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Abstract

We present a Markov chain Monte Carlo algorithm for almost uniformly generating
and approximately counting self-avoiding walks in rectangular lattices Z¢. These are
classical problems that arise, for example, in the study of long polymer chains. While
there are a number of Monte Carlo algorithms used to solve these problems in practice,
these are heuristic and their correctness relies on unproven conjectures. In contrast,
our algorithm is shown rigorously to produce answers with specified accuracy and con-
fidence. Only the efficiency of the algorithm relies on a widely believed conjecture,
and a novel feature is that this conjecture can be tested as the algorithm proceeds.
With this self-testing feature incorporated, the algorithm has polynomially bounded
running time and is completely reliable, in the sense that it either outputs answers that
are guaranteed to be within the specified accuracy and confidence bounds, or finds a
counter-example to the conjecture.

1 Introduction

1.1 Background

A self-avoiding walk in a graph is a walk which starts at a fixed origin and passes through
each vertex at most once. This paper is concerned with self-avoiding walks in lattices, in
particular the d-dimensional rectangular lattice Z? with origin 0.

Self-avoiding walks in Z¢ have been studied by mathematicians and natural scientists
for many years and are the subject of an extensive literature; for a comprehensive survey,
see the book of Madras and Slade [19]. (See also the book by Lawler [17] for related topics.)
One of the most important applications is as a model for the spatial arrangement of linear
polymer molecules in chemical physics. Here the walk represents a molecule composed of
many (perhaps 10° or more) monomers linked in a chain, and the self-avoidance constraint
reflects the fact that no two monomers may occupy the same position in space.

YA preliminary version of this paper appeared under the title “Testable Algorithms for Self-Avoiding
Walks” in Proceedings of the 5th SIAM/ACM Symposium on Discrete Algorithms, 1994, pp. 593-602.
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The length |w| of a self-avoiding walk w is the number of edges in w. For any fixed
dimension d, let S, denote the set of self-avoiding walks of length n in Z%, and let ¢, = 1S5
be the number of walks of length n. The two most fundamental computational problems
concerning self-avoiding walks are:

(i) Count the number of walks of length n; i.e., compute ¢, for any given n.

(ii) Determine the characteristics of a “typical” walk of length n; for example, com-
pute the mean-square displacement, which is the expected squared distance of
the free end of the walk from the origin under the uniform probability distribu-
tion over walks of length n.

Despite much research in this area, and many heuristic arguments and empirical studies,
almost nothing is known in rigorous terms about the above problems for the most interesting
cases of low-dimensional lattices with 2 < d < 4. In higher dimensions rather more is
known, essentially because the self-avoidance constraint becomes less significant and the
behavior resembles that of simple (non-self-avoiding) walks, which are well understood.
Thus although the algorithmic results we present in this paper will be stated for arbitrary
dimensions d, they are of greatest interest in the case of low-dimensional lattices with
2<d<4.

One key fact that holds in all dimensions was discovered in 1954 by Hammersley and
Morton [8]; they observed that lim,_ . c}/n = p exists, and that p" < ¢, = p"f(n),
where lim,_o, f(n)'/" = 1. This is a straightforward consequence of the obvious fact that
the sequence £, = log ¢, is subadditive,i.e., {4, < €, + £, for all n,m. Hammersley and
Welsh [9] later showed that f(n) = O(a”1/2) for some constant a. It is a celebrated and
long-standing conjecture that f(n) is in fact polynomially bounded, and more precisely that

¢ = W J(m)(1+ o(1)

where

_ AnY~1, d=2,3;
) = 3 Aflogm), d = 4; ()
A, d > 5.

Here p, A and v are all dimension-dependent constants. The conjecture has in fact been
proven for dimensions d > 5 by Hara and Slade [10, 11]. Note that the dominant behavior
of ¢, is the exponential function p”; comparing this with the case of simple walks, whose
number is precisely (2d)", we see that the effect of the self-avoidance constraint is to reduce
the effective number of choices the walk has at each step from 2d to p. The dimension-
dependent number p is known as the connective constant. This crude behavior is modified
by the correction term f(n) of the form conjectured in C1. Here v is a so-called critical
exponent. (Note, however, that v, unlike g, is not even known to exist.)

Although unproven for d < 4, conjecture C1 is supported by extensive (though non-
rigorous) empirical studies and ingenious heuristic arguments, which have also been em-
ployed to obtain numerical estimates for the constants g and . Elementary considerations
show that u € (d,2d —1). For d = 2, it has actually been proven that p € (2.62,2.70) [1,
4]. (See also [12] for similar bounds in higher dimensions.) However, these rigorous bounds
are much weaker than the non-rigorous estimates obtained by empirical methods, which are



typically quoted to many decimal places; for example, the most recent estimate for y in two
dimensions is p = 2.63815852927 4+ 0.00000000001 [13]. There are even precise conjectured
values for the critical exponent 7 in two and three dimensions (despite the fact that v is
not known to exist): for d = 2, v is believed to be %, and for d = 3 it is believed to be
approximately 1.16. (See [19] for a detailed summary of numerical estimates.)

