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Abstract

A popular technique for studying random properties of a combinatorial set is to
design a Markov chain Monte Carlo algorithm. For many problems there are natural
Markov chains connecting the set of allowable configurations which are based on lo-
cal moves, or “Glauber dynamics.” Typically these single site update algorithms are
difficult to analyze, so often the Markov chain is modified to update several sites si-
multaneously. Recently there has been progress in analyzing these more complicated
algorithms for several important combinatorial problems.

In this work we use the comparison technique of Diaconis and Saloff-Coste to show
that several of the natural single point update algorithms are efficient. The strategy is
to relate the mixing rate of these algorithms to the corresponding non-local algorithms
which have already been analyzed. This allows us to give polynomial time bounds
for single point update algorithms for problems such as generating planar tilings and
random triangulations of convex polygons. We also survey several other comparison
techniques, along with specific applications, which have been used in the context of
estimating mixing rates of Markov chains.

1 Introduction

Random sampling of combinatorial structures such as tilings, colorings and independent sets
of a graph has attracted the attention of researchers in combinatorics, theoretical computer
science and statistical physics in recent years. The Markov chain Monte Carlo method
has played a crucial role in establishing efficient algorithms for almost uniform sampling
of such structures and in yielding fully polynomial randomized approximation schemes for
the corresponding counting and sampling problems (see e.g. [12], [17], and [42] for general
surveys).

Establishing such rigorous bounds for Markov chain Monte Carlo algorithms has proven
a compelling challenge. In many cases, very simple algorithms based on local updates
suggest themselves, and they have been widely used in practice to study various physical
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systems. Typically it is straightforward to design a Markov chain which connects the state
space and which converges to the desired distribution over configurations (e.g., the Gibbs
or the uniform distribution). These simple chains are commonly referred to as Glauber
dynamics. The widespread use of these algorithms is based on a belief that the algorithms
converge quickly to their stationary distribution so that sampling after a small number of
steps is representative of this limiting distribution. However, typically a rigorous analysis
is omitted due to the difficulty in establishing such bounds.

Recently there has been great progress in developing analytical techniques for bounding
the convergence rates of such chains where the underlying state space represents configu-
rations in a physical system or, more generally, elements of a combinatorial set. The first
notable achievement is the method for bounding the conductance (or discrete Cheeger con-
stant) due to Jerrum and Sinclair [34], which has been used to develop fully polynomial
randomized approximation schemes for the partition function associated with many dimer
systems [15, 19] and the Ising model [14]. The second significant advance is the coupling
technique refined by Aldous [1], which has led to efficient approximation algorithms for
colorings [13, 40|, independent sets [24], and planar dimer models [23], as well as problems
of a more combinatorial nature (e.g., [3, 18, 29]). Further refinement, via path coupling,
due to Bubley and Dyer [3] has made the coupling technique by far the most successful as
a way to prove the rapid mixing of Markov chains.

While this explosion of results has been encouraging, many natural Markov chains which
are believed to be rapidly converging to stationarity continue to resist analysis. In fact,
many of the solutions cited above have involved clever manipulations of the simplest Markov
chains so that they still have the desired properties (i.e., they are easy to implement and
have the desired stationary distributions) but they are enhanced with additional moves
which enables a simple analysis. These enhanced chains are inspired by heat bath algo-
rithms, including the “tower moves” in the case of tilings [23], “edge moves” in the case of
independent sets [24,9] and “Kempe-chain moves” for colorings [40].

In this work we derive rigorous bounds for the Glauber dynamics for these problems
by comparing these simpler chains to the enhanced chains which have already been shown
to converge rapidly. We focus on two applications which best demonstrate the versatility
of this method: generating lozenge tilings on the triangular lattice (a planar dimer model)
and generating random triangulations of a convex polygon. Further applications of this
method to the case of domino tilings, colorings and independent sets can be found in [32]
(see also [40]).

The proof technique uses a comparison theorem due to Diaconis and Saloff-Coste [4].
Their theorem yields a geometric comparison inequality that gives bounds on the eigenvalues
of a reversible Markov chain in terms of the eigenvalues of a second chain. The main
application in [4] was to give a sharp upper bound on the second eigenvalue of the symmetric
exclusion process on a graph. The symmetric exclusion process on a graph is a certain
generalization of a simple random walk on a graph and can be described as follows. Start
with an arbitrary placement of r particles on r vertices of a graph. At each discrete time
step, a particle is chosen at random, and then one of its neighboring vertices is chosen at
random. If the neighbor is unoccupied (by a particle) then the chosen particle is moved
there, otherwise the system stays as it was. The special case of » = 1 corresponds to the
simple random walk on a graph. Diaconis and Saloff-Coste bound the second eigenvalue
of this chain by comparing it to a well-studied chain (the Bernoulli-Laplace model for



diffusion) whose eigenvalues are known.

Our approach is somewhat different in this paper since the Markov chains we work
with are much more combinatorial in nature; in particular, it is very hard to determine the
second eigenvalue of these chains or of related chains with the same stationary distributions.
However, the “known” chains in our applications are chains whose mixing times are known.
Using the existing literature on relating the time to reach equilibrium and the second
eigenvalue (e.g. [8, 34]), together with the comparison theorem, we derive an inequality
relating the mixing times of two chains. This allows us to estimate the rate of mixing of
the “unknown” chains (based on single site updates) mentioned above. Direct analysis of
any of these chains seems challenging and might yield tighter bounds on the mixing times.

After describing our two main applications, we devote a section to survey other com-
parison techniques which have found useful applications in this topic. Perhaps the first
person to use a comparison technique in the context of Markov chain Monte Carlo was
Holley [11]. Holley’s hypothesis however, as we shall see in Section 5, is too stringent for
the kind of applications we mention in this paper. Diaconis and Saloff-Coste also mention
a few variants of the comparison theorem one of which, using the notion of flows, is slightly
more general than the version we use in our two main applications here. Very recently
Vigoda managed to make use of this generality in the context of sampling k-colorings of a
graph. We describe this result briefly, while referring the reader to [40] for the full details.
We then describe the role of the logarithmic Sobolev constant in bounding mixing times,
and the corresponding comparison techniques, following [6]. Recently Dyer and Greenhill
also used a different, simpler comparison technique to argue that the Glauber dynamics
for independent sets (i.e. the hardcore (lattice) gas model on arbitrary graphs) is efficient
[9]. Their basic idea is nice, and is also a statement about comparison of eigenvalues (see
Section 5 for details). However, their method is not as widely applicable and is only effec-
tive when the enhanced moves can be implemented using a (very small) bounded number
of Glauber moves; we will see that this is not the case for the two main applications given
in this paper. Finally, there have been several results relating block dynamics and Glauber
dynamics for certain problems, due to Martinelli [28], van den Berg and Brouwer [2], and
(indirectly) Madras and Randall 26, 27].

