of such a face will satisfy all four edges, i.e., make each Jijσ(i)σ(j) = 1. Even85

finding the ground states (or most likely configurations) reduces to solving an optimization86

problem that can be NP-hard (see, e.g., [2]). It will be convenient to refer to the dual lattice87

Λ = (V ,E) and refer to a frustrated face f of Λ by the frustrated vertex v = f in V .88

Here, we study spin glasses with exactly four well-separated frustrated faces in order89

to understand the long-range interactions and their effects on mixing times. We fix the90

nearest-neighbor interactions around the boundary of Λ to be ferromagnetic, and we assume91

fixed + sites on the boundary. Similar models with well-separated defects have been explored92

to understand long-range correlation; for example, in seminal work, Ciucu [4] studied the93

monomer-dimer model with a constant number of monomers and established a connection94

with electrical networks, settling a nearly century old conjecture about long-range effects95

due to isolated monomers. Similar questions arise naturally in the context of spin glasses.96

We show that there is a universal temperature T below which the Markov chainM will97

be slow for any spin glass with exactly four frustrated vertices that are well-separated and98

symmetric around the origin under 90 degree rotations. We identify a bottleneck in the state99

space by looking at the how the free energy (i.e., lnZ/n2) changes as a parameter of the100

system is varied. The same argument easily extends to the Ising model with p-shifted mixed101

boundary conditions, which behaves like spin glasses with four symmetric frustrated faces102

near the boundary (and indeed can be viewed as a special case of the spin glasses we consider103

if we also fix + spins adjacent to the boundary).104

I Theorem 1.1. Let Λ be a square lattice region with fixed + sites on the boundary of Λ105

and a fixed ferromagnetic interaction Jij = 1 on each boundary edge (i, j). Suppose Λ has106

exactly four frustrated faces, f1, . . . , f4, that are symmetric around the center of the lattice107

region under 90 degree rotations and are well-separated (i.e., the shortest lattice path from108

fi to fi+1 has length 2n, i = 1, 2, 3). Then there is a universal temperature T = 0.360 . . .109

such that the Glauber dynamicsM for the spin glass model on Λ with f1, ..., f4 the faces with110

frustration has mixing time τ(M) ≥ ecn, for some constant c > 0, whenever t < T .111

The theorem remains true under the additional assumption of fixed + sites adjacent to the112

boundary. As a corollary this gives a universal bound on the temperature for the Ising model113

with p-shifted mixed boundary conditions.114

The proof of Theorem 1.1 requires several innovations. The standard argument to show115

slow mixing is based on the conductance of the Markov chain. The key is showing that the116
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state space Ω can be partitioned into two sets, S and its complement SC , such that getting117

from S to some subset SC requires passing through a small cutset C ⊂ SC , and the stationary118

weights π(S) and π(SC) are both exponentially larger than π(C). This establishes that the119

chain has low conductance, which implies it takes exponential time to converge to equilibrium120

[13]. The main ingredient is typically a Peierls argument [24], which introduces a map Ψ121

from C to S ∪ SC . Typically Ψ is chosen so that for all σ ∈ C, we have π(Ψ(σ)) ≥ π(σ)ecn,122

mapping elements of C to configurations with exponentially larger weight. If we can show123

that Ψ is nearly injective (i.e., the cardinality of the inverse image of each configuration is124

bounded by a polynomial), then we can conclude that π(C) is exponentially small.125

In our setting, there is not always a natural candidate map that increases the probability126

of a configuration exponentially. In fact, the standard map gives no guaranteed increase to127

the stationary probability when each side of the boundary has close to an equal number of +128

and − spins (when p = 0.5 and the boundary changes spin at the center of the four sides of129

the boundary). In this case, we exploit the low entropy of C by defining an injective map130

from C × 2cn → Ω, for some c > 0. The map never decreases the weight of a configuration,131

so we again can conclude that π(C) is exponentially small. As we vary p, the free energy of C132

remains small compared to the two sides of the cut due to a derease in energy (when p is133

close to 0) or due to entropy (when p is close to 0.5); all other cases rely on both.134

An important technical contribution in our proofs is in the construction of a new injective135

map. The contour representation of a spin glass configuration consists of edges in the136

dual lattice that cross edges e = (i, j) where Jijσ(i)σ(j) = −1; in this representation the137

frustrated vertices in the dual lattice have odd degree and all other vertices have even degree.138

Because of this property the contour representation can be decomposed into a even cycles139

(closed contours) and two long paths whose endpoints are the four frustrated vertices. In140

the standard case of the Ising model with mixed side boundary conditions, we can define an141

injective map that shifts the paths connecting the four frustrated vertices to paths with much142

shorter length, and therefore much larger probability. The new paths can be added along the143

boundary by shifting closed contours. In our case we cannot do this since we cannot always144

construct maps to configurations with larger probability. Therefore we define a map to a set145

of configurations of at least equal probability. To complete the proof we require a careful map146

that allows us to reconstruct the original path, the new path, and the closed contours that147

are intersected when the new path is added. Verifying that the map is injective now requires148

a very sensitive combinatorial encoding and decoding that is likely of independent interest.149

2 Preliminaries150

We review some standard background on Markov chains, convergence times, and the Ising151

model that are required for our results.152

2.1 Markov chains and mixing times153

LetM be an ergodic, reversible Markov chain with arbitrary finite state space S, transition154

probability matrix P , and stationary distribution π. Let P t(x, y) be the t-step transition155

probability from x to y, and let ||·, ·|| denote total variation distance.156

I Definition 2.1. For ε > 0, the mixing time is defined as

τ(ε) = min{t : max
x∈S

∑
y∈S
||P t

′
(x, y), π(y)|| ≤ ε, for all t′ ≥ t}.