Much effort has been invested in obtaining statistical estimates of the above quantities
using Monte Carlo simulations. However, the error bars on these estimates are only justified
heuristically. In this paper, we attempt to put such experiments on a firmer footing. We
present Monte Carlo algorithms for approximating the number of self-avoiding walks of
a given length for a given dimension d, and for generating self-avoiding walks of a given
length almost uniformly at random. The running time of our algorithms is polynomial in
the walk length n and grows only slowly with parameters controlling the accuracy and
confidence levels of the estimates. These are the first polynomial time algorithms where the
statistical errors are rigorously controlled. Our algorithms are based on modifications and
extensions of a Monte Carlo approach studied originally by Berretti and Sokal [2]. In the
next subsection we sketch this approach and point out its limitations. Then, in section 1.3,
we summarize our algorithms and explain how they overcome these problems.

1.2 Monte Carlo methods

Monte Carlo simulations have proved to be a powerful tool for developing approximation
algorithms for a range of combinatorial problems. Briefly, the idea is as follows. Let & be
a large but finite set of combinatorial structures. It is well known that much information
about § can be gained by sampling elements of § from an appropriate probability distri-
bution 7. This sampling can be performed by simulating a Markov chain whose state space
includes S and whose conditional stationary distribution over § is 7: to get a sample from
a distribution very close to 7, one simply simulates the chain for sufficiently many steps
that it is close to stationarity, and outputs the final state if it belongs to §. In order for this
method to be effective, the stationary distribution must be reasonably well concentrated
on § (so that one gets a valid sample reasonably often), and the Markov chain must con-
verge rapidly to its stationary distribution (so that the number of simulation steps required
is not too large).

In the case of self-avoiding walks, we are interested in sampling from the uniform dis-
tribution over the set §,, of walks of length n. A natural Markov chain to use here has as
its state space the set of all self-avoiding walks (of all lengths): if the chain is currently at
a walk w, it extends the walk in an allowable direction with some probability, while with
some other probability it deletes the last edge and “backtracks” to a shorter walk. Note that
the naive approach of simply growing the walk one edge at a time (with no backtracking)
breaks down because of the self-avoidance constraint: the number of possible extensions of
a given length can vary hugely for different walks due to the possibility of walks “getting
stuck.” This is why we require the more sophisticated dynamic scheme provided by the
Markov chain.

The above type of Markov chain was considered by Berretti and Sokal [2], who used a
single parameter 3 < 1 to control the relative probabilities of extending or contracting the
walk by one edge. Given a walk of length 7, one of the 2d lattice edges incident to the free
endpoint of the walk is chosen with equal probability. If this edge is the last edge of the



walk, then it is removed; if the edge extends the walk so as to be self-avoiding, then it is
added with probability ; otherwise, nothing is done.! Assuming conjecture C1, Berretti
and Sokal argue that, for any given value of n, taking g sufficiently close to (but smaller
than) p~=', where p is the connective constant, ensures that the stationary distribution
assigns reasonably high weight (i.e., 1/¢(n) for some polynomial ¢) to S,,. Furthermore,
again assuming conjecture C1, Sokal and Thomas [26] prove that with such values of 3
the Markov chain is rapidly mizing, i.e., it gets very close to stationarity after a number
of steps that is only polynomial in n (see also [18]). In order to appreciate the role of
here, consider a truncated version of this Markov chain in which the length of a walk is
never allowed to exceed n, so that the stationary distribution is always well defined; if 3 is
too much smaller than p~' then we will only generate short walks, while if 3 is too much
larger then the Markov chain will not backtrack often enough and consequently will take a
long time to reach stationarity. Thus S must be very carefully chosen. Berretti and Sokal
perform their experiments by “fine-tuning” S and observing the Markov chain until the
observations suggest that 3 is sufficiently close to p=!.

Berretti and Sokal’s algorithm suffers from two drawbacks. First, one must assume con-
jecture C1 (for appropriate values of the constants g, v and A) in order to bound the time
required before the Markov chain reaches stationarity. As long as conjecture C1 remains
open (for any choices of the above constants) there is no guarantee that the algorithm pro-
duces reliable answers in polynomial time. Second, in order to implement the algorithm it
is necessary to have a good estimate of u a priori, since 8 needs to be taken a little smaller
than p~!. This leads to circularity, since determining g is one of the principal goals of
the algorithm. While many similar Monte Carlo algorithms have been used to study self-
avoiding walks (see Chapter 9 of [19] for a summary), all of these suffer from a similar lack
of rigorous justification, and thus offer no guarantee that their results are reliable.