In Section 2 we describe relevant results from the theory of rapidly mixing Markov
chains, including relations between mixing times and eigenvalues, and comparison inequal-
ities. In Sections 3 and 4 we describe in detail the application to lozenge tilings and
triangulations. In Section 5 we describe briefly several other related comparison techniques.

2 The comparison theorem and mixing rates

Let (92, P,7) denote an ergodic (i.e. irreducible and aperiodic) Markov chain with finite
state space (2, transition probability matrix P, and stationary distribution 7. Furthermore,
we assume that the chain is reversible, i.e. that we have the detailed—balance conditions,
w(z)P(z,y) = w(y)P(y,z), for all z,y € Q. Assuming we are dealing with discrete-time
Markov chains, for z,y € Q, t € Z*, let P!(z,y) denote the t-step probability of going from
z to y. Then the time a Markov chain takes to be close to equilibrium can be measured



using the variation distance between P! and 7, where the variation distance is given by

Aclt) = 3 2 PHay) — (o))

yeN

We also denote by A(t) the variation distance starting from the worst state, i.e. A(t) =

g A

e mixing time and the second eigenvalue

For € > 0, the mizing time, starting from state z, is defined by
7o(€) = min{t : Ay(t) <e, V' >t}

Once again we denote by 7(e€), the mixing time starting from the worst state, i.e. 7(e) =
max 7z(€). For the rest of the paper, when we refer to mizing time, we always mean 7 (e).
TE

Let 1=Xg> A1 > X >--- > A‘Q|_1 > —1 denote the eigenvalues of P. The following
result of Sinclair [35] (which is an extension of a key result from [34]; see also [8]) shows
the relationship between mixing times and the maximum eigenvalues. Strictly speaking,
A1 in the following theorem should be replaced by Amaz = max(A1,|Ag—1]), but in all our
applications below we make sure that A1 > |Ag/_1| > 0 by adding self-loops with weight
1/2.

Theorem 1 For € > 0, we have
(i) for all z € Q, T1,(e) < ﬁ log (W(;)e);
(7i) maxy 75(€) > 2(1’\_71)\1)log (2%)

e mixing time and coupling time

Another method for bounding the mixing time 7(¢) is to construct a coupling for the
Markov chain. A coupling is a new Markov chain on the state space 2 x Q (where Q is
the original state space, e.g., the set of 3-colorings) with the following properties. Rather
than updating two configurations independently, the coupled process correlates the random
coin flips while maintaining that each configuration, when observed in isolation, is just
performing transitions of the original Markov chain. In addition, we need that if the
two configurations agree, the coupled process will force them to agree at all future times.
Coupling is a crucial ingredient in all of the applications in section 3.

The following theorem states that the coupling time, which is the expected time it takes
for two configurations to meet starting from the worst starting point, provides a good bound
on the mixing time. More formally, let = and y be the starting configurations. Then

T°Y =min{t : X, =Y, | Xo =z, Yo =y},

and define the coupling time to be T' = max; , ET%Y. The following result relates the
mixing time and the coupling time (see [1]).

Theorem 2 7(¢) < 6T(1 +Ine?).



e comparison of eigenvalues (via Dirichlet forms)

Let P and P denote two reversible Markov chains on the same state space Q with
the same stationary distribution 7. Then Diaconis and Saloff-Coste (see [4]) provide the
following geometric bound between the two eigenvalues A (P) and A1 (P). Strictly speaking,
the result in [4] compares the Dirichlet forms associated with P and P thus yielding the
following comparison result between all nontrivial eigenvalues, and not just the second
eigenvalue. (Also, the assumption that the stationary distributions be identical can be
weakened to the stationary distributions be comparable.)

First we need some more notation. As we shall see, in applications, P is the chain
with known eigenvalues (or known mixing time), and P is the chain whose mixing time
we would like to bound by comparing with P. Let E(P) = {(z,y) : P(z,y) > 0} and
E(P) = {(x,y) : P(z,y) > 0} denote the sets of edges of the two chains, viewed as directed
graphs. For each z,y with P(z,y) > 0, define a path Yzy using a fixed sequence of states,
TO = Ty T1y.--,Tp_1,%f =y with P(z;,z;41) > 0. The length (= k) of such a path will be
denoted by |vgy|. Further let

[(z,w) = {(w,y) € E(P) such that (z,w) € 'ymy}
denote the set of paths which use the transition (z,w).

Theorem 3 With the above notation, we have

1

(1-=X(P)) 2 1

(1— i (P)),

where

1 -
A0 L) {m i, e y)} |

(z;w)

It is worth noting that the quantity A above depends on our choice of paths {yzy};
thus these paths play a role akin to that of the canonical paths (introduced by Jerrum and
Sinclair [15, 34]) in bounding the conductance of a Markov chain. However, the crucial
difference, as pointed in [4], is that we need only define these paths between pairs of states
which are adjacent in the known chain.

In the following our strategy is as follows. We begin with a bound on the mixing time
of a chain established, say, via the coupling method and Theorem 2. We then use part
(ii) of Theorem 1 above to lower bound the spectral gap of such a chain. Next we use the
comparison theorem (Theorem 3) to lower bound the spectral gap of an unknown chain
by carefully bounding the parameter A. This in turn provides us with a bound on the
mixing time of the unknown chain in view of part(i) of Theorem 1. The following technical
proposition makes precise the aforementioned strategy, and is thus crucial to our results of
the next section.

Let 7(¢) and 7(e) denote the mixing times of P and P respectively. Then with A as
in Theorem 3, we have the following comparison result relating the mixing times. Let m,
denote rwnelg w(z).