A Markov chain is rapidly (or polynomially) mixing if the mixing time is bounded above by157

a polynomial in logS, the length of a description of a state in S. A chain is slowly mixing if158
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Figure 1 States with (a) positive orientation, (b) orientation 0, (c) negative orientation.

the mixing time is bounded below by an exponential function. The conductance, introduced159

by Jerrum and Sinclair [13], is useful to bound the mixing time [13].160

I Definition 2.2. For a Markov chain with stationary distribution π, the conductance Φ is

Φ = min
S:0<π(S)≤1/2

∑
x∈S,y 6∈S π(x)P (x, y)

π(S) .

I Theorem 2.3. (Jerrum and Sinclair [13]) The mixing time of a Markov chain with161

conductance Φ satisfies:162

τ(ε) ≥
(

1− 2Φ
2Φ

)
ln ε−1.163

To establish slow mixing, our strategy will be to define a set S along with sets T ⊂ SC and164

C ⊂ SC \ T in the state space, such that π(S) = π(T ) and π(C)/π(S) < e−cn and such that165

getting from S to SC in the Markov chain requires going through C.166

In this paper, we will focus on the simplest local Markov chainM for the Ising and spin
glass models, known as Glauber dynamics, which connects pairs of configurations whose spins
differ on at most one vertex. In a given step, the chain picks any vertex v ∈ Λ at random and
changes the spin with the appropriate transition probabilities so that the chain converges to
the Gibbs distribution π. For our models, the transition probabilities ofM are defined as

P (σ, τ) = 1
2n2 min

(
1, π(τ)
π(σ)

)
,

if |{i : σi 6= τi}| = 1, and with all remaining probability stay at the current configuration.167

2.2 The Contour representation of the Ising and spin glass models168

It will be convenient to view Ising and spin glass configurations in terms of contours. For169

every configuration σ ∈ Ω, there is a contour representation Γ(σ) in Λ, the planar dual to170

Λ. We define Λ = (V ,E) by letting V correspond to the centers of unit squares in Λ and171

edges E connect any two vertices whose corresponding squares share an edge in Λ. An172

edge e′ ∈ E that is dual to e = (i, j) ∈ E is in Γ(σ) if Jijσ(i)σ(j) = −1 and we omit it if173

Jijσ(i)σ(j) = +1. For the Ising model where all the Jij = +1, the contour representation174

Γ(σ) is precisely the set of edges separating + and − components in σ. Note that we can175

reconstruct the spin configuration σ from the contour representation (given a single spin) if176

we know the values of {Jij}. The weight of a configuration σ is determined by Γ(σ), and177

there is a weight-preserving bijection between the configurations of any two spin glasses with178

the same set of frustated vertices.179

For the spin glass model considered here, all vertices of V \{v1, ..., v4} have even degree in180

Γ(σ) and the frustrated vertices {v1, ..., v4} have odd degree. It follows that Γ(σ) must be the181
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union of two paths terminating at the frustated vertices, along with even cycles. (Note that182

these paths and cycles can intersect each other, and therefore are not necessarily unique.) In183

all that follows, it will be convenient to shift the primal lattice Λ by (−1/2,−1/2) so that184

the vertices of Λ are integral. Now, recall that we assume that the four frustrated vertices lie185

on the boundary of a 2n× 2n square S within Λ centered at (n, n), and they are symmetric186

under rotations by 90 degrees. Without loss of generality, we label these so that v1 lies on187

the top side of S and is the ith vertex from the upper left corner for some 0 ≤ i ≤ n. Setting188

p = i/2n, v1 is at a distance of 2pn from the upper left corner, v2 is on the right side of S189

a distance of 2pn from the upper right corner, v3 is on the bottom of S a distance of 2pn190

from the lower right corner, and v4 is on the left side of S a distance of 2pn from the lower191

left corner. The key to all of our arguments is how the two long paths in Γ(σ) pair up these192

frustrated vertices. Let α(σ) be the length of the shortest path in Λ from the connected193

component of Γ(σ) containing v1 to the connected component containing v4 (if v1 and v4194

are connected, α(σ) = 0). Likewise, let β(σ) be the length of the shortest path between195

the component containing v1 and the component containing v2. Let γ(σ) = β(σ)− α(σ) be196

the orientation of the configuration σ. We partition the state space Ω into a disjoint union197

