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Abstract

The Schelling segregation model attempts to ex-
plain possible causes of racial segregation in cities.
Schelling considered residents of two types, where ev-
eryone prefers that the majority of his or her neigh-
bors are of the same type. He showed through sim-
ulations that even mild preferences of this type can
lead to segregation if residents move whenever they
are not happy with their local environments. We gen-
eralize the Schelling model to include a broad class of
bias functions determining individuals happiness or
desire to move, called the General In�uence Model.
We show that for any in�uence function in this class,
the dynamics will be rapidly mixing and cities will
be integrated (i.e., there will not be clustering) if the
racial bias is su�ciently low. Next we show com-
plementary results for two broad classes of in�uence
functions: Increasing Bias Functions (IBF), where an
individual's likelihood of moving increases each time
someone of the same color leaves (this does not in-
clude Schelling's threshold models), and Threshold
Bias Functions (TBF) with the threshold exceeding
one half, reminiscent of the model Schelling originally
proposed. For both classes (IBF and TBF), we show
that when the bias is su�ciently high, the dynamics
take exponential time to mix and we will have segre-
gation and a large �ghetto� will form.

1 Introduction

The Schelling Segregation Model was introduced by
Thomas Schelling in 1971 to explain how global
behavior can arise from small individual prefer-
ences [22]. In Schelling's original model, agents are
one of two colors and move if there are too many
neighbors of the opposite color within their imme-
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diate neighborhood. Simulations show that con�g-
urations rapidly become segregated with like colored
neighbors clustered together. Schelling used this sim-
ple model to argue that �micro-motives� can deter-
mine �macro-behavior,� thereby forming the basis for
Agent-Based Computational Economics.

Despite extensive interest in the Schelling model
and its many variants, almost all research remains
non-rigorous. Our goal here is to consider families
of Schelling models in an attempt to put them on
�rmer footing. There are many natural extensions
worth considering: How large a neighborhood is rel-
evant to one's happiness, and do all neighbors within
this neighborhood in�uence us equally? Can resi-
dents move away, or are they restricted to remain in
the city? Are all houses occupied, or are there empty
houses (say, foreclosures) that might be even less de-
sirable to have in one's proximity? Is one's happi-
ness determined solely by the color of the majority of
one's neighbors, as Schelling originally proposed, or
does one get increasingly happy or unhappy as new
people of one type or the other move into the neigh-
borhood? Are decisions to move somewhere based on
each person's relative happiness, or is one less likely
to move to a house where he is not wanted if doing
so decreases the happiness of his new neighbors?

Economists and social scientists use statistical
and non-rigorous computational tools to study the
dynamics and limiting distributions, as well as for
connecting the model to real world populations [1, 8,
21, 27]. Even the concept of segregation or clustering
typically is not formally de�ned. An exception is the
rigorous analysis of the Schelling model in the one-
dimensional setting [4, 7, 15, 29]. Additional rigorous
work has considered further variations designed to
simplify the neighbors' interactions for some speci�c,
basic models [9, 15, 21, 30].

1.1 Relation to spin systems. The concept
of micro-motives e�ecting macro-behavior is well-
studied and far better understood in the statistical
physics community, where it is used to explain fun-
damental concepts such as phase transitions. The
Schelling model itself is reminiscent of many physical
models, most notably spin systems such as the Ising
model which are used to understand ferro-magnetism.
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In the Ising model, vertices of a graph, say a �nite
region G = (V,E) of Z2, are assigned + or - spins,
and neighboring vertices prefer to have the same spin.
Although in the original Schelling model a person's
happiness depends only on the color of the majority
of his neighbors, in the Ising analogue everyone is in-
crementally more likely to move as more people of
the opposite color move into their neighborhood.

Speci�cally, in the Ising model we are given a
parameter λ that is a function of temperature, and
the stationary probability of a con�guration σ ∈
{±1}V is

π(σ) = λ|{x,y: (x,y)∈E, σ(x)=σ(y)}|/Z,

where

Z =
∑

σ∈{±1}V
λ|{x,y: (x,y)∈E, σ(x)=σ(y)}|

is the normalizing constant known as the partition
function. Glauber dynamics is a Markov chain on
Ising con�gurations that changes one spin at a time
using Metropolis probabilities to force the chain to
converge to π. The Ising model on Z2 is known to
undergo a phase transition, i.e., there exists a value λc
such that when λ < λc, the Glauber dynamics for the
Ising model mixes in time polynomial in |V | and when
λ > λc, it mixes in exponential time [13, 20, 16, 26].
Moreover, the phase transition in the mixing time
is accompanied by a corresponding transition in the
stationary distribution of the Markov chain; at low
λ, an average sample from the steady state is �evenly
mixed� with regards to the proportions of spins, while
at high lambda, an average sample is clustered, and
has large regions of predominantly one spin type.
Indeed, the Ising model has been studied empirically
as an alternative to the Schelling model [21, 24, 25].
In open systems at low temperature (high bias) the
population will become predominantly one color or
the other, and in closed systems (arising as a �xed
magnetization Ising model), large clusters of one color
(or spin) will form, indicating segregation [26, 28].

While extensions of the Ising model on Z2 have
been examined extensively by physicists and math-
ematicians, the resulting models are typically less-
tractable and give little insight into Schelling vari-
ants (such as neighborhoods of size larger than 4, un-
occupied houses, or bias functions that do not scale
geometrically with the number of di�erently colored
neighbors). A lot is known about the Ising model
on graphs with more than nearest-neighbor interac-
tions see, e.g., Chapters 2 and 9 of [18] and general
spin systems on Zd have been shown to have a phase
transition whenever there is a phase transition in the

associated mean �eld model for certain classes of in-
teractions [3, 2, 6]. However, while these results apply
only to certain classes of interactions, they fail to give
insight into more general utility functions which more
closely resemble the original Schelling model.

1.2 Generalized segregation models. We
consider a generalization of the Schelling model called
the General In�uence Model (GIM) and give rigorous
results demonstrating a dichotomy in mixing times
and clustering for two broad classes. The GIM con-
siders open cities in a non-saturated setting, with
neighborhoods of any radius, and where moving is
based on the product of everyone's happiness. Open
cities allow residents to move away, while closed cities
require �xed racial demographics. Unsaturated cities
allow houses to be unoccupied. An individual's hap-
piness is a function depending only on the number of
unoccupied, red and blue houses within a certain ra-
dius. This function can be a threshold, as suggested
by Schelling, a geometric function, similar to the Ising
model, or anything else. Moreover, these in�uence
functions are controlled by parameters measuring the
strength of these biases, so for any in�uence function
we can study the e�ects of large or small racial bias.