Proposition 4 For 0 < e <1, and for all z € ), we have,

4log(1/(emy))
log(1/2€)

Proof. For 0 < e < 1, from part (ii) of Theorem 1, we have,

7(e) > Lﬁ)log (%) .

T(e) < A7(e).

This implies that

(1=2(P) > gy 1os ()
1

wherein we also used the trivial bound, A;(P) > 1/2. Now using the comparison theorem,

we get that
1= M(P) > 21— n(P) > 211 (l)
W= ! — A47(e) ®\2¢)"

Finally, using part(i) of Theorem 1 we can bound the mixing time of P, starting from any

state x,
4log(1/(em(x))) , .
7a(€) < log(1/2€) A7 (),

completing the proof of the proposition. O

Remark 1. The above proposition illustrates the fact that the comparison argument is
effective as long as we can control the factor A, which depends on the choice of paths in
the unknown chain. The dependence on 7, albeit not as crucial, can affect the mixing
time by another factor involving the size of the input, since 1/7, in most cases is at most
exponential in the size of the input.

Remark 2. Note that Theorem 3 also holds with spectral gaps replaced by the logarithmic
Sobolev constants of the Markov chains, since the definitions of both the spectral gap
and the log-Sobolev constant use the (same) Dirichlet form (see Section 5 and also [6]).
Although the log-Sobolev constant offers a tighter upper bound on the mixing time (as
defined here), due to the lack of an appropriate lower bound, we are not able to make use
of the comparison of log-Sobolev constants. However, this is certainly a useful avenue, if
one is able to bound other (e.g. Lo(7)) notions of mixing time for the chain that one is
comparing to (see comments following Corollary 10 in Section 5).

3 Lozenge tilings

Let R be a region of the triangular lattice. A lozenge tiling of R is a covering of the region
with lozenges tiles, where each lozenge covers two adjacent cells in R and no two lozenges
overlap. Just looking at a lozenge tiling causes a three dimensional surface to appear — in
fact the set of lozenge tilings correspond bijectively with the surfaces formed by placing
unit cubes in a larger three-dimensional frame such that each cube is supported on its back
three sides. The shape of the frame is uniquely determined from the region R (see Fig. 1).



Figure 1: A lozenge tiling viewed as a surface

Given this equivalence, there is an obvious Markov chain Mg, for generating tilings.
Namely, connect any two tilings whose surfaces differ by the addition or removal of a single
cube. In the two dimensional picture of a tiling this corresponds to chosing a hexagonal
window and if it is comprised of three tiles, rotate them by 60° (see Fig. 2). More precisely,
the transition matrix P(-,-) of Mg, is defined as

1/2N, if z @y is a cube (or hexagon)
P(z,y)= 1—-YP(z,2), ify=ux,
z2#T

SopEs

Figure 2: A move in the Markov chain Mg,

In [23] a modified algorithm based on tower moves was analyzed. Again the state space
is the set of all lozenge tilings. Two tilings differ by a tower of height k if they differ by the
addition or removal of a 1 x 1 x k vertical column of cubes. Let z and y be lozenge tilings
of the region R. Let M;,, represent the Markov chain in which there is a move from z to y
if and only if the symmetric difference of the edges of x and y is a tower. Recall that the
transition probabilities P(-,-) of My, are defined by

1/2Nh, ifzdyisa
P(z,y)= ) tower of height h;
) 1—EP(.T,Z), ify::L"
Z#T

where N is the area of the region being tiled. Note that both Mg, and M, have
the uniform distribution as the stationary distribution. Wilson [43] improves the anal-
ysis given in [23] to show that the Markov chain based on tower moves mixes in time
O(W?2N log N log(2/¢)), where W is the width and N is the area of the triangular lattice
region to be tiled. However, neither approach gives the mixing time of Mg,.



3.1 Comparing Markov chains for tilings

We now define a set of paths and then bound A corresponding to these paths. For each
(z,y) which differ by a tower move of height h,, (and are thus adjacent in the known chain),
there is a unique minimum length sequence of single site update moves of length h;, which
transforms z into y. Such a sequence defines a path vy, in a natural way, using transitions
of P(-,-). Note that the length of the path is hy, and P(z,y) = 1/2Nhy,. Consider an
arbitrary (z,w) where z and w are lozenge tilings which differ by a single cube. Note that
P(z,w) = 1/2N. Furthermore, for a given (z,w), the number of (z,y) such that the path
Yoy uses (z,w) is at most H?, where H is the maximum height of a tower. (This is because
the bottom and the top of any tower containing a particular single site can be chosen in at
most H ways.) Thus yielding the following bound for the quantity A from the comparison
theorem.

1 -
A = - . Pz,
(z,vgleg%(P) {ﬂ(z)P(z,w) F(zzw [Yay|m(z) P(z y)}

W)
2N
= maXx —
(z,w)EE(P) { m(2) F(zzw

w)
< > 1<H.
I (zw)

hxyﬂ(x)(1/2thy)}

Theorem 5 Let R be a region in the triangular lattice whose convex hull has area N. Then
the mizing time of Mg, for generating a lozenge tiling of R is given by

Tssu = O (N4logN + N3 logNlog(l/e)) .

Proof. Clearly the number of lozenge tilings of a region of size N is at most 3V
(since we can overcount by replacing each triangle in the underlying region with a tri-
angle with one side identified — those configurations where identified edges line up are
the set of valid tilings). The bound on the mixing time of M,,, given by Wilson [43] is
7(€) = O(W2N log N log(1/¢)), where W is the width of the region. Therefore, by propo-
sition 4,

log(1/(emy))
Tosu < W(HQ)(W2N10gNIOg(1/€))

= 0 <N4 log N 4 N3 logNlog(l/e)) ,

since H * W = O(N). O

3.2 Domino tilings and 3-colorings

The single site algorithm for domino tilings and 3-colorings (on regions with fixed boundary
conditions) follows exactly the same analysis. Starting from any domino tiling, e.g., choose
a 2 x 2 window; if there are two parallel dominoes, rotate them by 90°. This simple



algorithm is motivated by the linear time tiling algorithm of Thurston [39] for generating
a single tiling. In [23] a tower algorithm is presented which achieves a mixing time of
O(N33(1 +log(1/€))), where N is the area of the Cartesian lattice region to be tiled. We
can show that A < H?, where H is the size of the maximal tower; for square regions this
is O(N'/?) and in general is at most N. In addition, the number of domino tilings is
trivially bounded by 4V. Thus, the comparison theorem establishes the efficiency of this
local algorithm. The analysis for 3-colorings (also referred to as Eulerian orientations or
the ice model) is completely analogous.