Ω = ∪i∈Z Ωi, where σ ∈ Ωi if γ(σ) = i.198

The partition of Ω into ∪iΩi allows us to define a cut in the state space in order to199

bound the conductance. In particular, we let Ω− = ∪i<0 Ωi and Ω+ = ∪i>0 Ωi, and we200

observe that Ω = Ω− ∪ Ω0 ∪ Ω+. We specify a subset of C ⊂ Ω0 that will be critical to201

defining the cut as C = {σ ∈ Ω0 : α(σ) = β(σ) = 0} (i.e., the configurations in which v1 is202

connected to both v2 and v4). See Figure 1. Finally, we define C∗ = C ∪ Ω−1 ∪ Ω1 to be the203

configurations where the paths connecting the frustrated vertices are within distance 1 of204

each other. Following [25], for configurations in C, we partition the cross into two paths, one205

from v1 to v3 and a one from v2 to v4; we do the same for configurations in Ω−1 and Ω1,206

although it may be necessary to add a single “defect” that encodes where one or both of207

these paths incurs a jump by one unit. To move from a configuration in Ω− to one in Ω+
208

using Glauber dynamics, we must pass through a configuration in C∗. We will show that209

the probability of C∗ is exponentially small, and this will allow us to argue that the Glauber210

dynamics requires exponential time to converge to equilibrium.211

3 Slow Mixing for the Ising model with Mixed Boundaries212

We start with the standard approach used to show slow mixing when the boundary conditions213

alternate spins on the boundary of a (2n + 1) × (2n + 1) lattice region Λ. Here Λ is the214

2n× 2n lattice region centered in Λ. This will motivate the approach used in the general215

spin glass setting (when the frustrated vertices are not necessarily on the boundary of Λ)216

and will elucidate the difficulties in generalizing this simpler result.217

Fix 0 ≤ p ≤ 1/2 and let q = 1− p. We define v1 = (2pn, 2n), v2 = (2n, 2qn), v3 = (2qn, 0)218

and v4 = (0, 2pn). Recall that all vertices on the boundary between v1 and v2 and between219

v3 and v4 are assigned + and the others are assigned −. The vertices v1, ..., v4 define the220

endpoints of a pair of paths in each configuration. (There may be more than one choice221

of paths.) Using the strategy outlined in Section 2.2, we recall that C consists of those222

configurations where there are paths from v1 to both v2 and v4 (and therefore also to223

v3). Using the notion of “fault lines” introduced in [25], we note that this is the set of224

configurations that contain a horizontal fault line, i.e.,. a path from v2 to v4, and a vertical225

fault line, i.e., a path from v1 to v3. When both fault lines are present (and intersect) we call226

their union a cross. We define the cross so that it is a maximal component of the contour227
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representation of the configuration.228

Let C be a cross in Λ. As we will show in Lemma 4.1, the minimum length of C is229

L = 6n − 4np. We write the length as |C| = L + `, for some ` ≥ 0. Let CC be the set of230

configurations in C that have C as their cross.231

We will write the weight of a configuration σ as λ−H(σ), λ = e2β = e2/T , and note that232

the energy H(σ) is the number of edges in the contour representation of σ.233

I Lemma 3.1. For any cross C, we have

π(CC) ≤ λ−(2n−4pn+`).

Proof. We define the injective map ψC : CC → Ω so that π(ψC(σ)) = π(σ)λ(L−4n+`) for any
fixed C. Given this map, we find

1 = π(Ω) ≥
∑
σ∈CC

π(ψC(σ)) =
∑
σ∈CC

π(σ)λ(L−4n+`) = λ(2n−4pn+`)π(CC).

The map ψC is defined by removing C; then, along the upper-left boundary of Λ between v1234

and v4 we add each edge not in σ and remove each edge in σ; then, along the lower-right235

boundary of Λ between v3 and v2 we add each edge not in σ and remove each edge in σ. J236

I Theorem 3.2. Let Λ ⊂ Z2 be an (2n + 1) × (2n + 1) lattice region and 0 ≤ p ≤ 1/2
define a family of balanced mixed boundary conditions on Λ. Let Ω be the set of all Ising
configurations and let C be the Ising configurations containing a cross. Then

π(C) ≤ f(n)e−cn,

for some polynomial f(n) and constant c > 0, whenever λ(1−2p) > 3(3−2p).237

Proof. By Lemma 3.1,

π(C) ≤
∑
C

λ−(2n−4pn+`) ≤
∑
`≥0

λ−(2n−4np+`)3(6n−4np+`) ≤ 4n2(3(3−2p)λ−(1−2p))2n,

which is exponentially small when λ(1−2p) > 3(3−2p). The second inequality holds because238

there are at most 3(6n−4np+`) ways to choose a cross of length 6n− 4np+ `. J239

Thus, when λ(1−2p) > 3(3−2p) we have that the size of the cut is exponentially small, and240

therefore the conductance of the graph is also exponentially small. By Theorem 2.3, this241

implies that the chain takes exponential time to mix.242

I Corollary 3.3. Glauber dynamics for the Ising model on Λ with balanced mixed boundary243

conditions takes time at least ecn to mix, for some constant c > 0, when λ(1−2p) > 3(3−2p).244

Notice that this gives λ > 27 when p = 0 and λ > 3(2(k+1)+1) when p = 1/2− 1/2k and when245

p = 1/2 this fails to give any useful bound.246

4 Slow Mixing for Frustrated Spin Glasses Using Free Energy247

We will now proceed to extend the result in Section 3 by establishing slow mixing below248

some temperature for spin glasses with four well-separated frustrated vertices.249