1.3 Synopsis of results

In this paper we develop a Monte Carlo algorithm for self-avoiding walks by modifying
the Markov chain used by Berretti and Sokal so as to overcome the difficulties discussed
above. Our algorithm will have rigorously controlled statistical errors, and a running time
that grows only slowly (i.e., as a low-degree polynomial) with the walk length and with the
accuracy and confidence parameters. The following definitions make these notions precise;
they are standard in the literature on efficient approximation algorithms for counting and
uniform generation of combinatorial structures (see, e.g., [15, 16, 23]).

Definition. (i) A (randomized) approzimation scheme for the number of self-avoiding
walks in some fixed dimension d is a probabilistic algorithm which, on input n and ¢,§ €
(0,1) (the accuracy and confidence parameters), outputs a number ¢ such that Pr{c,(1 +
7t <é< el +6} >1-46. The approximation scheme is fully polynomial if it is
guaranteed to run in time polynomial in n, ¢! and logé=1!.

(i1) An almost uniform generator for self-avoiding walks is a probabilistic algorithm which,
oninput n and € € (0,1) (the bias parameter), outputs a self-avoiding walk of length n with

TActually, these transition probabilities are a slightly simplified version of those used in [2], but this
difference is inessential to the behavior of the chain.



probability at least 1/¢(n) for a fixed polynomial ¢, such that the conditional probability
distribution over walks of length n has variation distance at most ¢ from the uniform
distribution. The generator is fully polynomial if it runs in time polynomial in n and
log e, 0

Our algorithm will work with an increasing sequence My, My, M3, ... of Markov chains
of the Berretti-Sokal type, where the state space of M,, consists of all self-avoiding walks
of length at most n. We make three elementary but important innovations. First, we
introduce a bootstrapping procedure whereby the number of steps required to simulate the
nth Markov chain M, is determined by an experiment performed using the previous Markov
chain M,,_;. Second, we allow the parameter § in the Berretti-Sokal algorithm to vary at
each level of the Markov chain (i.e., the transition probability 3, between walks of lengths
n — 1 and n now depends on n), and we calculate an appropriate value for 3, (which is first
used in the chain M, ) from observations of the previous chain M,,_;. Thus we require no
prior knowledge of 3. These two innovations ensure the correctness of the algorithm without
any assumptions; moreover, its running time will be polynomially bounded in n under a
widely believed conjecture (C2 below) about self-avoiding walks. Our third innovation is a
self-testing procedure which guarantees that the algorithm runs in polynomial time. The
self-tester detects the validity of the conjecture in the region in which it is being assumed:
as long as the test passes, the outputs are guaranteed to be reliable, while if the test fails
we gain strong evidence that the widely-believed conjecture is incorrect. Either outcome is
useful.

Ignoring the self-testing component for a moment, the behavior of our algorithm may
be stated more precisely as follows. Fix a dimension d. Then, on inputs €,§ € (0,1),
the algorithm outputs a sequence of numbers ¢y, ¢, €3, ..., such that, for each n, ¢, ap-
proximates ¢, within ratio (14 €) with probability at least (1 — §). In other words, the
algorithm is a randomized approximation scheme as defined above. Moreover, once ¢, has
been computed, we will have constructed a Markov chain M, which can be used as an
almost uniform generator for self-avoiding walks of length n.

The algorithm operates in stages, so that the estimate ¢, is computed using Markov
chain M,,_;. The simulation length for the chain M, (and hence the running time of the
algorithm for walks of length n) depends polynomially on n, ¢!, logé~! and a natural
quantity «, associated with self-avoiding walks (see below for a definition). Actually the
quantity «, is not known analytically, but can be estimated using observations of the
previous chain M,_;. Thus the values of both «, and (, are bootstrapped in successive
stages. A particularly attractive feature of our algorithm is that it is interruptible, in the
sense that the values «;, 3; determined during early stages of the algorithm can be reused at
a future time without having to restart the program from scratch, should it be prematurely
halted.

We now specify the quantity «,, which plays a key role in our algorithm. For a fixed
dimension d, define

. Citk
a, = min % (1)
5k cjck
i+k<n

This quantity has the following natural interpretation. For fixed j and £, ;Jt: represents

the probability that a random self-avoiding walk of length 7 and a random self-avoiding
walk of length k& can be “glued together” to form a self-avoiding walk of length 57+ k. To



be more precise, for self-avoiding walks w; and ws, define the concatenation wy o wy to
be the walk formed by translating ws so that its origin coincides with the free endpoint
of wy; and appending the translated copy of ws to w;. Note that w; o wy need not be
self-avoiding. If w; and w, are selected independently and uniformly at random from §;
and Sp respectively, then the above quotient represents the probability that wq o wy is
self-avoiding.