4 Triangulations of convex polygons

The set of triangulations of a convex n-gon is a well-known characterization of the Cata-
lan numbers {c,}. Two other common representations of ¢, which will be useful in this
discussion are Dyck paths and binary trees (see [38] for a general survey):

e A Dyck path from (0,0) to (2n,0) is a lattice path with steps (1,1) and (1, —1) never
falling below the z-axis.

e A binary tree of size n is a rooted tree with n internal nodes (those with two descen-
dants) and n + 1 ezternal nodes or leaves (those with no descendants).

Each of these representations offers its own Glauber dynamics, which we refer to as the
“interchange graphs.” The interchange graphs for the three representations are defined as
follows (see Fig. 3):

e Triangulations: The set of triangulations forms the vertex set of the interchange
graph, and two triangulations are adjacent if one can be obtained from the other by
a diagonal flip, as described in [37]. Every diagonal in a triangulation of a convex
polygon defines a quadrilateral. A diagonal flip replaces that diagonal with the other
diagonal of the same quadrilateral. Sleator et al. [37] show this move connects the
state space and they obtained tight upper and lower bounds (of 2n—6) on the diameter
of this interchange graph and other results on triangulations of the sphere (see [20]
for a simpler proof).

e Binary trees: Two binary trees with n internal nodes are adjacent if one can be
transformed into the other by applying the rotation operation. A rotation at a node
is defined as shown in Fig. 5. Sleator et al. also showed that this graph is isomorphic
to the previous one on triangulations of a convex (n + 2)-gon.

e Dyck paths: Similarly, in the collection of Dyck paths of length 2n, two elements are
adjacent if one may be changed into the other by flipping a peak into a valley (that
is, changing (1,1),(1,—1) to (1,—1),(1,1)) or a valley into a peak (that is, changing
(1,-1),(1,1) to (1,1),(1,—1)). It is easy to see that the diameter of this graph is
precisely n(n —1)/2.

The interchange graph on triangulations is of particular interest because it suggests
a Markov chain on a general planar point set, a problem of central interest in computer
graphics and computational geometry. We will review the use of the comparison technique
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Figure 3: Local moves defining interchange graphs

analyzed for Markov chain in the convex case by McShine and Tetali [29] which shows that
O(n®log(n/e€)) are sufficient to get close (within € in variation distance) from the stationary
distribution, which in this case is uniform over triangulations. Previously Molloy et. al.
[31] showed that O(n?3log(n/e€)) steps are sufficient using a conductance argument. Their
lower bound determining w(n3/2) suggests that there is still room for improving the upper
bound on the convergence time.

Naturally there are known bijections between these representations for the Catalan
numbers. It was shown in [37] that the interchange graphs for triangulations and binary
trees are isomorphic. Thus, it follows that it is sufficient to bound the mixing rate of a
Markov chain based on the interchange graph on binary trees (to establish the corresponding
bound on a Markov chain on triangulations). This is our first step.

The bijection between binary trees and Dyck paths is more interesting, and it is the
relation between their interchange graphs which underlies our application of the comparison
theorem of Diaconis and Saloff-Coste. That is, we use the bound on the mixing time of the
chain on Dyck paths as established by Wilson [43] and then use this to bound the mixing
time of a chain on binary trees.

4.1 Comparing chains based on interchange graphs

Let RG(n) denote the interchange graph on binary trees, where two trees are connected if
they differ by a single rotation. The transition probabilities of the Markov chain on RG(n)
are defined as follows. For two distinct binary trees z and w,

P(z,w) = 1/[2(n—1)], if (z,w) € E(RG(n))
P(z,z) = 1/2.

The transition probabilities of the Markov chain on DG(n), the interchange graph for
Dyck paths of length 2n, are defined as follows. For two distinct Dyck paths z and y,

P(z,y) = 1/[2(2n =3)] if (z,y) € E(DG(n))
P(l‘,.’L‘) = 1 _ZyNwP(xay) > 1/2
It is easy to verify that the two Markov chains as defined above do indeed satisfy
the reversibility (i.e. detailed-balance) condition and also that they share the uniform

distribution as the stationary distribution 7. So for z € Q and z € Q, we have 7(z) =
7(z) = 1/cp.

10



Let 7(e) and 7(€) denote the mixing times of the Markov chains on RG(n) and DG(n)
respectively. First we may deduce from [43] that the Markov chain on DG(n) has mixing
time

7(€) = O(n*(logn + log1/e)) , 0 < e < 1.

Our known chain, P, is the chain with the set of Dyck paths of length 2n as the state space,
denoted €; our unknown chain, P, is the chain with the set of binary trees with n internal
nodes as the state space, denoted 2. We would like to use Proposition 4 to get a bound on
the mixing time 7(e). First note that Proposition 4 (and 2) require the state spaces € and
Q of P and P, respectively, to be the same. In the present case, although they are not the
same, the propositions are still applicable in view of the fact that we are able to define a
bijection f : ! — Q between them.

The bijection between binary trees and Dyck paths is easiest to describe through a
bijection from each to another Catalan structure — the set of binary strings of length 2n
with equal number of 1’s and 0’s, wherein the number of 1’s in each string is always greater
than or equal to the number of 0’s as we count from left to right in the string (see Fig. 4).
Given a Dyck path of length 2n, a segment of slope +1 corresponds to a 1 and a segment
of slope —1 corresponds to a 0. Given a binary string on n internal nodes, label the left
edges (edges leading to left descendants) with a 1 and the right edges with a 0. Now the
corresponding binary string is the one obtained by reading the labels as the tree is traversed,
recursively, starting from the root, first visiting the left subtree and then the right subtree.
We leave it to the reader to verify that this is indeed a bijection.

root(T)

101 O == 10110100 ==

0
Dyck Path

Binary Tree T

Figure 4: Bijection via binary strings

The canonical path <y, of the comparison technique, is now a path in P, which can be
described as a sequence of states, f(z) = 29, 21,-.-,2k_1,2k = f(y), for (z,y) € E(DG(n)).
The description of the paths will be simplified by using the above binary string represen-
tation of Dyck paths from now on.