First, we consider a natural extension of the
Schelling dynamics where people move according to
the relative global happiness and we analyze the mix-
ing time, or the time to approach equilibrium. The
relevance of bounding the mixing time to understand-
ing Schelling dynamics is indirect and will help us
discern properties of the stationary distribution. Sec-
ond, we formalize a concept of clustering in order to
predict when typical con�gurations are likely to be
segregated or integrated. We show that for any in�u-
ence function, the dynamics will be fast mixing and
cities will be integrated (i.e, there will not be clus-
tering) if the racial bias is su�ciently low. Next, we
show complementary results for two broad classes of
in�uence functions. The �rst is for Increasing Bias
Functions (IBF), where an individual's likelihood of
moving increases each time someone of the other color
moves close or someone of the same color leaves (this
does not include Schelling's threshold model). The
second is for Threshold Bias Functions (TBF) when
the threshold is more than one half, reminiscent of
the model Schelling originally proposed. Here a resi-
dent is happy as long as the majority of his neighbors
share his color, and is unhappy otherwise, regardless
of the actual percentage. For both classes (IBF and
TBF) we show that when the bias is su�ciently high,
the dynamics take exponential time to mix and we
will have segregation. Note that because we are con-
sidering open cities, segregation means the city will
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become predominantly one color, a large ghetto, and
slow mixing means that it will take exponentially long
for the city to transition from a ghetto of one color
to one of the other color. It's important to note that
this does not imply that it will take long to see the
emergence of ghettos or for the con�guration to �sta-
bilize� as one large ghetto; it only means that it will
take exponentially long to transition from one essen-
tially stable con�guration to another. (We also have
initial results showing that these results can be ex-
tended to closed cities where our de�nition of clus-
tering also holds for populations with any �xed racial
demographics.)

In Section 2 we formalize the General In�uence
Model, which we subsequently view as a Markov
chain on the set of all housing assignments. We also
formalize de�nitions of mixing times and clustering
that we will use to establish dichotomies in the
subsequent sections. In Section 3 we provide the
proofs of fast mixing for all in�uence functions at
low bias and slow mixing for the IBF and TBF
classes at high bias. Finally, in Section 4 we give the
corresponding proofs for integration at low bias and
segregation at high bias, which will build on the proof
ideas established in Section 3. Finally, we conclude
with some open problems.

2 Preliminaries

We �rst formalize our generalization of the Schelling
model, which we call the General In�uence Model
(GIM), and present some background on the mixing
time of Markov chains and clustering.

2.1 The General In�uence Model. Let Ω be
the set of all 3-colorings of the faces of the n x
n grid Gn, where the colors represent the types of
occupants in a housing grid. We label the possible
colors B,R and U where B and R represent two types
of residents, red and blue, U represents an unoccupied
house and we refer to each of these as B, R, or U -faces
respectively (see e.g., Figure 2). An occupied face
refers to a B or R-face. We denote the color of face x
in con�guration σ as σ(x). To simplify our notation,
we let σx1=c1,x2=c2,... denote the con�guration σ with
face xi colored ci, for each speci�ed i.

We consider a natural Markov chain M on Ω
whose transitions alter the color of one face at a time.
We select a face x ∈ Gn and a color c ∈ {B,R,U}
uniformly at random, then set face x to color c
with probability that depends on the total change
in �happiness� of the con�guration. The happiness of
any occupied face is determined by the colors of faces
within a radius of r, and the weight of a con�guration
is the product of the happiness of each occupied face.

Formally, we are given a �xed radius r as a
parameter of the model. Each resident (or occupied
face) is in�uenced equally by all N = 2r2 + 2r
neighbors which we de�ne as faces within taxicab
distance r. We are also given a utility function
u : {(s, d) : s, d ∈ [0, N ], s + d ≤ N} → [0, 1], that
relates the coloring of a resident's neighborhood to its
happiness with an arbitrary bias (or utility) function.
For an occupied face x, let s(σ, x) be the number of
neighbors of x that have the same color as x in σ
and d(σ, x) be the number of neighbors of x which
have a di�erent, but occupied color. (i.e. R- for
B-faces and vice versa) in σ. The happiness of an
occupied face x is de�ned to be u(s(σ, x), d(σ, x)).
We also require that u is a non-decreasing function
in both parameters, and also that for d >= 1, u(s +
1, d−1) > u(s, d). In other words, one prefers a same
colored neighbor to an oppositely colored neighbor
to an abandoned house. For our model, we require
that u(0, 0) = 0 and u(N, 0) = 1 for normalization
purposes.

We will state our results in terms of bounds on
the discrete partial derivatives of the utility function
u. In particular, let

u′α = min
a,b
{u(a+ 1, b)− u(a, b− 1)},

u′β = max
a,b
{u(a+ 1, b)− u(a, b− 1)},

u′κ = min
a,b
{u(a+ 1, b)− u(a, b)}, and

u′γ = max
a,b
{u(a+ 1, b)− u(a, b)}.

The Markov chainM performs moves using the
Metropolis transition probabilities with respect to the
distribution π which we will de�ne (see, e.g., Chapter
3 of [14]). The weight π of a con�guration σ is de�ned
as π(σ) =

∏
x:σ(x)6=U

λu(s(σ,x),d(σ,x))/Z,

where Z =
∑
σ∈Ω

∏
x:σ(x)6=U λ

u(s(σ,x),d(σ,x)) is the
normalizing constant. We are now ready to formally
de�neM.

The Markov chain M:1

Starting at any σ0, at step t iterate the following:

� Choose a face x of Gn, and a color c ∈ {B,R,U}
uniformly at random.

1We present the results in the unsaturated setting where

we allow empty houses. For the saturated model the Markov

chain allows houses to move between B and R in one move,

indicating that a new resident will move in as soon as one

vacates a house. All of the proofs carry over in this case and

are in fact simpler.
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� If σt(x) = U, with probability 1 let σt+1 =
σt,x=c.

� If σt(x) = R and c = U, with probability
π(σt,x=U )/π(σt,x=R) let σt+1 = σt,x=c.

� If σt(x) = B and c = U, with probability
π(σt,x=U )/π(σt,x=B) let σt+1 = σt,x=c.

� With the remaining probability, let σt+1 = σt.

This Markov chain trivially connects the state space
since we can always reach the empty con�guration
from any starting con�guration.

The General In�uence Model (GIM) is a general-
ization of many well-studied models on the grid. For
example, if we let r = 1 (each resident has N = 4
neighbors), and u(s, d) = s/4, then (after a suitable
change of variables), this model is equivalent to the
non-saturated Ising model on the grid [10]. Here, B-
faces correspond to + spins and R-faces correspond
to − spins. The in�uence on a site is the number of
matching neighbors, and the fact that u(s, d) = s/4
means that this in�uence is linearly proportional to
the corresponding exponent of λ in the weight of the
con�guration.