With this definition in place, we may now state the properties of the basic version of
our algorithm.

Theorem 1 For any fized dimension d, there exists a randomized approrimation scheme

~1 and an

for self-avoiding walks that runs in time polynomial in n,e ! logé=! and !,

almost uniform generator that runs in time polynomial in n,log e tand o, !,

It is interesting to observe that this result, combined with the asymptotic bound on ¢,
of Hammersley and Welsh [9] quoted in section 1.1, immediately gives us approximation
algorithms for self-avoiding walks whose running time is sub-exponential. Specifically, the
bound of [9] implies that o' = O(a”1/2) for some constant @, so the linear dependence

1in theorem 1 (see section 2.2) yields a randomized approximation scheme and an

on o
almost uniform generator whose running times grow with n only as exp(O(n'/?)).

If we assume a widely believed conjecture about self-avoiding walks, however, we may
claim a much stronger bound on the running time. The conjecture in question is as follows:

for a given dimension d, there exists a fixed polynomial g such that
cjcy < g(j+ k) cjrr, Vi, k. (C2)

Thus in particular we have a,;! < g(n), i.e., if we choose random self-avoiding walks of
lengths j and & = n — j then the probability that their concatenation is self-avoiding is non-
negligible (inverse polynomial in n). Conjecture C2 is no more restrictive than conjecture C1
of section 1.1, on which previous Monte Carlo methods, including that of Berretti and Sokal,

. . -1

rely. To see this, note that ¢, ~ Ap™n?~! implies Cji’; ~ A(ﬁ—i)”‘1 <A (#)W . Thus
“3

conjecture C2 is also widely believed to hold, and is known to hold in dimensions d > 5

by the results of Hara and Slade mentioned earlier. Notice that conjecture C2 is in fact

weaker than conjecture C1 since it makes no claims about the precise rate of growth of
the function f(n) (As a simple example, suppose f(n) = n when n is odd and f(n) =
n? when n is even; then conjecture C2 would hold with g(n) = % but conjecture C1
would fail.) Moreover, for any given dimension there is a precise conjectured value for the

polynomial ¢: as the above calculation shows, it is essentially just the function f from
conjecture C1, with appropriate values for the constants p, v and A.

Corollary 2 Assuming conjecture C2, there exists a fully polynomial randomized approzi-
mation scheme and a fully polynomial almost uniform generator for self-avoiding walks in
any fized dimension d. For dimensions d > 5, the same holds without any assumptions.
m

In the self-testing version of our algorithm, we incorporate a procedure that incre-
mentally verifies conjecture C2 for successive values of n (for a specified polynomial g).
Meanwhile, it assumes the correctness of the conjecture, but only for values of n for which



it has already been tested. This allows us to give an a priori polynomial bound on the
running time of the algorithm so that either we will gather strong evidence (in the form
of a counter-example) that the conjecture is false with the given polynomial g, or we will
know that we can trust our simulations.

To make this more precise, fix a dimension d and a polynomial ¢, and suppose first
that conjecture C2 holds for this g. Then, on inputs €,§ € (0,1), the algorithm outputs
a sequence of numbers ¢1,¢y,¢3,... and is a fully polynomial randomized approximation
scheme, i.e., for each n, the time to output ¢, is a polynomial function of n, ¢~! and log §~!
and, with probability at least (1 — §), ¢, approximates ¢, within ratio (1+ ¢). If, on
the other hand, the conjecture happens to fail for some value n = ng, then with high
probability an error will be reported and we will know that the algorithm has the above
properties in the region previously explored (i.e., for n < ng), but may be unreliable for
larger values of n. However, in this case the algorithm will (with high probability) have
discovered a counter-example to the conjecture for the polynomial ¢ under consideration;
since precise conjectured values for g exist, this in itself would be of substantial interest in
the theory of self-avoiding walks. The properties of the self-tester are spelled out in more
detail in theorem 7 of section 3.3. Note that, in the presence of the self-tester, the answers
output by our algorithm are always correct (with high probability), and the algorithm is
guaranteed always to run in polynomial time. This notion of self-testing, which either gives
us confidence in our results or warns us that they may be erroneous, has been previously
studied in the context of program checking (see, e.g., [3]).