Following [37], we will state some definitions. A subtree of a binary tree is either a
single node or a binary tree with at least one internal node. Subtrees will be denoted by
T;, and this will stand both for the subtree and the binary string representation of 7T;. The
depth of a node in a binary tree is the length of the shortest path from the root to that
node. It is convenient to view these binary trees as binary search trees with labels on the
nodes, namely, with the property that the label of a node is bigger than the labels of all the

11



nodes in its left subtree, and smaller than the labels of the nodes in its right subtree. This
gives a natural ordering on the nodes of a tree. The rotation operation mentioned earlier
preserves this node ordering, not surprisingly, since the rotations were invented as a way of
restructuring binary search trees. Specifically, the rotation operation is defined as shown
in Fig. 5. Subtrees T; consist of single nodes or larger binary trees. After a rotation at Y,
the parent of Y becomes the parent of X; if Y is the root of the tree then X becomes the
new root after the rotation.

Y
/O

otation at X

O
rotation at Y
2

Figure 5: Local moves on binary trees

Rotations do not change the number of internal nodes, and for a tree with n internal
nodes, there are n — 1 rotations possible at any time, one for each internal node, except for
the root. The rotation at a node brings the node one step closer to the root, thus decreasing
the depth of that node by exactly one.

Referring to Fig. 5 above, a rotation at X (called an X-rotation) decreases the depth
of nodes in subtree 77 by 1, increases the depth of nodes in subtree T3 by 1, and leaves the
depth of all other nodes the same. In the same way, a rotation at Y (called a Y-rotation)
decreases the depth of nodes in subtree T35 by 1, increases the depth of nodes in subtree 7T}
by 1, and leaves the depth of all other nodes the same.

4.2 Canonical paths

We need to define I' = {~,,}, for (z,y) € E(P). This can be done in a natural way, once
we analyze a transition from z to y in DG(n), according to whether it is a 01 — 10 flip or
a 10 — 01 flip, and interpret the flip in terms of the corresponding binary trees, f(z) and
f(y).

The easy case is if f(z) and f(y) differ by a single rotation — if f(z) ~ f(y) in P, then
Yey is simply the edge (f(z), f(y)) € E(P). But in general, (z,y) € E(P) does not imply
(f(z), f(y)) € E(P). Fig. 6 characterizes the differences in two binary trees, which have
adjacent representations as Dyck paths. In such a case, we will define a unique sequence
of rotations which transforms f(z) into f(y), and the corresponding sequence of edges in
P which forms the corresponding canonical path 7y;,. We shall do this for the case when
z — yis a 01 — 10 flip, and in the other case the path is just the reverse of the path in this
case; we are justified in doing this since the interchange graphs can be viewed as undirected
graphs.

To simplify the discussion, we will now introduce some new terms which are illustrated
in Fig. 3. The root of a subtree T;, root(T;), is the top vertex of that subtree. The end of
a subtree T;, end(T;), is the rightmost vertex of T;.

The following observation is key to understanding I' and to bounding A(T'). A 01 — 10
flip moves a particular left subtree (73 in Fig. 6) hanging from the right child of some
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Figure 6: Canonical path from x to y, differing in a 01-10 flip

node N to being the rightmost subtree of the left child of N. This is easy to verify by
considering the binary strings corresponding to x and y, which differ in a 01 — 10 flip, and
then by constructing f(z) and f(y). We call such a subtree the characteristic subtree of
that particular 01 — 10 flip, since it uniquely identifies the edge (z,y) € E(P). In Fig. 6,
T3 is the characteristic subtree of the flip which takes = to y. Note that such a subtree can
also be a single node.

The canonical path -, is the unique sequence of rotations which transforms the binary
tree f(z) into f(y) — the first rotation is performed at the parent of the root of the char-
acteristic subtree, and then every subsequent rotation is at the sibling of the root of the
characteristic subtree. (In Fig. 6 the black nodes denote the nodes at which rotations are

performed; also for convenience, the trees are called x and y, rather than f(z) and f(y).)

Claim. With I being the set of canonical paths as described above, the comparison factor

A(T) = O(n).

Proof. We will show that A(T") is at most O(n), by arguing that the length of a canonical
path is at most n, and that each rotation in a binary tree is used by at most one canonical
path 7.y, where z — y is a 01 — 10 flip, and by at most one canonical path corresponding
to a 10 — 01 flip.

First notice that in a path corresponding to a 01 — 10 flip, the depth of the root of
the characteristic subtree remains the same after the first rotation, but increases by exactly
one with every subsequent rotation. At most n —2 internal nodes can participate (by being
siblings of the root of the characteristic subtree) in increasing the depth — the grandparent
of the characteristic subtree and any nodes in the right subtree of the right child of the
grandparent are the nodes where a rotation is not performed in such a canonical path.

13



This shows that the length of a canonical path can be at most n — 1. (The argument for a
10 — 01 flip is analogous.)

Secondly, consider an arbitrary rotation (z,w) € E(P). Whether it is an X-rotation
or a Y-rotation, there are always at most two choices for a subtree to play the role of a
characteristic subtree. Referring to Fig. 5, if (z,w) is an X-rotation, then either 73 is the
characteristic subtree of a 01 — 10 flip or 75 is the characteristic subtree of a 10 — 01 flip.
The rotation (z,w) and the choice of either 75 or T3 as the characteristic subtree, uniquely
identifies the pair (z,y) such that (z,w) € 7yzy. Referring once again to Fig. 5, if (2, w) is
an X-rotation, then 73 will eventually end up as the right subtree of end(T3), giving us y.
Knowing y and the fact that T3 is the characteristic subtree uniquely determines z. If on
the other hand, T, were to be the characteristic subtree, then w is in fact y, and z can be
uniquely determined given that z — y is now a 10 — 01 flip.