If instead we let r = 1 and u(s, d) = U0(s −
d), where U is a step function, then this model
corresponds to a reversible version of the original
Schelling Model based on thresholds [25, 21]. Here, a
site is �happy� if it has at least as many neighbors of
the same color as the opposite color. If we let r = 1,
and u(s, d) = UN/2(s), we have another variant of the
Schelling Model where a site is �happy� if at least half
of its neighbors are of the same color.

2.2 Mixing and clustering. We give rigorous
results demonstrating a dichotomy in mixing times
and clustering for two broad classes. Here we formally
de�ne both mixing time and clustering. For all ε > 0,
the mixing time τ(ε) ofM is de�ned as

min{t : max
x∈Ω

1

2

∑
y∈Ω

|P t(x, y)− π(y)| ≤ ε,∀ t′ ≥ t}.

We say that a Markov chain is rapidly mixing if
the mixing time is bounded above by a polynomial
in n and log(ε−1) and slowly mixing if it is bounded
below by an exponential function. In Section 3, we
bound the mixing time of the Markov chainM under
di�erent conditions.

In order to characterize whether a con�guration
is segregated or integrated, we determine whether
one group of residents has �clustered.� We build on
a concept of clustering developed in [17] based on
the presence of a large region with small perimeter

that is densely �lled with either R- or B-faces. In
Section 4, we will show that a random sample from
our model will be exponentially likely to be clustered
when the bias is high, and exponentially unlikely to
be clustered when the bias is su�ciently low.

More precisely, we will de�ne a cluster region
C = (CF , CE) where CF is a set of faces in the grid
Gn and CE is a connected set of edges that contains
every edge which is adjacent to a face in CF and a
face in CF = Gn\CF . The perimeter of a region C is
|CE |.

Definition 2.1. Given a con�guration σ ∈ Ω, we
say that the X-faces are c-clustered if σ contains a
cluster region C satisfying:

1. the perimeter of C (i.e. |CE |) is at most cn,

2. the density of X-faces in CF is at least c and in
CF is at most 1− c and

This de�nition is useful to characterize clustering
in open and closed cities, but in open cities the region
will be the entire grid and a random con�guration will
be predominantly one color or the other.

3 Bounding the Mixing Time

We begin by showing a dichotomy in the mixing
time of M at high and low bias. First, we show
that for any IBF and TBF utility function with
threshold exceeding one half, M is slowly mixing
when λ is su�ciently high. Then we show for all
utility functions u, M is rapidly mixing if λ is
su�ciently low.

The proofs of fast mixing and integration at
low bias use standard coupling and information-
theoretic arguments. The proofs of slow mixing and
segregation at high bias are subtle and signi�cantly
more challenging. In fact, it is not clear whether the
latter results extend to the whole class of GIMs, as
our proofs only verify that segregation occurs in the
IBF and TBF settings.

The strategy used to show slow mixing of Markov
chains and clustering e�ects is a Peierls argument,
which originated in physics in order to study Gibbs
measures on the in�nite lattice. The argument works
by showing certain types of con�gurations are expo-
nentially unlikely by using combinatorial maps and
information theory. In the context of Markov chains,
Peierls arguments can be used to show that cut sets in
the state space are exponentially unlikely, and this is
su�cient to show that the Markov chain will require
exponential time to converge to equilibrium. Simi-
larly, in the context of clustering, we can use a similar
argument to show that con�gurations that are inte-
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B B R B B B B R

(a)

R B B B B B B R

R B R R R U B U

R B R B R B B U

B B R R R B R R

B B R R R B B R

U U R B B B R R

R R R R U B R R

B B R B B B B R

(b)

R B U B R R B U

B B U U R R R R

B U R R R U B B

U R R B B B B R

B R R R R R R R

R R B B B U U B

B R U U B B R R

R R R B B R U B

(c)

Figure 1: (a) A con�guration with a contour, (b) the corresponding fat contour, and (c) an R-cross.

grated, or lack large clustered components, also have
exponentially small probability at equilibrium.

The proofs of slow mixing build on some tech-
niques established previously, but these pieces had
to be put together in novel ways. We use a strat-
egy introduced in [19] to partition the state space
according to topological features, namely monochro-
matic crosses (similarly colored neighboring houses
that connect all four sides of the housing region) and
fault lines, or long paths separating houses of di�er-
ent colors. Con�gurations with fault lines form the
cut in the state space, and our objective is then to
show that they have exponentially small probability.
For the Ising model on Z2, for instance, completing
the argument is simple because we can reverse the
spins (or �ip the colors) of all houses on one side of
the fault to move to a new con�guration with expo-
nentially larger stationary probability. The introduc-
tion of unoccupied houses complicates this approach,
but we use a technique used in [11] by characteriz-
ing the cut as con�gurations with �fat faults.� The
greater challenge occurs when the radius of in�uence
is larger than 1 and residents are equally in�uenced
by neighbors up to r houses away, for r > 1. In this
case faults or fat faults are not su�cient and reversing
the colors on one side of a fault can actually decrease
the probability of a con�guration. To address this we
introduce the notion of bridges and build a complex
of fat faults connecting components that are within
distance r.

The arguments are �ne tuned to the speci�c
classes, IBF, where everyone gets increasingly happy
as more people of their color move into their neighbor-
hood, and TBF, where residents are unhappy unless
some threshold over 50% is reached. Either of these
conditions give us the leverage to push through the
Peierls argument and show that the cutset has expo-
nentially small probability. The signi�cance of 50%
is that if we change the color of a resident who is cur-

rently happy then he necessarily becomes unhappy,
and this only happens in a threshold model when the
threshold is beyond one half.

3.1 Slow mixing at high λ. We begin by
extending the concept of fat faults introduced in [11]
to fat faults that are essentially large boundaries that
can �jump� up to a distance of r. By showing that
these types of faults are unlikely for su�ciently large
values of λ, we show that M mixes exponentially
slowly when the utility function is in the IBF or
TBF class. We begin by describing the general
technique and then give the detailed proofs for the
IBF and TBF classes. We make use of the well
known relationship between the conductance and the
mixing time of a Markov chain to show that three
sets ΩB ,ΩR and ΩF , which we will de�ne shortly,
partition the state space with ΩF being a cutset with
exponentially small weight. This lets us show that
the conductance of the chain is small, and we can
conclude the chain mixes exponentially slowly. (See
[12, 23] for details.) The conductance of an ergodic
Markov chainM with stationary distribution π and
transition matrix P is

ΦM = min
S⊆Ω

π(S)≤1/2

∑
s1∈S,s2∈S̄

π(s1)P (s1, s2)/π(S).

The following theorem relates the conductance and
mixing time (see [23, 12]).

Theorem 3.1. For any Markov chain M with con-
ductance ΦM, the mixing time τ(ε) ofM satis�es

τ(ε) ≥
(

1− 2Φ

2Φ

)
ln ε−1.