The remainder of the paper is structured as follows. In section 2 we focus on the Markov
chain M, for a particular value of n, which lies at the heart of our algorithm. Our main
task here will be to bound the rate of convergence of M, to its stationary distribution. In
section 3 we assemble the chains M, for n = 1,2,3,... into our overall algorithm, whose
running time depends on the quantity «,; this will verify theorem 1 and corollary 2 above.
Finally, in section 3.3 we show how to make the algorithm robust by adding a self-tester
to verify conjecture C2, thus ensuring that the algorithm runs in time polynomial in n, ™!
and log§~' independently of any assumptions. We conclude by mentioning some open
questions in section 4.

2 The Markov chain M,

As indicated in section 1, we consider a Markov chain that explores the space of self-avoiding
walks by letting a walk expand and contract randomly over time, under the influence of
a weighting parameter 3. Rather than working with a single Markov chain and a global
value of the parameter (8, we incrementally construct Markov chains M, M, ..., the nth
of which, M,,, has as its state space the set &,, = |JI_, S; of all self-avoiding walks of length
at most n. The transition probabilities in M, depend on parameters fy,...,5, € (0,1),
discussed below. In section 2.1 we define the chain M, and deduce its basic properties,
including its stationary distribution. We then go on to analyze its rate of convergence in
section 2.2.



2.1 Definition and basic properties

Transitions in the Markov chain M, are defined as follows. In state w € X, a self-
avoiding walk of length ¢ < n, choose one of the 2d edges incident to the free endpoint
of w uniformly at random. If the chosen edge coincides with the last step of w, remove this
last edge from w. If the chosen edge extends w to a walk which is self-avoiding and has
length at most n, add the edge to w with probability 3;4+1. Otherwise, leave w unchanged.

More precisely, define the partial order < on the set of all self-avoiding walks by w < w’
if and only if |w| < |w'| and the first |w| steps of w’ coincide with w. Also, define w <; w’
if w < w and |w'| = |w|+ 1 (i.e., if w' extends w by one step). Then the transition
probabilities P, of the Markov chain M,, are defined by

ﬁ|w’|/2d7 if w < w’;

1/2d if w' <1 w;
Pn ! — I I 2
(w, w’) r(w), if w= w'; (2)

0, otherwise,

where r(w) is chosen so as to make the probabilities sum to 1, and w, w" are in the state
space X, (i.e., |w|,|w'| < n).

Note that we may view M, as a weighted random walk on the tree defined by the
partial order <. This tree has the trivial walk of length 0 at the root, and the children
of walk w are walks w’ with w <; w’. Thus the tree has n + 1 levels 0,1,...,n, with
level ¢ containing all walks of length ¢. The transition probability from any state to its
parent is 1/2d, and from a state at level i to each of its children is ;/2d. In the case that
B1 = ... = By, this is a minor variant of the Markov chain used by Berretti and Sokal [2],
but trunctated at level n.

For technical convenience, we in fact modify the Markov chain M,, by introducing a
self-loop probability of % at every state. l.e., at each step, M, either (with probability %)
makes a transition according to (2) above, or does nothing. Note that this modification
merely injects a delay into the chain and does not affect its essential structure. We do this
in order to make use of a convenient general result about mixing times (theorem 4 below).
In practice, one would not need to introduce such a delay into the simulation.

It is evident that the Markov chain M, is irreducible (all states communicate) and
aperiodic. This implies that it is ergodic, i.e., it converges asymptotically to a well-defined
equilibrium or stationary distribution w, over X, . Thus,if P'(z,w) denotes the probability
that the chain is in state w after ¢t steps starting in some specified initial state x, then
P'(z,w) = m,(w) as t — oo, forevery w € X, . It is straightforward to show the following:

Proposition 3 The stationary distribution 7, of the Markov chain M, is given by
1 vl
Tn(w) = — Hﬁ“ for w € A,
Zn i=1
where 7, is a normalizing factor.

Proof. It suffices to show that the chain is reversible with respect to the distribution =, ,
i.e., that it satisfies the detailed balance condition

T (W) Py (w, w') = m, (0" Py(w', w) YVw,w' € X,.

This is readily verified from the definition of P, given in (2). O



Note that the stationary distribution is always uniform over all walks of a given length,
for any choice of values of the parameters ;. However, by choosing the 3; carefully we
can achieve a distribution over lengths which assigns sufficiently high weight to &,,. Ideally,
the value we want for ; is the ratio ¢;_1/c;. (The fact that this ratio is never greater
than 1 was proven surprisingly recently by O’Brien [20].) Of course, this is unrealistic since
we do not know the quantities ¢;_; and ¢;—indeed, these are precisely what we are trying
to compute—but we will see in section 3 how to determine good approximations to the
ideal values of (; before they are needed. For the moment, we consider the behavior of the
Markov chain assuming that each f3; is equal to ¢;_1/¢;.