In this setting we define Λ as a kn× kn lattice region, k ≥ 2. Four distinguished faces250

are symmetric around the center of the lattice region under 90 degree rotations. The centers251

of these faces are four vertices v1, .., v4 in Λ. As in Section 2.2 we define C to be the set of252
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(a) (b)

Figure 2 (a) A minimal cross is shown in black, with two possible monotone paths in green. Any
monotone path in either shaded region is possible. (b) A staircase is shown in black, together with
the part of a cross containing a path from v1 to v4. The green arrow shows the direction edges of σ
are shifted in the region bounded by the middle section of the staircase and the cross.

contour configurations in which v1 is connected to both v2 and v4, and we define the cross253

C in such a configuration as the component containing v1. The argument in Section 3 fails254

when p = 1/2, in particular when ` = o(n). The length of the cross C in that case is 4n+ `,255

and our injective map ψC removes C and replaces it with two paths of total length 4n. The256

difference in energy, H(σ)−H(ψC(σ)) = `, is too small to show that σ has exponentially257

small probability.258

The remedy comes from noticing that in exactly the case ` = o(n), C is nearly a minimal259

cross and there are many alternative choices of ψC . We will allow any monotone path that,260

in order to ensure loss of energy, does not intersect C. The set of possible paths is illustrated261

in Figure 2(a). We have the following lemma, whose proof appears in the Appendix.262

I Lemma 4.1. Let Sn be the 2n× 2n axis-aligned square whose sides contain v1, .., v4. For263

some ` ≥ 0, |C| = 6n−4pn+`. If ` < 2pn there are two (2n−2pn−`)×(2pn−`) rectangular264

regions on opposite corners of the interior of Sn that contain no edges of C.265

Our new strategy is to use all possible choices of ψC , thereby defining an exponential266

family of images. We will define a function ΨC that involves mapping a configuration σ ∈ CC267

to the union of possible ψC(σ) defined by different pairs of monotone paths. Figure 2(a) also268

shows the tradeoff between energy and entropy for our method. As p decreases, the energy269

loss due to the map increases. As the width of each shaded area decreases, the number of270

possible paths,
( 2n

2np
)
, also decreases. This is what we mean by a decrease in entropy.271

Just as we needed ψC to be injective in Section 3, we would like our new map to have272

the property that two different configurations map to disjoint sets of configurations. Instead,273

we define ΨC to pass a small amount of “side information,” and with this definition we will274

get a disjointness property that serves our purpose. The side information is in the form of275

tokens placed on certain edges along each of the two paths that define the configuration σ is276

mapped to. Formally, for each path this information is encoded as a binary string of length277

2n: 0 for any plain edge, 1 for an edge with a token. The nice property that will make this278

side information small is that no two adjacent edges of a path are occupied by tokens.279

Let B(m) be the set of binary strings of length m with no consecutive 1’s. Let B = BC =280

B(2n−`). Formally, we will define a function ΨC : CC → 2Ω×B×B that has the nice properties281

in the following lemma. To get our hands on the set of mapped configurations minus the282

tokens, we define the projection operator Π : 2Ω×B×B → 2Ω, so that Π({σi, bi, b′i}) = {σi}.283

Formally, Π ◦ΨC is the map from one configuration to a set of configurations.284

In the following lemmas, fix 0 ≤ p ≤ 1/2 and let L = 6n− 4np.285
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I Lemma 4.2. Let C be a maximal cross of length |C| = L + `. There exists a function
ΨC : CC → 2Ω×B×B such that ∀σ, σ′ ∈ CC , σ′′ ∈ Π ◦ΨC(σ),

ΨC(σ) ∩ΨC(σ′) = ∅,

|ΨC(σ)| =
(

2n− 2`
2pn− `

)2
,

and H(σ′′) ≤ H(σ)− (2n− 4np+ `).

We postpone constructing the function ΨC (and proving Lemma 4.2) until the next286

subsection. Theorem 4.5 is an analogue of Theorem 3.2 that gives an exponential bound for287

all p, 0 ≤ p ≤ 1/2. As a corollary of Theorem 4.5, we will prove our main result, Theorem 1.1,288

asserting slow mixing for spin glasses with frustration.289

We first bound the probability of the set of configurations containing a given cross C.290

I Lemma 4.3. For any maximal cross C of length |C| = L+ ` we have291

π(CC) ≤ π(Π ◦ΨC(CC))λ−(2n−4np+`)φ4n−2`+1
/(

2n− 2`
2np− `

)2
, (1)292

where φ = (1 +
√

5)/2.293

Proof. It is well known that |B(m)| is the mth Fibonacci number, which is within 1 of φm.294

Each σ′′ ∈ Π ◦ΨC(σ) appears in at most |B|2 ≤ φ4n−2`+1 elements of ΨC(σ). The bound295

on H(σ′′) in Lemma 4.2, gives π(σ′′) ≥ π(σ)λ−(2n−4np+`) and the two equalities imply296