In order to de�ne the three sets that form our
cut we start with some terminology. We call a pair
of faces within taxicab distance r to be an in�uence,
and refer to this as a bad in�uence if the two faces
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B U R B B B B R

(a)
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U R R R B B B B

B R R B R B B R

R R R R U B B B

R R R R U B B B

B U R B B B B R

(b)

R R R R R R R R
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R R R R R R R R

U R R R R R R R

B R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R B

(c)

Figure 2: (a) A con�guration σ with a fault line, (b) the 1-extended fault, and (c) φ(σ).

are colored di�erently or are both U -faces. In�uences
at distance 1, adjacent faces, we call edges since they
correspond to edges of the n × n grid. We de�ne a
contour to be a connected set of bad edges and a fat
contour (see [11] and Figure 1) to be a maximally
connected set of bad edges.

A fat contour, or set of fat contours, partitions
the faces of the grid into regions whose border along
any single fat contour is monochromatic. With re-
spect to a single contour, we call these R-regions,
B-regions, etc. to denote the color along their bor-
der. Note that the entire regions are not necessarily
monochromatic, as a B-bordered region may fully en-
close a set of R faces that do not border the contour.
Also note that U -regions are single squares, since all
4 sides of a U -face are bad edges. For example, see
Figure 1b where the fat contour partitions the con�g-
uration into a B-region, a R-region and 4 U -regions.
Given two fat contours c1 and c2, c1 is within dis-
tance r of c2 if there exists a face adjacent to c1 that
is within taxicab distance r of a face adjacent to c2,
and these faces are in di�erent regions, where the re-
gions are the unique regions de�ned by c1 and c2. We
can think of all the disjoint fat contours of a con�g-
uration to be connected to each other in an auxiliary
graph if they are within distance r of each other. We
then de�ne an r-extended contour to be the union of
all fat contours in a maximally connected component
of this auxiliary graph.

We say that a con�guration has a monochromatic
cross if it has a connected monochromatic connected
set of B-faces or R-faces that touches all four sides of
the grid (see Figure 1c). We will refer to a monochro-
matic cross as a B-cross or a R-cross depending on
the color of the faces. A fat contour that spans from
the top to bottom or left to right of the grid is a fault
line. We use the fact that every con�guration falls
into one of three disjoint classes: ΩB (those with a
B-cross), ΩR (those with a R-cross), and ΩF (those

with a fault line). It is known that ΩB , ΩR, and ΩF
partition the state space Ω, and moves of the Markov
chain M cannot directly move from ΩB to ΩR or
vice-versa, and thus must move through ΩF [11].

Our goal is to show that ΩF is an exponentially
small cut in our state space by exhibiting a mapping
φr : ΩF → Ω such that for any σ ∈ ΩF , the image
φr(σ) ��xes� a fault line by reversing the colors in
some of the monochromatic regions that border the
r-extended contour containing the fault line. This
causes many more same-color interactions, yielding
a gain π(φr(σ))/π(σ) that is exponentially large in
n. This gain is exponentially larger than the total
weight of all potential pre-images ∈ ΩF of any state
∈ Ω, from which we can conclude that π(ΩF ) is
exponentially small.

We construct φr(σ) for σ ∈ ΩF as described
below (see Figure 2).

� Take the lexicographically �rst fault line in σ.

� Find the r-extended contour (and associated
regions) which contains this fault line.

� Finally, for the regions de�ned by the r-extended
contour, map all U -regions to R-faces and within
any B-region change all R-faces to B-faces and
all B-faces to R-faces.

We note that all faces within distance r of the
fat fault line in σ will map to R-faces in φr(σ). This
map causes all elements within distance r of the fault
line to be mapped to R-faces. We also note that no
bad in�uences are created by the map φr between
previously good in�uences - this can only happen to
faces P and Q if they are within r of each other, and
also in di�erent fault regions. However, if they are
in di�erent fault regions, some fault edge must pass
through any shortest path between P and Q, and
the r-extended contour would necessarily pick up the
borders of the monochromatic regions containing P
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and Q. Thus, the mapping φr would cause both P
and Q to map to R-faces.

We now bound the number of pre-images of a
con�guration β such that φr repairs a r-extended
contour of length m (i.e. σ : φr(σ) = β). Starting on
one of 4n points on the border, a r-extended contour
can be expressed by a depth �rst search of m edges,
using at most 2m steps, and each step travels in up
to 2r2 + 2r directions. Each monochromatic region is
surrounded by at least four edges, and each edge is on
the boundary of two regions. Thus, there are at most
m/2 distinct regions bordering this contour, each of
which can be colored one of 3 ways. Therefore, there
are at most 4n3m/2(2r2+2r)m pre-images σ such that
φr(σ) �xes this contour.

3.1.1 Increasing Bias Functions. We �rst
present result for utility functions u with bounded u′α.

Theorem 3.2. For the Markov chain M, with ra-
dius r and utility function u with u′α > 0, there exists
a constant λ1 = λ1(r, u′α) such that M mixes expo-
nentially slowly when λ > λ1.

Proof. We partition ΩF into sets ΩF,m where σ ∈
ΩF,m if m is the number of bad edges �xed by φr.
We observe that for two adjacent faces I and J with
a bad edge, every face that in�uences both I and J
will share a bad in�uence with at least one of them.
Thus each of these 2r2−2 faces, excluding I, J , gains
at least one new neighbor of the same type, which
causes an increase of happiness of at least u′α. Any
one in�uence between any P and Q is counted at
most 8 times in this way, once for each potential bad
edge bordering P or Q. Also, the happiness of both
P and Q improve from is. Thus, we see a gain of
at least u′α((2r2 − 2)/4 + 1) per face bordering the
fault line. Let σ ∈ ΩF,m, then by applying φr we �x
a r-extended contour with m edges and the gain in
weight satis�es

π(φr(σ))

π(σ)
≥ (λ)u

′
α
m
4 (2r2−1) ≥ (λ)u

′
α
mr2

4 .

Next, let

λ > λ1 = (9(4r2 + 4r)4)(r2u′α)−1

.

Then we have:

π(ΩF ) =
2n2∑
m=n

∑
x∈ΩF,m

π(φr(x))
π(x)

π(φr(x))

≤
2n2∑
m=n

∑
x∈ΩF,m

π(φr(x))(λu
′
α)−mr

2/4

≤
2n2∑
m=n

2n(2r2 + 2r)m · 3m/2(λ−u
′
αmr

2/4)

≤
2n2∑
m=n

2n2−n/4 ≤ 4n32−n/4.

Next, we will combine this bound on π(ΩF ) with the
detailed balance condition which states that for an
ergodic reversible Markov chain on Ω with transition
matrix P and stationary distribution π, (see e.g. [23])

∀i, j ∈ Ω Pij π(i) = Pji π(j).