Thus, for a fixed (z,w), |I'(z,w)| < 2, and when (z,w) € Yy, [Vay| <1 — 1.
We have m(z) = 7(z) = (n+1)/(>"). Also, P(z,w) = 1/(2n — 2), for all (z,w) € E(P),
and P(z,y) = 1/(4n — 6), for all (z,y) € E(P). Thus,

1 -
A H?U{W(Z) ‘%y'“w”’(w’y)}

n—1
2n—3

2(n —1)] = O(n).
O

Applying Proposition 4, with the known bound on the mixing time of P, we can now bound
the mixing time of P, the Markov chain on binary trees:

4log (=
(m*) n(n3(logn + log 1/¢))

log (2%)

4 (log(1/€) + log(cy,)) n*(logn + log 1/¢)
log(1/2) + log(1/e)

T(e) <

51
- ol %" +ntlogn +n® +n’logn
log(1/e)

= O(n®((logn +log1/€)),

thus establishing the following theorem. (See comments following Corollary 10 for a possible
way to improve this bound.)

Theorem 6 The mizing time of the Markov chain on triangulations of a convex (n+2)-gon
(equivalently, on binary trees with n internal nodes) satisfies, for 0 < e < 1,

7(€) = O (n5 log(n/e)) .
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5 Other comparison techniques

e Holley’s result. In his well-known paper [11] on possible rates of convergence in finite
range attractive spin systems, Holley proved the following comparison type result as well.
Let S denote the finite set of spins and let Q) = SZ% denote the state space correspond-
ing to S-valued configurations on Z¢. Holley considers finite range, translation invariant,
attractive jump rates on the infinite volume, with the jump rates denoted by c(k,n, s) for
site k£ with the spin 7 at time ¢ to switch to spin s. Then Theorem 0.2 of [11] states the
following,.

Theorem 7 Let {c(k,-,-) : k € Z%} be the finite range, translation invariant, attractive
jump rates for an infinite system of interacting processes and suppose that the corresponding
semi-group converges exponentially fast to its equilibrium. Then there is a § > 0 such that
if {e(k,-,-) : k € 2% is a similar collection of jump rates and

sup Z |C(Oa77a S) - 5(07 m, 8)| < 63
ne seg

then the semi-group generated by the jump rates ¢ also converges to equilibrium exponentially
fast.

Note that due to the translation invariance, it suffices to consider the jump rates at a
fixed site such as 0. Holley uses this theorem in conjunction with the main theorem in his
paper to conclude that for the so-called contact process (see [10]) at the critical value of the
parameter, either the process is not ergodic or it converges to the state 0 at a rate which
is at most t~¢. (When dimension d = 1, this result was known due to Griffeath [10].)

Loosely paraphrasing Holley’s result in our present context of discrete-time finite state
Markov chains, would be saying: if the dynamics generated by P is rapidly mixing, then a
related dynamics P is also rapidly mixing, provided

~ )
Y

for some fixed 6 > 0, where n is the size of the underlying input parameter (e.g. the
number of sites in the system or the number of vertices in a graph), introduced by the
sequentiality of the Glauber dynamics considered in this paper. It can be checked that the
above, although being a useful result in Holley’s considerations, demands in its hypothesis
too stringent a condition to be satisfied by the applications mentioned in the preceding
sections.

e Diaconis—Saloff-Coste comparison using flows and Vigoda’s result. Going back
to the framework of Theorem 3, in applications sometimes one finds that there is more
than one path = zg,z1,...,z, =y with P(z;,z;41) > 0 (i.e. (zi,zi41) € E(P)) between
pairs z,y such that P(z,y) > 0 (i.e. (z,y) € E(P)). In such situations one can reduce
the comparison factor A(I') by “distributing the weight” (or routing the flow) over a set
of paths, rather than accounting for each nonlocal move P(z,y) via a single (canonical)
path. This is captured precisely in the following theorem of Diaconis and Saloff-Coste

[4]. The following version is simpler, due to our added assumption of identical stationary
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distributions. Let I';, denote the set of all simple paths connecting = and y as before and
set I' = Uy, yep(pylay. For v €T, let || denote its length. A function f : T' — IR™ is

called a (P, P) flow if for every (z,y) € E(P),

> fly =1

Y€l 2y

Then Theorem 2.3 of [4] yields the following,.

Theorem 8 With the above notation, we have

(1—=X(P)) 2

where

A(f,T) = max {; ) \vlf(v)ﬂ(ar)ﬁ(ar,y)}-

(z,w)EE(P) W(Z)P(Z,’U)) YET 2y :(2,w)EY

It is easy to see that Theorem 3 is a special case of the above theorem — simply route all
the flow through the chosen (canonical) path +,, for each pair (z,y) € E(P). In [4] this
theorem was used in analyzing the exclusion process. Of course, Proposition 4 also holds
with A replaced by A(f,T).

Very recently, Vigoda found a nice application of this theorem in showing that the
Glauber dynamics for sampling k-colorings of an n-vertex graph G of maximum degree
A(G) is at most O((klogk)n?logn) as long as k > (11/6)A(G). (Vigoda also shows that
the dynamics is rapidly mixing when k& = (11/6)A, but the bound on the mixing time is
worse.) In terms of rapid mixing, the previously best known bound on the number of colors
was k > 2A(G), as shown by Jerrum [13].) Recall that the Glauber dynamics for sampling
colorings picks a vertex and a color uniformly at random and attempts to color the vertex
with the chosen color (i.e. if none of the neighbors of the vertex have the chosen color).
Direct analysis of Glauber for this problem for & significantly less than 2A (and still above,
say A+2) seems an extremely difficult task, and Vigoda succeeded in obtaining the modest
improvement by using the so-called Kempe-chain moves: the transitions consist of flipping
two-colored clusters in the following sense. Given the current coloring o, pick a vertex v and
a color o(v) uniformly at random; consider the maximal cluster of vertices which contain
v and have color ¢ or o(v). (By a cluster, we mean a connected induced subgraph.) With
a carefully chosen probability, flip this cluster by interchanging colors ¢ and o(v) on it. In
his algorithm only clusters of size 6 or less are ever flipped. For this chain, Vigoda shows
a mixing time of O(knlogn) whenever k£ > (11/6)A.