π(Π ◦ΨC(CC)) ≥
∑
σ∈CC

π(σ)λ(2n−4np+`)φ−(4n−2`+1)
(

2n− 2`
2np− `

)2
. (2)297

298

The inequality follows by replacing
∑
π(σ) with π(CC). J299

Our main theorems establishing slow mixing of Glauber dynamics for spin glasses with300

well-separated frustrated vertices (Theorems 4.5 and 1.1) depend on the following technical301

lemma regarding the set C` of configurations containing maximal crosses of fixed length L+ `:302

C` = ∪{CC : |C| = L + `}. The idea of the lemma is to show that π(C`) is exponentially303

small, where the constant in the exponent is independent of `. This also means that the free304

energy ln π(C`)/n is less than some negative constant. Since there are polynomially many305

values of `, it will follow that the whole set C is exponentially small.306

I Lemma 4.4. Let C` be the spin glass configurations where v1, .., v4 are all connected by a307

maximal cross of length L+ `. Then for λ ≥ 256 we have308

π(C`) ≤ 2−0.2n poly(n). (3)309

Proof. Let s = 1/2− p and r = `/n. We will actually prove that310

π(C`) ≤ λ−8sn (3/λ)rn 2n[(4−2r) log2 φ+L(r,s)+P(r,s)−T (r,s)] poly(n) , (4)311

where312

L(r, s) = (2 + 4s+ r)h( r

2 + 4s+ r
),313

P(r, s) = (2 + 4s)h( 2s
1 + 2s ),314

T (r, s) = max(0, 4− 4r)h(1
2 −

s

1− r ),315
316
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and h(x) = −x log2(x)− (1− x) log2(1− x). Then we will show that the right-hand side of317

Equation 4 is less than 2−0.2n.318

First, we establish Equation 4. Each C consists of vertical path connecting v1 to v3319

and a horizontal path connecting v2 to v4. The vertical path contains a minimal vertical320

path of 2n vertical edges and 2n − 4pn horizontal edges. There are
(4n−4pn

2n−4pn
)

=
(2n+4sn

4sn
)

321

choices of minimal vertical path. There is one choice of minimal horizontal path, which322

contains only horizontal edges connecting v2 and v4 to the vertical path. Then there are323 (6n−4np+`
`

)
=
(2n+4sn+rn

rn

)
ways to choose the locations of the ` extra edges, and 3 possible324

directions for each extra edge. Applying Lemma 4.3 and Stirling’s formula,325

π(C`) ≤
(

6n− 4np+ `

`

)(
4n− 4pn
2n− 4pn

)
3` max
|C|=L+`

π(CC)326

≤ 2(2n+4sn+rn)h(r/(2+4s+r))2(2n+4sn)h(2s/(1+2s))3rn327

· λ−(8sn+rn)φ4n−2rn+12−2(2n−2rn)h((1−r−2s)/(2−2r)).328
329

Equation 4 follows immediately by collecting the terms in the exponents.330

By taking logs and dividing by n it follows that log2 π(C`)/n ≤ F(r, s), where

F(r, s) = (−r − 8s) log2 λ+ r log2 3 + (4− 2r) log2 φ+ L(r, s) + P(r, s)− T (r, s)

It remains to show that F(r, s) ≤ −0.2, for all s, r, 0 ≤ s ≤ 1/2, r > 0, and large enough λ.331

L(r, 0) is concave as a function of r, L(r, s) and P(r, s) are concave as functions of s, and332

−T (r, s) is convex as a function of s. We numerically approximate the concave functions333

with a tangent line and the convex function with a secant, yielding these results:334

L(r, 0) ≤ 0.5 + 2.9r; P(r, s) ≤ 0.5 + 12s;335

L(r, s) ≤ 0.5 + 2.9r + 2rs ≤ 0.5 + 3.9r; −T (r, s) ≤ −4 + 4r + 8s.336
337

338 Also, r log2 3 < 1.5r and (4− 2r) log2 φ < (2.8− 1.4)r. Adding terms, for λ ≥ 256, we get339

F(r, s) ≤ (−r − 8s) log2 λ+ 8r + 20s− 0.2 ≤ −0.2.340

J341

We now state the key theorem bounding the probability of the set C of configurations342

containing crosses.343

I Theorem 4.5. Let Ω be the set of all spin glass configurations in a kn×kn square lattice Λ344

centered at (n, n), k ≥ 2. Suppose that four distinguished vertices v1, .., v4 lie on the boundary345

of an axis-aligned 2n× 2n square S centered in Λ, and these four vertices form the corners346

of a (not necessarily axis-aligned) square (i.e., they are shifted by 2p around the boundary of347

S). Let C be the set of configurations in which v1 is connected to both v2 and v4. Then for348

λ ≥ 256 we have349

π(C) ≤ 2−0.2npoly(n). (5)350

Proof. Since ` has at most (cn)2 values, π(C) ≤ (cn)2 max` π(C`) ≤ 2−0.2npoly(n). J351

Proof of Theorem 1.1. Set T = 2/ ln 256 = 0.360.... Let t < T . The state space Ω contains352

the two disjoint subsets Ω− and Ω+, separated by a cut set C∗ consisting of all configurations353
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Figure 3 (a) A staircase and patch that share edges (left), and an encoding that loses information
(right). (b) A staircase and patch with the default path (left), and an encoding that preserves
information (right).