Thus, we have that

ΦM =
∑

s1∈ΩR,s2∈Ω̄R

π(s1)P (s1, s2)/π(ΩR)

≤
∑

s1∈ΩR,s2∈Ω̄F

π(s2)P (s2, s1)/π(ΩR)

≤ π(ΩF )/π(ΩR).

By symmetry, we know that

π(ΩR) = π(ΩB) = (1− π(ΩF ))/2.

Thus, the conductance ofM is at most

ΦM ≤ π(ΩF )/π(ΩR)

= 2π(ΩF )/(1− π(ΩF ))

≤ 2π(ΩF )

≤ 8n32−n/4.

By Theorem 3.1, it follows that τ(ε), the mixing time
ofM, satis�es

τ(ε) ≥ (n−32n/4−4 − 1) ln ε−1.

3.1.2 Threshold Bias Funcations. We now
consider the threshold variant where a face needs θ
matching neighbors to be happy, so u(s, o) = Uθ(s),
where U is a step function with threshold θ. Here
u′α = 0 so we cannot apply the bounds in the previous
subsection. However, a key observation allows us to
apply our technique to a certain class of threshold
utility functions.

Theorem 3.3. For the Markov Chain M, with ra-
dius r, neighborhood size N = 2r2 + 2r, threshold
θ > 1

2 + 1
2r+2N and utility function u(s, o) = Uθ(s),

there exists a constant λ2 = λ2(r) such thatM mixes
exponentially slow when λ > λ2.

Proof. We again partition ΩF into sets ΩF,m where
σ ∈ ΩF,m ifm is the number of bad edges �xed by φr.
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Again, every two adjacent faces I and J with a bad
edge shares a neighborhood of 2r2−2 faces, excluding
I and J . Thus if

θ > r2 + 2r = (2r2 + 2r)

(
1

2
+

1

2r + 2

)
,

both I and J cannot be happy. Thus the mapping φr
will cause at least one of I and J to become happy
(from unhappy), leading to a gain of 1 per edge of
the fault line. This gain is counted at most 4 times,
once for each edge bordering the �xed face. Thus, we
see a a gain of at least m/4 by �xing a contour of size
m, or an amortized gain of at least 1/4 per such face.
Again, we let

λ > λ2 = (9(4r2 + 4r)4).

Then we have:

π(ΩF ) ≤
2n2∑
m=n

∑
x∈ΩF,m

π(φr(x))(λu
′
α)−m/4

≤
2n2∑
m=n

2n(2r2 + 2r)m · 3m/2(λ−m/4)

≤ 4n32−n/4.

By the same argument as in the case of Increasing
Bias Function, it follows that τ(ε), the mixing time
ofM, satis�es

τ(ε) ≥ (n−32n/4−4 − 1) ln ε−1.

3.2 Rapid mixing at low λ. In contrast, we
show that when λ is su�ciently low, we can guarantee
that the chain mixes in polynomial time for all utility
functions. Our bound on λ depends on the discrete
partial derivative

u′γ = max
a,b
{u(a+ 1, b+ 1)− u(a, b)}.

The proof relies on the now standard path coupling
technique (see, e.g., [5]). We present the results
in the unsaturated setting where we allow empty
houses. For the saturated model the Markov chain
allows houses to move between B and R in one move,
indicating that a new resident will move in as soon
as one vacates a house. All of the proofs carry over
in this case and are in fact simpler. We prove the
following.

Theorem 3.4. For the Markov Chain M, with ra-
dius r and utility function u, there exists a constant
λ3 = λ3(r, u′α) such that M is fast mixing when
1 ≤ λ < λ3.

Proof. We use a path coupling argument with the
natural coupling. Notice that a move of M consists
of selecting a face f and a color c. The coupling
uses the same face and color for both con�gurations.
The distance metric we use is the minimal number
of steps of M required to change one con�guration
into another. At any face, it takes at most two
steps to change the color at that face to any possible
color. Thus, the maximum distance between any two
con�gurations is 2n2.

In order to apply the path coupling theorem, we
consider pairs of con�gurations at distance 1, without
loss of generality let them be (σ = σg=U , σg=R). For
notational purposes, for a given face y, it will be
helpful to use the shorthand uy = u(s(σ, x), d(σ, x))
to describe the total utility on face y. Since we
are interested in the changes to this utility as a
function of changing faces near y, we will also use
the shorthand uy(a, b) = u(s(σ, x) + a, d(σ, x) + b)
to mean the utility on face y if a additional same
colored tiles and b additional opposite colored tiles
are in the neighborhood of y. As the probability of
a move depends on the set of neighbors near a tile,
it will also be helpful to let R(y) denote an indicator
for the event that site y is colored R in σ, B(y) an
indicator for the event that y is colored B in σ, C(y)
an indicator for the event that d(y, g) <= r, and
F (y) an indicator for the event d(y, g) > r. Roughly
speaking, C and F indicate if y is �close� or �far�
from g.

Let f be the face selected by M. The distance
can only decrease if f = g; here we consider three
cases.

� If f = g and c = R, then we accept both moves
with probability 1, decreasing the distance by 1.

� If f = g and c = B, then con�guration σg=U will
accept the transition with probability 1, while
the move is disallowed for σg=R; thus increasing
the distance by 1.

� If f = g and c = U , then the distance decreases
by 1 with the probability that σg=R transitions

to σ,
π(σg=U )
π(σg=R) . Every occupied face in the

neighborhood around g will lose one occupied
neighbor, and every R-face will also lose one
same colored neighbor. Thus:

π(σg=U )

π(σg=R)
=

1

λug

∏
y:σ(y)6=U,
d(g,y)≤r

λuy

λuy(A(y),1)

≥ 1

λug
1

λu
′
γs(g)+u

′
βd(g)
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We now consider cases where the distance be-
tween con�gurations can increase, namely whenever
f 6= g. We again consider three cases:

� If f = U , both transitions are accepted with
probability 1 and the distance does not change.