Under this assumption, proposition 3 says that the stationary probability of any walk
w € X, is

1M,
= A

(W) = (3)
Thus the stationary distribution is uniform over lengths, and the probability of being at a
walk of length ¢ is 1/7, = 1/(n+ 1) for each ¢. This means that the Markov chain M,
has the first of the two properties identified in section 1.2 that are required for the Monte
Carlo approach to be effective: the stationary distribution is reasonably well concentrated
on §,, and uniform over §,,. We may therefore, at least in principle, generate random
self-avoiding walks of length n by simulating M, until it has reached equilibrium, starting
with, say, the empty walk, and outputting the final state if it has length n. The second
property required of the Markov chain is that the number of simulation steps should be
small. This is the key component in the running time of our algorithms and is quantified
in the next subsection.

2.2 The mixing time

The question of how many simulation steps are required to produce a sample from a distri-
bution that is very close to m, is precisely that of how long it takes for the Markov chain
to get close to equilibrium. This is often referred to as the mizing time. Note that, if
the overall running time of our algorithm is to be polynomial in n, the Markov chain M,
should be rapidly mizing, in the sense that its mixing time is very small compared to the
number of states (which grows exponentially with n).

In recent years several useful analytical tools have been devised for analyzing the mixing
time of complex Markov chains of this kind. In this paper we make use of the idea of
“canonical paths”, first developed in [14, 23]. Consider an ergodic, reversible Markov chain
with state space X, transition probabilities P and stationary distribution =. We can
view the chain as a weighted undirected graph GG with vertex set X and an edge between
each pair of vertices (states) z,y for which P(z,y) > 0. We give each oriented edge
e = (z,y) a “capacity” Q(e) = Q(z,y) = w(z)P(z,y); note that, by detailed balance,
Qz,y) = Qy,2).

Now for each ordered pair of distinct vertices z,y € X, we specify a canonical path v,
in the graph G from z to y. Then, for any such collection of paths I' = {v;, : z,y €
X,z # y}, define

> m(@)m(y), (4)



where the maximization is over oriented edges e. Thus p measures the maximum loading
of any edge e by paths in I' as a fraction of its capacity Q(e), where the path from z to y
carries “flow” m(z)7(y). Note that the existence of a collection of paths I' for which p(I")
is small implies an absence of bottlenecks in the graph, and hence suggests that the Markov
chain should be rapidly mixing. This intuition can be formalized and a bound obtained
on the mixing time in terms of the quantity p = minr p(I'), using a measure known as
conductance [25]. However, we can get a slightly sharper bound in this case by following
an idea of Diaconis and Stroock [5] and using the alternative measure p = minp p(I')¢(I"),
where £(I") is the maximum length of a path in I'. The appropriate version of this bound
can be found by combining Proposition 1 and Corollary 6 of [24] and is stated precisely in
theorem 4 below.

As a measure of rate of convergence, let P’(z,:) be the probability distribution of the
Markov chain at time ¢, starting in state z, and for € € (0,1) define

ro(€) = min{t : |PY(z,)) — 7| < € V' > t}.

Here || - || denotes variation distance: for distributions vy, vy over X, |1 — vaf| =
7 Loex [v1(2) — v2(2)] = maxacx [11(4) - va(A)].

Theorem 4 [24] For an ergodic, reversible Markov chain with stationary distribution «
and self-loop probabilities P(y,y) > % for all states y € X, we have

T (€) < ﬁ(log m(z)™" + log 6_1). O

We now use theorem 4 to show that the mixing time of the Markov chain M, can
be bounded in terms of the quantity «, defined in (1). Assuming conjecture C2, this
will imply that the Markov chain is rapidly mixing. For simplicity we will work with the
idealized version of M,, discussed at the end of section 2.1, in which each §; is exactly equal
to ¢;—1/c;. 1t should be clear that our analysis is not unduly sensitive to small perturbations
in the values of the g;.

Theorem 5 For the (idealized) Markov chain M,,, starting at the empty walk 0, we have
To(e) < Kdn*a)? (log n + log 6_1)
for some constant K .

Proof. From (3) we have that m,(0) = 1/(n+ 1). Also, since the graph corresponding
to the Markov chain M,, is a tree, there is only one choice of (simple) paths between each
pair of vertices; we will denote this collection of paths I' = {v;,}. Since the depth of the
tree is n, we have £(I') = 2n. Therefore, the result will follow from theorem 4 if we can
show that p(I') < K'dnaj! for some constant K'.