within two steps of C. We have π(C∗) < π(C)poly(n) and by symmetry π(Ω−) = π(Ω+). The354

conductance Φ satisfies355

Φ ≤
∑
σ∈Ω−,σ′∈ΩC π(σ) Pr(σ, σ′)

π(Ω−) ≤ 4 · π(C∗) ≤ 2−0.1n, for large enough n. (6)356

Therefore the Markov chain mixes slowly. J357

4.1 Construction of the Map358

In this section we will construct the map ΨC using pairs of paths as shown in Figure 2(a).359

An upper staircase with respect to a cross C of length L+ ` is a path of min(`, 2pn) west360

edges starting at v1 followed by zero or more west and south edges, followed by min(`, 2pn)361

south edges ending at v4. We refer to the section of west and south edges as the “middle362

2n− 2 min(`, 2pn) edges.” We define a lower staircase to be a path v3 to v2, which, when the363

configuration is rotated 180°, becomes an upper staircase. Note that the edges on a staircase364

need not be edges of a particular configuration. Given upper and lower staircases, we will365

map σ ∈ CC to some σ′ ∈ Ω, marking certain edges with tokens. We will show that one can366

reconstruct σ from C, σ′, and the marked edges, that no two marked edges are adjacent,367

and H(σ′) ≤ H(σ)− |C|+ 4n, implying Lemma 4.2.368

Our map is motivated by the map ψC in the proof of Lemma 3.1. In fact, the construction369

is the same along the first min(`, 2pn) edges and last min(`, 2pn) edges: we add each edge370

not in σ and remove each edge in σ. Along the middle section of the staircase that contains371

west and south edges, our map must encode the locations of the staircase edges in σ′ without372

increasing H(σ′). The basic strategy is to remove C, shift edges in σ away from the staircase,373

toward the removed edges of C, then add the edges of the staircase.374

Let SU be an upper staircase and SL be a lower staircase. The simple regions in the375

interior of C ∪ SU ∪ SL may be two-colored gray and white, with the exterior, denoted R,376

colored gray. Regions separated by an edge in C ∩ SU or C ∩ SL will have the same color.377

We assume in what follows that ` < 2pn. In particular, SU and SL do not both contain378

edges in any one region boundary. When ` ≥ 2pn, SU and SL are contained in the boundary379

of the 2n× 2n square Sn, and the proof of Lemma 3.1 applies.380

By Lemma 4.1 there is one white simple region R whose boundary contains the middle381

2n − 2` edges of SU . The map will shift edges of σ in R southeast, and it will shift the382

corresponding region bounded by the middle 2n− 2` edges of SL northwest. See Figure 2(b).383

We may assign a + or − to each site in R ∪R so that the sites adjacent to C are + and384

the edges of σ restricted to R ∪ R are exactly those edges between two neighboring sites385

of opposite sign. We define a patch to be a connected set of − sites in R ∪ R. The outer386



D. Gillman and D. Randall 24:11

(a) (b)

Figure 4 (a) The components to encode. (b) The contour pieces defining the map.

boundary of a patch is the unique cycle of edges in the configuration that, when traversed387

counterclockwise, has sites inside to the left of each edge and sites outside to the right.388

A naive map would remove C from the configuration and add the upper staircase and389

lower staircase to the configuration. The flaw in this approach is that σ cannot always390

be reconstructed when part of a staircase coincides with part of the boundary of a patch.391

Figure 3(a) shows an upper staircase in black that shares edges with a patch, shown in blue.392

Adding the staircase creates double edges. The natural recourse is removing double edges393

while preserving degrees, but shared edges are no longer recoverable from such a map.394

Our map modifies the naive approach by shifting the staircases before adding them to395

the configuration, and shifting edges that are between the staircases toward the empty space396

left behind after the removal of C. Let S be the maximal contiguous section of SU that397

forms part of the boundary of R and contains the middle 2n− 2` edges of SU . We define the398

default path to be S shifted one step east. It consists of alternating west and south sections.399

The first south (northernmost) edge of each south section, and the first west edge of each400

west section, are each incident to S at just one vertex (with the exception of the first edge of401

S if it is a south edge preceded in SU by a south edge). All other edges on the default path402

are on S or not incident to it. The last south and last west edges are defined accordingly.403

Figure 3(b) shows the same staircase and patch, with the default path in red. σ is mapped404

to σ′ by starting with the union of the patch and the default path, and removing double405

edges. The default path can be reconstructed from σ′, because it contains the first-south406

and first-west edges of the default path. This is the information that was missing from the407

previous mapping. The mapping contains no more energy than the original.408

A subtler problem of lost information arises when the staircase enters the interior of a409

patch. We define an interior edge of S to be one that bounds two − sites. Each maximal410

contiguous segment of interior edges of S divides a patch into two patches, which we refer to411

as the above-patch (or A-patch) and the below-patch (or B-patch).412

To solve the problem of interior segments, we triple each interior edge of the staircase,413

shifting the staircase and the B-patch one step east, and shifting the B-patch one step south.414