� If f = R, the probability that we increase the
distance by 1 is the di�erence in the chance
that σg=U becomes U at f but σg=R does not.
This is exactly | σf=0,g=0

σf=R,g=0
− σf=0,g=R

σf=R,g=R
|. In the

�rst term, every face within r of f is losing an
occupied neighbor, and ever R face is losing a
same-colored neighbor. The second term is more
complicated. Every face within r of f is still
losing an occupied neighbor, but g in�uences not
only f , but also those neighbors that are within
r of both g and f . Also, these neighbors are
a�ected di�erently if the face is an A or B face.
In this case,

| σf=0,g=0

σf=R,g=0
− σf=0,g=R

σf=R,g=R
|

=

∣∣∣∣ 1

λuf

∏
y:σ(y)6=U
d(y,f)≤r

λuy(−R(y),−B(y))

λuy
−

1

λuf (1,1)

∏
y:σ(y)6=U
d(y,f)≤r

λuy(−R(y)F (y),−R(y)F (y))

λuy(R(y)C(y),B(y)C(y))

∣∣∣∣
≤ 1

λuf

 ∏
y:σ(y)6=U

d(y,f)≤r,d(y,g)>r

λuy(−R(y),−B(y))

λuy


·
∣∣∣∣ 1

λu
′
κs(g)λu

′
αd(g)

− 1

λu
′
γs(g)λu

′
βd(g)

∣∣∣∣
≤
∣∣∣∣ 1

λu
′
κs(g)λu

′
αd(g)

− 1

λu
′
γ

1

λu
′
γs(g)λu

′
βd(g)

∣∣∣∣
≤ 1− 1

λu
′
γ+(u′γ−u′κ)s(g)λ(u′β−u′α)d(g)

� Similarly, if f = B, this is bounded by

≤ 1− 1

λu
′
β

1

λ(u′β−u′α)s(g)λ(u′γ−u′κ)d(g)

Let η = max(u′γ − u′κ, u′β − u′α). (Note that for the
Ising model, η = 0.) The expected change in distance

is then

E [∆(σg=U , σg=R)]

≤ 1

3n2

(
−1

λug
1

λu
′
γs(g)+u

′
βd(g)

+ s(g)(1− 1

λu
′
γ

1

λ(u′γ−u′κ)s(g)λ(u′β−u′α)d(g)
)

+ d(g)(1− 1

λu
′
β

1

λ(u′β−u′α)s(g)λ(u′γ−u′κ)d(g)
)

)
≤ 1

3n2

(
−1

λ2u′γs(g)+2u′βd(g)

+ N(1− 1

λu
′
γs(g)+u′βd(g)

1

ληN(u′γs(g)+u′βd(g))
)1/N

)
≤ −1

3n2

(
1

λ2u′γs(g)+2u′βd(g)

− (log(ληN(2u′γs(g)+2u′βd(g)

)
where the second to last step uses the inequality of
arithmetic and geometric means, and the �nal step
uses the fact that

lim
n→∞

n(1− x1/n)→ − log x

from below. Recall that η ≤ u′γ ≤ u′β . Thus we see
our expected change is negative whenever the value
v = ληN(u′γ+u′β) satis�es 1/v > log v. This occurs if

1 ≤ λ ≤ (1.8)η/(2r
2−1) = 1 +O(1/r2)

Setting λ = (1.5)η/(2r
2−1), the expected change in

distance is at most −.2612/3n2 per step. At last
applying the path coupling theorem [5] gives the
bound on the mixing time,

τ(ε) ≤ 3n2 log(2n2ε−1)

.2612
= O(n2 log(nε−1)).

4 Segregation or Integration at Stationarity

We now return to the original motivation behind the
Schelling model, namely determining how racial bi-
ases can in�uence segregation in a community. To
address this question, we need to formalize how bi-
ases contribute to the limiting distributions for the
Schelling processes. We consider the Markov chains
arising from the Generalized In�uence Model and
we characterize properties of the stationary distribu-
tions. Using insights from Section 3 on mixing times
we establish a similar dichotomy indicating integra-
tion and segregation at low and high values of λ, re-
spectively. When λ is large, ghettos will form, and
con�gurations will be predominantly one color. How-
ever, when λ is small, there will be no clustering of
one type and cities will remain integrated.
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Our proofs build on combinatorial insights devel-
oped in Section 3.1 and in [17] to establish clustering
(i.e., segregation) for the IBF and TBF models when
the bias is high. We characterize clustering by the ex-
istence of a region R that has large (quadratic) area,
small (linear) perimeter, and whose interior is dense
with one of the two colors. A similar notion of clus-
tering was used in [17], but the proofs required the
introduction of r-bridges and fat contours to handle
unoccupied houses and large radii of in�uence.

4.1 Segregation at high λ for the IBF and

TBF classes. First, we use the combinatorial
techniques developed in Section 3.1 to argue that at
high λ, con�gurations will be segregated. In open
cities we expect a single ghetto of predominantly
R- or B-faces. Speci�cally, we prove that at high
values of λ, a typical con�guration will have no large
contours and will have high density of either R-
or B-faces. We combine techniques used to show
clustering [17] with the slow mixing techniques used
in Section 3.1. Let ρR be the density of R-faces and
ρB be the density of B-faces. We prove the following
theorem showing ghettos will form.

Theorem 4.1. Assume a valid utility function u
with radius r such that u′α > 0 or u is a threshold
utility function with θ > ( 1

2 + 1
2r+2 )N, where N =

2r2 +2r. Given a constant density d1 > 1/2, there ex-
ist constants γ1 = γ1(d1) < 1 and λ1 = λ1(u′α, r, d1)
such that for all λ ≥ λ1 a random sample from Ω will
have no contours with more than d1n edges and ei-
ther the density ρR > d1 or ρB > d1 with probability
at least (1− γn1 ).

Proof. Using an extension of the techniques from 3.1
we show that it is exponentially unlikely for a con�gu-
ration to have any contour with size greater than d1n
and that it is exponentially unlikely for ρR, ρB < d1.
The union bound lets us combine these two results.

Let Ωd1 be the set of con�guration in Ω which
contain a contour longer than d1n edges. To show
that such con�gurations are unlikely, we construct a
map φd1

: Ωd1
→ Ω from con�gurations with contours

of size greater than d1n to con�gurations which have
at least one less contour of size greater than d1n. As
in Section 3.1, φd1 takes the lexicographically �rst
contour of size greater than d1n, �nds the r-extended
contour which contains this contour, changes all U -
faces bordering the r-extended contour toR-faces and
�ips all B-bordered regions adjacent to the contour.
Unlike Section 3.1 where the contour is a fault line
and thus adjacent to the border, our contour is not
necessarily anchored to the border.

Next, we bound the number of pre-images of

a con�guration under φd1
, using a combinatorial

argument similar to Section 3.1. In Section 3.1 the
number of con�gurations with an r-extended contour
with m edges which intersect the border is at most
4n3m/2(2r2 + 2r)m. However, with our new function
φd1 , the contour might not be connected to the
border so the number of con�gurations with an r-
extended contour with m edges is now 2n23m/2(2r2 +
2r)m, since the number of possible starting points is
increased from 4n to 2n2 (the number of edges in the
grid). Additionally, we only guarantee that the r-
extended contour has at least d1n edges instead of n
edges. Let ΩF,m be de�ned as in Section 3.1 where a
con�guration σ ∈ ΩF,m if m is the number of bad
edges �xed by φd1

. The remainder of the proof is
the same as in Theorem 3.2. If our utility function
u satis�es u′α > 0, then we have a gain of at least

λu
′
αr

2/4 per edge of the r-extended contour. Assume

λ ≥ λ1 = (3(2r2 + 2r))4/u′αr
2

,

and let γ1 = 3−3d11/4. We then �nd

π(Ωd1
) ≤

2n2∑
m=d1n

π(ΩF,m)

≤
∑
m

∑
x∈ΩF,m

π(φd1
(x))λ−mu

′
αr

2/4

≤
∑
m

2n23d1n/2(2r2 + 2r)d1n(λ)−d1nu
′
αr

2/4

≤ 4n43−d1n/2 ≤ γn1 .