Now let e be any edge of the tree, and suppose the endpoints of e are a walk w
of length k& and a walk w’ of length £+ 1. Let S be the subtree rooted at w’, and
S = X, — S. Since e is a cut edge, it is clear that (4) becomes

p(T) = max Q(e) ™', (5)7a(S). (5)
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In what follows we will make essential use of the fact that the tree defining M, is a
sub-Cayley tree, so that the number of vertices at level [ of any subtree is bounded above
by the total number of vertices at level [ of the whole tree. This is evident since any initial
segment of a self-avoiding walk is also self-avoiding. We have

1

Q(e) = mu(w') Pp(w',w) = oy

(where the extra factor of § in P,(w’, w) comes from the self-loops), and

T(S) = Y (@)

wrw!
n 1
= > @ = o' : |@] = 3}
j=k+1 ZnC;
1 r Ck+1
= w = w W =3
e il e L B
n
1 Ck41 Cj_k—1
T ZnChir j=kt1 €
n
< 0/
chk+1an

where the first inequality follows from the sub-Cayley property of the tree. Putting these
two calculations together, we see that Q(e) ™' 7, (5)7,(S) < Q(e)™'7,(S) < 4dna;!. Since
e was arbitrary, (5) now gives us the required upper bound on p(I). O

Remark. A similar bound on the mixing time of the Berretti-Sokal Markov chain was
obtained using ad-hoc methods by Sokal and Thomas [26]. Again the essential feature that
makes the argument work is the sub-Cayley property of the tree underlying the chain. A
rather weaker bound was obtained by Lawler and Sokal [18], using the conductance (or
Cheeger inequality). This latter proof is very similar in spirit to the one above; the main
difference is that our proof replaces p? by p in the bound of theorem 4. O

3 The overall algorithm

In this section, we show how to assemble the sequence of Markov chains (M,,) just described
into a single algorithm that outputs a sequence of numbers (¢,), each of which is a good
estimate of the corresponding ¢,. The accuracy of the estimates is controlled by two
parameters, ¢ and ¢, exactly as in the definition of a randomized approximation scheme
appearing in section 1.3. We shall see that the algorithm provides both an approximation
scheme and an almost uniform generator with the properties claimed in theorem 1.

The main new ingredients in the algorithm are two bootstrapping procedures for esti-
mating the quantities «,, which appear in the mixing time and the parameters 3, governing
the transition probabilities of the Markov chains. Recall that our analysis so far has assumed
that we know «a,, (the probability that two self-avoiding walks of total length at most n can
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be glued together to form a new self-avoiding walk), and also that 3, = ¢,_1/¢, for each n.
However, these values are not available to us; in fact, calculating the quantities ¢, is one
of our main objectives. Instead, our overall algorithm computes estimates of these ideal
values «, and ¢,_1 /¢, for each n in turn, using the previous Markov chain M,,_;. This is
consistent since the first time that «, and (3, are required is in the Markov chain M, . At
the end of the section, we will show how to make the algorithm self-testing.

We stress that, throughout the paper, our goal is to sketch conceptually simple argu-
ments that justify polynomial running times. We deliberately omit low-level details (in
particular, constant factors) and make no attempt to optimize the time bounds. In any
practical implementation of this algorithm, it would be necessary to refine the statistical
procedures sketched here in order to obtain more practically useful bounds. We hope we
have provided sufficient information for the interested reader to undertake this task. For
an example of some tuning of this kind, see [21].

3.1 Bootstrapping «, to determine the simulation time for M,

In theorem 5 of section 2 we determined the mixing time of the nth Markov chain M,
as a function of n, ¢, ¢ and the unknown quantity «,. Thus we need to know at least
a reasonable upper bound on a;! in order to determine the number of simulation steps
required for M, . If we are prepared to accept conjecture 2, which asserts that a;! <
g(n) for some polynomial g, then we can simply substitute g(n) for a;! in the bound
of theorem 5. However, we would like to have an algorithm which is independent of any
conjectures. In this subsection we introduce a bootstrapping technique whereby we calculate
an estimate &, of «,, such that o, /4 < &, < «, with very high probability. Thus, from
theorem 5, simulating M,, for Kdn%a;!(logn + log ¢™1) steps suffices to sample from close
to its stationary distribution =, , without appealing to any conjectures. Moreover, since

a;! < 4a;1, the simulation time remains linear in a1,

Recall from (1) that a, = minjjr<n :—t:, and that for any fixed j and k this ratio
is just the probability that two random self-avoiding walks of lengths j and k& can be
concatenated to form a new walk which is self-avoiding. Assuming inductively that we
already know an upper bound on the mixing time of Markov chain M, _;, we can use it
to generate walks of each length ¢ < n — 1 (almost) uniformly. By sampling these smaller
walks we can compute an estimate of «,, thereby determining the number of steps for
which we should simulate the next Markov chain M,, to guarantee that it is close to its
stationary distribution.