To bound the mixing time of Glauber dynamics, Vigoda uses the availability of ex-
tra colors (since k > A) to advantage and defines multiple paths, and manages to show
that A(f,I') = O(1), where the flows f are simply chosen to be uniformly distributed
over the available paths. The details can be found in [40]. Do note that flows help here,
since a straightforward application of Theorem 3 only gives A(I') = O(kA?) or so. How-
ever, the curse of log(1/m,) can not be avoided, which in this application is O(nlogk)
(since there can be Q(k™) proper colorings of G), thus giving the aforementioned bound of
O((klog k)n? logn), via Proposition 4.
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e Comparison using the log-Sobolev constant. It turns out that the extra factor
log(1/m,) can be avoided if one manages to bound the Ly(7) distance (of the known chain)
from stationarity rather than the total variation distance. In short this is because the log-
Sobolev constant captures the time to make the Lo distance small in a sharp way — up to
a factor of loglog(1/m.).

First recall a few definitions. We let (2, P, ) denote the standard triple from Section 2.
The logarithmic Sobolev constant p = p(P) > 0 is the optimal constant in the functional
inequality: for all f: 2 — IR,

pEntf? < 03 (1) — £(y))? P, y)(x)

where Ent,f:= E,flogf — E,f(log E,f). (In some of the literature p~! is referred to as the
log-Sobolev constant instead.) Also recall that the spectral gap A(P) := 1 — Amax has the
variational (functional) characterization as the optimal constant A > 0 in

AVarf < 2 3 (6(x) — £(y))* Px, y)m(x),

X’y

where Var,f denotes the variance E, f2 — (E;f)?. Given that the comparison theorems of
Diaconis-Saloff-Coste actually compare the Dirichlet forms of P and P (i.e. the right hand
sides of the above definitions), it should come as no surprise that the analogs of Theorems 3
and 8 hold with the spectral gaps replaced by the log-Sobolev constants of P and P.

The other key ingredient in the comparison method we have used was Theorem 1, and
we need an analog in terms of p rather than A. Towards this, following [6], it is also useful
to define the Ly-time, for 1 < p < oo, which captures the approach to stationarity using
the Ly(7m) norm. For 1 < p < oo, let

P 1/p
1 W(w))

)

<e, Vtzi}

p(z)

m(x)

B4

T

Also, let
I

- — IH = (max
™ 00, z

For € > 0, and z € , let

. Pi(z,-
Tp(€) = max min {t >0: H (z,) _ 1
z ()

Note that the total variation norm is one-half of the L (7) norm, and so 7(¢) = T (2¢).
For convenience, we let € = 1/e, and let T,(1/e) = T,. Then the analog of Theorem 1
asserts the following (see [6, 33] for a proof in continuous time, and [30] for a discrete-time
version).

p,

Theorem 9 Let (Q, P, ) be as above. Then for 2 < p < oo,
1 1
— < Ty < — (c+loglog(1/m)) |
5y Tn < 2p(c+ oglog(1/m.))

where ¢ > 0 is a small absolute constant.

17



Remark 3. For p = 1, a case of special interest and relevance, the lower bound in The-
orem 9 is unfortunately not known to be true, even with a worse absolute constant. The
upper bound is indeed true, with p = 1 and has an elementary proof, but is not directly
useful for comparison of total variation mixing times.

It should be easy to see that an analog of Proposition 4 is possible relating the L,-
times of P and P which in addition to the comparison factor of A(T") would only have
a loglog(1/m.) factor. Let T, and T, denote the L,-times of P and P, which are both
reversible Markov chains. Then the analog of Theorem 3 for the log-Sobolev constant and

Theorem 9 together yield,

Corollary 10 Given (Q, P, ), (Q,P, ), and A(T) as defined in Theorem 3, for 2 < p <
o0, we have R
Tp < (c+loglog(1/my)) A(L')T),

where ¢ > 0 1s a small absolute constant.

The obvious difficulty in making direct use of the above theorem for comparison pur-
poses is that one first needs a “known chain” P for which either p(P) or Ty, for p > 2,
should be known. We briefly mention two examples where the log-Sobolev comparison
theorem has yielded improved bounds on mixing rates. Using Fourier techniques, Diaconis
and Shashahani [7] computed all the eigenvalues of the Markov chain arising from random
transposition shuffle. In [5] such precise information of eigenvalues was used in the com-
parison of Lo-times of random walks on groups. In particular, T5 of the (random) adjacent
transposition shuffle was shown to be O(n3logn). Tt is very likely that one can use this
information together with the connection between permutations and threshold functions
(see [43]) to show that Ty of Dyck paths is O(n®logn). In turn, this would yield for the
Ty (and hence T1) of the chain on triangulations an improved bound of O(n*log®n), via
Corollary 10.

e Dyer-Greenhill result. Consider as in the previous sections, two (reversible) Markov
chains with the same state space {2 and the same stationary distribution 7. Then under the
further assumption of a certain linear relationship between the entries of the two transition
probability matrices (P and 15) of the chains, a corresponding linear relationship between
the spectral gaps of the two matrices is derived in [9]. Once this is established, using
Proposition 4 or a similar one (as done in [9]), the mixing rates of the two Markov chains
can also be related. The precise statement of the Dyer-Greenhill result is as follows. Let

™ = maxzeq /(1 — w(x)) /7 (z).

Theorem 11 Suppose that there exists an a such that 0 < o <1 and P > a(P), then
(i) 1= A(P)) > el = Ai(P)), and
(ii) 7(e) < 2log(n*/2¢)a~17(1/e).

Notice that we can achieve a very similar result by taking trivial canonical paths consisting
of single moves in the known chain P and applying Proposition 4. However, the proof in
[9], which we omit here, offers a different and worthwhile perspective on the comparison
technique. The basic idea behind (i) is to use the min-max characterization of eigenvalues
in showing that the second largest eigenvalue of a convex combination of two symmetric
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matrices is bounded from above by the convex combination of the second largest eigenvalues
of the two matrices.