Otherwise, if u is a threshold utility function with

θ >

(
1

2
+

1

2r + 12

)
N,

then we have a gain of at least λ1/4 per edge of the
r-extended contour. Assume

λ ≥ λ1 = (3(2r2 + 2r))4,

and let γ1 = 3−3d11/4. Then, we have that

π(Ωd1
) ≤

2n2∑
m=d1n

π(ΩF,m)

≤
∑
m

∑
x∈ΩF,m

π(φd1
(x))λ−m/4

≤
∑
m

2n23d1n/2(2r2 + 2r)d1n(λ)−d1n/4

≤ 4n43−d1n/2 ≤ γn1 .
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To show that it is exponentially unlikely for
ρR, ρB < d1 we construct a map φS which locates
a su�ciently large set of r-extended contours and
removes them. Given a set S of r-extended contours,
the size of the set which we denote as |S| is the
sum of the sizes of the distinct r-extended contours
contained in S. We show there exists a row P in
the grid and a set S of r-extended contours with
|S| ≥ ( 1−d1

2 )n such that each r-extended contour in
S contains at least one vertical edge along P .

Next, we bound the number of pre-images of a
con�guration under φS , using an argument similar
to Section 3.1. There are n possible rows P and
for each choice of P there are 2n di�erent sets of
starting points for our depth �rst search. Given
the set of starting points, a depth �rst search of m
edges takes at most 2m steps and each move travels
in up to 2r2 + 2r directions. Thus there are now
n2n3m/2(2r2 +2r)m con�gurations with a row P and
set S with |S| = m and each r-extended contour in S
intersecting P. Unlike Section 3.1, we only guarantee
that we are ��xing� at least 1−d1

2 n bad edges instead

of n edges since |S| ≥ ( 1−d1

2 )n. If our utility function
u satis�es u′α > 0, then we have a gain of at least

λu
′
αr

2/4 per bad edge. In this case, assume

λ ≥ λ2 = (22/(1−d1)3(2r2 + 2r))4/u′αr
2

,

and let γ1 = 3−3(1−d1)/8. Let ΩF,m be de�ned as in
Section 3.1. Combining these results we �nd,

π(ΩS) ≤
2n2∑

m=
(1−d1)n

2

∑
x∈ΩF,m

π(φS(x))λ−mu
′
αr

2/4

≤
∑
m

n2n3
1−d1

4 n(2r2 + 2r)
1−d1

2 nλ
−(1−d1)

2

nu′αr
2

4

≤ γn1 .

Otherwise, if u is a threshold utility function with

θ > (
1

2
+

1

2r + 2
)N,

then we have a gain of at least λ1/4 per bad edge. In
this case, assume

λ ≥ λ2 = (22/(1−d1)3(2r2 + 2r))4,

and let γ1 = 3−3(1−d1)/8.

π(ΩS) ≤
2n2∑

m=
(1−d1)n

2

∑
x∈ΩF,m

π(φS(x))λ−m/4

≤
∑
m

n2n3
1−d1

4 n(2r2 + 2r)
1−d1

2 nλ
−(1−d1)

2
n
4

≤ γn1 .

It remains to show that there exists a row P and a
set S of r-extended contours with |S| ≥ ( 1−d1

2 )n such
that each r-extended contour in S contains at least
one vertical edge along P . First consider the case
where the density of B- and R-faces along any row
P is low speci�cally, ρR + ρB < 1+d1

2 . This implies

that along this row there are at least (1 − 1+d1

2 )n =

( 1−d1

2 )n U -faces this implies that the maximum set
S of r-extended contours which intersect P satis�es
|S| ≥ ( 1−d1

2 )n (for each U -faces either the edge above
or the edge below must be included in S). Next, we
can assume the density of B- and R-faces along each
row is at least 1+d1

2 . Let γR be the number of R-
faces along the left and right boundaries of the grid
and similarly let γB be the number of B-faces. Since
γR + γB ≤ 2n, either γR < n or γB < n. We assume
γR < n. Next, assume there is a row P with at least
( 1−d1

2 )n R-faces. Consider the maximum set S of
r-extended contours which intersect P . This set S
divides the grid into regions. Now for each R-face t
along P , this face is contained within some region
which implies that there is an edge of S in the same
column as t or the region containing t spans the entire
column. If there are no such regions that span entire
columns then the size of S is at least as large as the
number ofR-faces along P implying, |S| ≥ ( 1−d1

2 )n as
desired. Otherwise we have a region with boundary
ψ that is bordered by R-faces and spans an entire
column. Since ψ spans an entire column, each row
of the grid contains 2 edges of ψ. Since there are
at most n R-faces along the boundary, there are at
most n boundary edges contained in ψ implying ψ
contains at least n non-boundary edges which implies
|S| ≥ n ≥ ( 1−d1

2 )n, as desired.

Finally, if there is no row P with at least ( 1−d1

2 )n

R-faces then, since every row has at least ( 1+d1

2 )n
B- and R-faces, there must be at least d1n

2B-faces
implying ρB ≥ d1, a contradiction.

4.2 Integration at low λ. Finally, we provide
complementary results showing that at low λ an
average sample from the steady state is integrated;
there will not be a high density of R or B-faces
so we are not likely to have clustering. We prove
the following theorem which shows that at low bias,
ghettos are unlikely to form.

Theorem 4.2. Given a valid utility function u with
radius r and constant c2 > 10/11, there exist con-
stants γ2 = γ2(c2) < 1 and λ2 = λ2(u′β , r, c2) such
that for λ ≤ λ2 a random sample from Ω will be c2-
clustered or the density ρR or ρB > c2 with probability
at most γn2 .

Proof. First we show that a con�guration is exponen-
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tially unlikely to be c2-clustered. We use a similar
technique to show that ρR, ρB < c2. It is straightfor-
ward to combine the two results using a union bound.

Let ΩC ⊂ Ω be the set of con�gurations that are
c2-clustered. We will show that under the conditions
stated in the theorem, π(ΩC) is exponentially small.
To show ΩC is exponentially small, we construct a
map φC : ΩC → Ω, which maps a con�guration
σ ∈ ΩC to the set of all con�gurations which
correspond to removing a c2-cluster region C and
then selecting (1 − c2)n2 B-faces or U -faces and
changing them to R-faces. Given σ ∈ ΩC whose
R-faces are c2-clustered, de�ne N(σ) to be the set
of all con�gurations obtained from σ by removing a
c2-cluster region C and changing exactly (1 − c2)n2

B-faces or U -faces to R-faces. If instead the B-
faces in σ are c2-clustered the proof is essentially the
same and so we omit it. To remove C, we change
(or �ip) all R-faces to B-faces within C. Once we
�ip the R-faces and B-faces in C there are at most

(1 − c2)n2 R-faces remaining so |N(σ)| ≥
(

c2n
2

(1−c2)n2

)
.