The drawing on the left of Figure 4(a) shows the staircase in black and the patch in blue415

before the two shifting steps, and the drawing on the right shows the default path in red and416

the two patches after the shifts. After the shifts, our mapping removes all double edges.417

The doubled interior edges of the default path consist of all interior west edges of the418

A-patch except the last-west edge of each west section, and all interior south edges of the419

below patch except the last-south edge of each south section.420

This mapping has the one final problem that it increases the energy of the configuration.421

This problem can be illustrated by labeling the edges as in Figure 4(b). Edges EA and EB422

(blue) are exterior of the A-patch and B-patch, respectively. Edges IA and LW (orange) are423

south and last-west interior edges of the A-patch, resp. Edges IB and LS (purple) are west424
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and last-south interior edges of the B-patch, resp. Edges FI, FW, and FS (red) are the first425

interior edge and all first-west and first-south edges of the default path, resp. Edges FE and426

SE (red) are the first and second “exterior” edges of the default path following this segment427

of interior edges. The first exterior edge will not be interior to any patch, but the second428

exterior edge may be interior to this or another patch.429

The increase in energy is caused by the “detours” at FS-LW and FW-LS. The final430

mapping step is to flip the signs of sites bounded by corners of those two types and to place431

a token at each such site. The Appendix presents the map steps in detail.432

4.2 Reconstruction433

The default path (and hence σ restricted to RL) can be reconstructed from σ′, before434

token-placing, as it contains all of the first-west and first-south edges. Starting from the FI435

edge, the default path continues until it encounters the first FS or FW edge. Then it changes436

direction and the FS or FW edge inductively plays the role of the FI edge. The rest of the437

interior segment is reconstructed by induction on the number of south and west sections.438

Reconstructing the default path in the presence of tokens is the same recursive process,439

except we look ahead one step. If the next edge has a token, we flip the adjacent site before440

proceeding. The adjacent site is unambiguous because it is between the A- and B-patches.441

The Appendix presents the reconstruction steps in detail.442

4.3 Energy loss:443

Before token-placing and sign-flipping, σ′ has more energy than H(σ)− |C|+ 4n. The EA444

and EB naturally correspond 1-1 to the edges of the original patch. The IA and IB edges445

correspond 1-1 to the interior segment of the staircase. The excess energy consists of one446

pair of edges, FS-LW or FW-LS, for each corner of the interior segment, plus two more edges,447

the FI edge and one LW or LS edge incident to FE.448

The mapping solves this problem by short-circuiting the corners. Each FS-LW pair occurs449

as part of a segment FS-LW-IA that form three sides of a site, and each FW-LS pair occurs450

as part of a segment FW-LS-IB that also form three sides. The mapping flips the sign of451

each such site, replacing three edges with one, and places a token at the flipped site.452

Two such sites may be adjacent. This happens when an IA or IB section is one edge long.453

Then one of the two sites is bounded by an FS-LW-IA-FW segment or an FW-LS-IB-FS454

segment. In either case the mapping replaces four edges with zero. One sign-flip in the first455

traversal removes the excess energy of both sites, and one token is placed. It also flips one456

edge of the adjacent site, ensuring that no two tokens will be adjacent. (See Figure 5(a) steps457

(d)-(f).) Each sign-flip in the second traversal converts three edges to one, canceling excess458

energy due to this site. In this case, this site will not be adjacent to another token site.459

The two remaining excess edges are the FI edge and one LW or LS edge. Suppose it460

is LW (the case of LS is similar). If FE and a LW form a double edge or SE and an EB461

form a double edge (the case pictured), the mapping removes the double edge, cancelling the462

excess energy. In the remaining case FE is an FS edge, SE is an FW edge, and the segment463

LW-FE-SE forms three sides of a site. The mapping flips the sign of this site and places a464

token. No token is placed on a site adjacent to this site. SE is not an interior edge of any465

patch, because this site is on the exterior side of FE. The first interior edge of a patch does466

not bound a site with a token.467
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Appendix534

Proof of Lemma 4.1. The minimal cross contains a path from v1 to v3 and a path from v2535

to v4. First let’s assume that each of these is minimal. Then they each have length 4n− 4pn536

and the total length of the cross is 8n− 8pn− |o|, where o is the length of the overlapping537

segments. Orient the edges along each path from v1 to v3 so that the edges all go right or538

down, and orient the path from v2 to v4 so that they go down or left. Then the overlapping539

segments are oriented the same way in both paths if the edge is vertical and in opposite540

directions if the edge is horizontal. But all horiztonal edges on the path from v2 to v4 after541

this shared edge are left of the edge, and those on the path from v1 to v3 are to the right;542

similarly, if they share a horizonal edge, all subsequent vertical edges must be to the left of543

the edge on one path and to the right on the other. Therefore, the overlapping segment must544

all be vertical or all horizontal. Furthermore, all the vertical edges that overlap have to lie545

between v2 and v4 and have length at most 2n− 4pn; likewise if the horizontal edges that546

overlap since they lie between v1 and v3. It follows that when the two paths are minimal547