The main application of this technique in [9] was to show that the Glauber dynamics
for the hardcore lattice gas model with activity A on arbitrary graphs on n vertices with
maximum degree A mixes rapidly in O(n?logn) time as long as A < 2/(A—2). In reporting
these bounds, we suppress the dependence on €, A and A. Recall that in the hardcore model
a valid configuration prohibits two particles to reside on neighboring vertices, and each such
(valid) configuration I has the Gibbs measure proportional to A/, where |I| denotes the
number of particles in 1.

To achieve this result, they first introduce a slightly different dynamics My which, be-
sides the Glauber moves, also allows “sliding” the particle at an occupied site to a neighbor-
ing unoccupied site, whenever the resulting configuration is a valid hardcore configuration.
Using the path coupling technique, they derive bounds on the mixing time of this new
dynamics, and then use their comparison technique to bound the Glauber dynamics. An
interesting subtlety here is that the Glauber dynamics does not quite dominate the new
dynamics in the sense of the linear relationship specified by Theorem 11; however, they
replace Glauber M (yet once more) by an equally fast dynamics M’ which runs two moves
of Glauber at each step and also has a holding probability of one-half; M’ has the same
mixing time as M, but crucially, M’ does dominate M, allowing them to use Theorem 11.

More recently, Luby and Vigoda [25] have shown that the Glauber dynamics for the
hardcore model mixes in O(n?logn) time as long as A < 2/(A — 2), and O(n%logn) time
when A = 2/(A — 2). Luby and Vigoda achieve this improvement through a direct analysis
of the Glauber dynamics using a more subtle coupling argument.

e Other related methods. We merely mention here some other results related to the
theme of this paper. The first two results are in the framework of relating certain block
dynamics to Glauber dynamics, both with the same Gibbs distribution as the invariant
distribution on some Ising-type configurations. Towards this consider D = {Vi,Va,..., V1,
an arbitrary collection of finite sets V; € F, and let V = U;V;. Then by block dynamics with
blocks {V1,Va,...,Vy} one typically means the continuous-time Markov chain in which
each block waits an exponential time of mean one and then the configuration inside the
block is replaced by a new configuration distributed according to the Gibbs measure of the
block, given the previous configuration outside the block. (Note that the tower moves of
Section 3 do not fall under this category.)

The first result is mentioned as Proposition 3.4 in Martinelli’s lecture notes [28]. This
result asserts that the spectral gap of the (single-site) Glauber dynamics is lower bounded
by the spectral gap of the smallest of the spectral gaps of the same dynamics restricted to
each of the blocks of some block dynamics times the spectral gap of the block dynamics
itself. Note that if the size of the blocks is chosen to be at most a constant, indepedent
of the size of the system (V'), then this guarantees that the spectral gap of the Glauber
dynamics is at least a certain constant (strictly between 0 and 1) times the spectral gap of
the block dynamics. The proof is short and uses once again the variational characterization
of the spectral gap. We refer the reader to [28] for the details.

The second one is fairly natural, although it appears in a rather specialized context. It
is due to van den Berg and Brouwer [2] in the context of random sampling for the monomer-
dimer model on the d-dimensional torus. These authors first use certain block dynamics
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to sample matchings (dimers) of the d-dimensional torus of “side length” n (viewed as a
graph, this corresponds to the Cartesian product of d copies of an n-cycle). They first show
that the block dynamics has mixing time O(nlogn) (fixing the monomer-dimer parameter
A > 0, dimension d, and e in the definition of mixing time), through the analysis of spatial
dependencies of the monomer-dimer model. Now to get a bound on the original Glauber
dynamics, they essentially simulate the block dynamics using several steps of the Glauber
dynamics — each step of the block dynamics is replaced by a number of “micro steps”,
where each micro step is a Glauber move inside the block, fizing the configuration on the
boundary of the block. The number of such micro steps is chosen so that at the end of
such a run of micro steps, the configuration inside the block is distributed approzimately
(rather than exactly) according to the correct distribution — the one that is used to run the
block dynamics. The authors only pay a penalty of an extra O(logn) factor in the mixing
time in going from the block dynamics to the Glauber dynamics; most of their analysis is
carried out via suitable coupling arguments.

Finally, we mention a decomposition technique due to Madras and Randall [26, 27]
which considers a decomposition of the state space of a Markov chain into overlapping
pieces. The Markov chain is compared to a family of “restricted Markov chains,” each
representing the original Markov chain restricted to a piece of the state space, as well as
a global Markov chain capturing how well the pieces are interconnected. The spectral gap
of the original Markov chain can be bounded by a product of minimum of the spectral
gaps of the restricted Markov chains times the spectral gap of the global (interconnection)
Markov chain. They apply this technique in the context of sampling independent sets
according to their Gibbs measure in the special case when the size of the independent set is
bounded by |V|/(2A+1), where |V is the number of sites and A is the maximum degree in
the graph [27]. Although this result is of a different flavor from the comparison techniques
mentioned here, it offers an alternative way to relate block and Glauber dynamics. Namely,
we can decompose a chain defining Glauber dynamics into pieces corresponding to block
moves by only allowing those Glauber moves restricted to that block. The decomposition
theorem implies that if the Glauber moves are mixing within each block (i.e., the restricted
Markov chains quickly converge to the uniform distribution within blocks) and the pieces
are sufficiently well connected (i.e., the block dynamics are rapidly mixing) then we can
conclude that the Glauber dynamics is mixing as well. This is an alternative formulation
of Martinelli’s result.

6 Conclusions

In this paper we address the issue that although two Markov chains appear quite similar,
it is often the case that only one admits a simple analysis using currently available tools.
We envision that there are many other applications for comparison techniques.

For instance, the results on independent sets in [32] can be extended to relate the mixing
rate of the single site updates to the mixing rate of a dynamics which would update all
the sites in a rectangle of fixed size a X b. This so-called “heat bath” algorithm is used
experimentally in statistical physics to study the uniqueness of the Gibbs state of the hard-
core lattice gas model. Using the method given here, we derive a bound on the mixing
rate of this new Markov chain which introduces a factor which depends exponentially on
min(a, b).
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Needless to say, direct analysis of several of the Glauber dynamics mentioned in this

paper remains elusive, and should lead to tighter bounds.
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