For each con�guration τ ∈ Ω we bound the number
of con�gurations σ such that τ ∈ N(σ). If there
exists σ such that τ ∈ N(σ), then the number of
R-faces in τ is at most 2(1 − c2)n2. Since C is a
c2-cluster region with perimeter at most c2n, there
are at most 2n23c2n32(1−c2)n2

possible pre-images of
any con�guration τ . The factor of 2 is because the
con�guration could have been R or B-clustered.

Next, given con�gurations σ, τ such that τ ∈
N(σ) we derive an upper bound on the ratio
π(σ)/π(τ). Recall the map φC �rst removes a c2-
cluster region C by �ipping the R- and B-faces
within C. This procedure only changes the �happi-
ness" of faces within distance r of the border. Since
there are at most (2r2 + 2r + 1)c2n of these, remov-
ing C decreases the weight by at most a factor of
λc2n(2r2+2r+1). Changing the color of a single face
can decrease the weight of a con�guration by at most

a factor of λ2u′β(2r2+2r). Thus, changing (1 − c2)n2

B-faces or U -faces to R-faces decreases the weight by

at most a factor of λ2u′β(1−c2)n2(2r2+2r). Combining
these shows that

π(σ)/π(τ) ≤ λ∆,

where

∆ = c2n(2r2 + 2r + 1) + 2u′β(1− c2)n2(2r2 + 2r).

We de�ne a weighted bipartite graph
G(ΩD,Ω, E) with an edge weight π(σ) between
σ ∈ ΩD and τ ∈ Ω if τ ∈ N(σ). The total weight of

edges W is

W =
∑
σ∈ΩD

π(σ)|N(σ)|

≥
∑
σ∈ΩD

π(σ)

(
c2n

2

(1− c2)n2

)

≥ π(ΩD)

(
c2

(1− c2)

)(1−c2)n2

.

Also, the weight of edges is at most

W =
∑
τ∈Ω

π(τ)2n23c2n32(1−c2)n2

λ∆

≤ 2n23c2n32(1−c2)n2

λ2(1−µ)∆.

Combining these equations, assuming

λ ≤ λ2 =

(
c2

10(1− c2)

)(4u′β(r2+r))−1

,

and letting γ2 = (10/11)1−c2 gives

π(ΩD) ≤ 2n23c2n32(1−c2)n2

λ2(1−µ)∆

(
1− c2
c2

)(1−c2)n2

≤ γn2 .

Next, we show that at low λ we will have
ρR, ρB < d2. Let ΩD be the set of con�guration in
Ω for which ρR ≥ d2 or ρB ≥ d2. We will show that
under the conditions stated in the theorem, π(ΩD) is
exponentially small. Throughout this proof we will
assume that ρR ≥ d2. To show this we will construct
a map φD : ΩD → Ω, which maps a con�guration σ
to the set of all con�gurations which correspond to
selecting (1−d2)n2 R-faces and changing them to B-
faces. De�ne N(σ) to be the set of all con�gurations
obtained from σ by changing exactly (1 − d2)n2 R-
faces to B-faces. Since there are least d2n

2 R-faces,

|N(σ)| ≥
(

d2n
2

(1−d2)n2

)
. For each con�guration τ ∈ Ω we

need to bound the number of con�guration σ such
that τ ∈ N(σ). If there exists a σ such that τ ∈ N(σ)
then this implies that the number of B-faces in σ is
at most 2(1− d2)n2 and since our map only changes

R-faces to B-faces, there are at most 22(1−d2)n2+1

possible pre-images for σ. The additional factor of
2 is due to the fact that originally either ρR ≥ d2

or ρB ≥ d2. We de�ne a weighted bipartite graph
G(ΩD,Ω, E) with an edge weight π(σ) between σ ∈
ΩD and τ ∈ Ω if τ ∈ N(σ). The total weight W of
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edges is

W =
∑
σ∈ΩD

π(σ)|N(σ)|

≥
∑
σ∈ΩD

π(σ)

(
d2n

2

(1− d2)n2

)

≥ π(ΩD)

(
d2

1− d2

)(1−d2)n2

.

However the weight of the edges is at most

W =
∑
τ∈Ω

π(τ)2(2(1−d2)n2+1)

(λ2(1−µ)(2r2−1))(1−d2)n2

≤ 2(2(1−d2)n2+1)(λ2(1−µ)(2r2−1))(1−d2)n2

.

Combining these equations, assuming

λ1−µ ≤ λ2 =

(
d2

5(1− d2)

)1/(4r2−2)

,

and letting γ2 = (5/6)1−d2 and d′2 = (1−d2)/d2 gives
the following result

π(ΩD) ≤
(
d
′(1−d2)n2

2 2(2(1−d2)n2+1)
)

(
λ2(1−µ)(2r2−1)

)(1−d2)n2

≤ γn2 .

5 Conclusions and Open Problems

In this paper we consider the General In�uence
Model in which cities are open (where residents
can move away) in a saturated or non-saturated
setting (so we can allow unoccupied houses), with
neighborhoods of any radius, and where moving
is based on the product of everyone's happiness.
Our dichotomy theorems hold for the fairly broad
classes of Increasing Bias Functions and Threshold
Bias Functions with thresholds exceeding one half,
showing that at high bias the dynamics will take
exponential time to mix and we will have segregation,
while at low bias the dynamics will mix quickly and
the limiting distributions will be well-integrated.

A natural next step would be to consider closed
cities, where the number of each type of resident is
�xed. The methods we used here to show segregation
and integration are based on methods used in the
context of colloids where the number of each type
of molecule was �xed [17] and the approach utilized
there is likely to generalize to the closed Schelling
setting with careful analysis. Additionally, it is
natural to beleive that not all neighbors in�uence

an individual equally. We have preliminary results
showing that a variant of our bounds on the General
In�uence Model holds in cases where the in�uence
between two individuals may decrease as a function
of distance. Furthermore, In the General In�uence
Model, moving is based on the product of everyone's
happiness. One of the biggest challenges in analyzing
Schelling's exact original model is that here moves are
sel�sh and based only on the individual's happiness,
thus making them non-reversible.

Finally, in Section 4.1 we analyzed the General
In�uence Model with threshold bias functions where
the threshold was larger than 1/2; it would be
interesting to see if the same dichotomies in mixing
time and clustering continue to hold for all values
of the threshold. Our simulations indicate that
when the threshold is less than 1/2 there may be
qualitatively di�erent behavior where there is no
dichotomy.
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