|o| ≤ 2n− 4pn and the length of the cross is at least 6n− 4pn.548

If either of the paths from v1 to v3 and v2 to v4 is not minimal, then the overlap can549

contain both horizontal and vertical edges. Notice that the overlapping segments must be550

contignuous along either path or the cross would contain a cycle, contradicting minimality. If551

this overlapping segment contains edges oriented both left and right (or down and up), then552

it can be shortened, again violating minimality. Therefore the overlapping segment must go553

down and left or down and right. If down and left, then the path from v1 to v3 has an extra554

edge to the right for each horizontal edge in the overlapping segment; if down and right then555

the path from v2 to v4 has an extra edge for each horiztonal edge in the overlap. Finally,556

if the number of vertical edges in the overlap exceeds the vertical distance between v2 and557

v4, then the path between them must contain at least that many additional vertical edges.558

Summing all of these up, we find that if there are 2n− 4pn+ k edges in the overlap, then the559

sum of the lengths of the two paths must be at least 8n− 8pn+ k. Subtracting the length of560

the overlapping segment, we again find that the length of the cross is at least 6n− 4pn.561

If the cross is nearly minimal, with length 6n − 4pn + `, the picture is similar. The562

paths from v1 to v3 and v2 to v4 must also be nearly minimal, each having length at most563

4n− 4pn+ ` and the length of the overlapping segments must be at least 2n− 4pn− `. It564
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(a) (b)

Figure 5 (a) The map: blue edges are the patch boundary, black edges are the staircase, red
edges are the default path, and green edges are the final mapping. (b) Reconstruction steps: blue
edges are the patch boundary, green edges are the mapping, black edges are the staircase, and red
edges are the default path.

follows that the path from v1 to v3 lies in a (2n− 4pn+ `)× 2n rectangle, the path from565

v2 to v4 lies in a 2n × (2n − 4pn + `) rectangle, and the overlapping segments lie in the566

center (2n− 4pn+ `)× (2n− 4pn+ `) square. The overlapping segments do not have to be567

contiguous, but the distance between segments is at most `. We find, by a similar argument568

to before, that all but ` edges on the overlap must have the same orientation, horiztonal569

or vertical. If the overlap is mostly vertical, then the (2pn− `)× (2n− 2pn− `) rectangles570

adjacent to the upper-left and lower-right corners of the region cannot contain any edges571

from the cross. Similiarly, if the overlapping segments are mostly horizontal, then there572

cannot be any edges from the cross in the (2n− 2pn− `)× (2pn− `) rectangles incident to573

the upper-right and bottom-left corners of the region. J574

Map Steps:575

Given σ ∈ CC pick an upper staircase SU and a lower staircase SL. Remove C from σ. Along576

the initial segment of ` edges and final segment of ` edges of SU , add each edge not in σ and577

remove each edge in σ. Let S be the middle 2n− 2` edges of SU .578

1. Add S. If this doubles an edge, label one copy on the staircase and the other above (below)579

the staircase if it is on the boundary of an A-patch (B-patch).580

2. Triple each interior edge of S. Label one copy on the staircase, the second above the581

staircase, and the third below the staircase. (Figure 5(a) step (b).)582

3. Shift every edge on or below the staircase one step east.583

4. Shift every edge below the staircase one step south. (Figure 5(a) step (c).)584

5. Remove every double edge. (After the two shifts there are no triple edges.) (Figure 5(a)585

step (d).)586

6. Traverse the default path twice from start to end (Figure 5(a) steps (e), (f)):587

a. First traversal: if the current edge and the next edge are interior FW or FS edges,588

then put a token on the site bounded by these two edges and flip its sign.589

b. Second traversal: if the current edge is either an interior FS or FW edge that is part590

of an FS-LW-IA or FW-LS-IB segment, or an SE edge that is FW or FS and is the591

third leg of an LW-FS-FW or LS-FW-FS segment, then flip the site bounded on three592

sides by the segment and place a token on it.593

For SL, rotate the configuration 180°, repeat steps 1-6, and rotate back.594
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Reconstruction steps:595

Given σ′, the following steps reconstruct σ. For subpaths of the upper staircase that bound596

a white region to the left,597

1. Infer and traverse the edges of the default path from start to end, but do not add them598

to the configuration. The first edge will be a west edge. Inductively, at a current edge,599

the next edge will be one of two possible edges that we’ll call straight, for the edge that600

continues in the current direction, and turning, for the other edge.601

a. if there is a token by the next edge, flip the sign of the token site. (Figure 5(b) steps602

(c), (d), (f).)603

b. if the turning edge exists in the configuration (possibly after flipping), it is the next604

edge. (Figure 5(b) steps (b), (c), (d), (f).)605

c. otherwise the straight edge is the next edge; add it to the configuration if it doesn’t606

exist. (Figure 5(b) steps (b), (e).)607

2. Shift every edge in the white region to the left one step north.608

3. Shift every edge in the white region to the left one step west.609

For subpaths of the upper staircase that bound a white region to the right, reflect σ across the610

line y = x, apply steps 1-3, and reflect back. For the lower staircase, rotate the configuration611

180 degrees, repeat the process, and rotate back.612

4. Remove all double edges.613

5. Add C to the configuration.614
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