This bootstrapping procedure, described in figure 1, works in detail as follows. Fix
a dimension d. We assume first that we can generate walks of any given length ¢ < n
(almost) uniformly at random, using Markov chain M,,_;, in time polynomial in n, a,_1
and loge™! (where € is the bias tolerated). This follows from the bound on the mixing
time in theorem 5, and the fact that the stationary distribution m,_; of M,_; assigns
equal weight to walks of each length i < n and is uniform over lengths.! Thus to obtain ¢

tActually the Markov chain we are simulating here is not precisely that analyzed in section 2, since the
branching probabilities 3; will differ slightly from their ideal values. However, we know from proposition 3
that the stationary distribution is always uniform within each level of the tree, and it should also be clear
that, assuming we control the errors in the 3; appropriately, the distribution over levels of the tree differs
from the uniform distribution by at most a constant factor.
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EstAlpha(a,_1, 31, ..., Bn-1)
Q, = 0p_q
for i =1,2,...,|n/2] do
using M, _1, generate ¢, random walks u; € S;
and ¢, random walks v; € S,_;
for j =1,2,...,t, do

X = {1 if ujov; € Sy;
I 0 otherwise

&, = min{éay,, ¢,,/2}

return o,

Figure 1: The subroutine for estimating a,

independent random walks of length i, it is sufficient to generate 2nt independent samples
from 7m,_;; with high probability, at least ¢ of these will have length i.} For definiteness,
we will assume that our algorithm aborts if at any point it fails to gather enough samples
in such a procedure. The very small probability of this event can easily be absorbed into
the confidence parameter 6.

We assume also that we have previously calcuated @,_; such that a,_1/4 < @,_1 <
a,,—1 (with high probability). The value &,,_; is an estimate of the probability that the con-
catenation of two self-avoiding walks of total length strictly smaller than n is self-avoiding,
so we now need only estimate this probability for walks whose total length equals n. For each
0 < i < n, we generate ¢, independent pairs of walks of lengths ¢ and n — 4, and let ¢, ;
be the proportion of these pairs whose concatenation is self-avoiding. Plainly ¢, ; is an (al-
most) unbiased estimator of the ratio === Now the 0/1 estimator theorem (see, e.g., [16])
tells us that ¢, = O(a;,' log(n/d)) samples suffice in order that ¢, ; is within a factor of 2
of this ratio with probability at least 1 — d/n?. Letting &, = min(dy,—1, min; ¢,,;/2), we
get an estimate in the desired range [a,/4, ;] with probability at least 1 — 4.5

The running time of EstAlpha is dominated by the time required to produce ¢,, samples

{Notice that 2nt samples are sufficient to produce t samples of length i, even accounting for the fact
that the distribution over levels of the tree is only approximately uniform.

$The loss of a factor 1/n? in the confidence comes from the fact that &, depends on @(n2) independent
random variables ¢, ;. With more attention to detail, these errors could be controlled more efficiently.
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of walks of each length ¢ < n, using the Markov chain M,,_;. The total number of samples
required is, with high probability, at most O(t,n?) (actually O(¢,nlogn)), which from the
above value of ¢,, is O(n?a;; ' (logn +logé™')). The time per sample is just (our estimate of)
the mixing time of M,_;, which we know inductively to be O(n?a, !, (logn + loge™")) for
any fixed dimension d, where € is the bias from uniformity. Hence the overall running time
of EstAlpha is (N)(n‘lozgz)7 where the O notation suppresses both constant and logarithmic
factors.

3.2 Estimating the branching probabilities 3,

Recall that the ideal value for the parameter f3,, is the ratio ¢,_1/c, . Like «,,, this quantity
may also be estimated by a bootstrapping procedure based on the Markov chain M,,_;.
Note that in fact this ratio is precisly what one needs to compute ¢, given ¢,_1, so our
estimate for 3, will immediately yield our estimate for ¢, as well.

The overall algorithm is sketched in figure 2. The algorithm works in a sequence of
stages, one for each successive value of n, corresponding to the iterations of the for-loop
in figure 2. We call stage n good if it computes a value 3, that approximates the value
Cn_1/cn, within ratio (14 €¢/4n?), where ¢ is the accuracy input.

CountSAWs
B =1/2d; ¢ =2d; a3 =1
for n = 2,3,4,... do
using M,,_1, generate T, random walks w; € S,
let £ =3 {w € 8, : w; <1 w}
set 8, = T,/F
output ¢, = ¢,_1/6,

let «, :EStAlpha(an—l ) ﬁh SRy ﬁn—l)

Figure 2: The overall algorithm

Let us consider the operation of stage n in detail. To compute a good approxima-
tion 3, of the ratio ¢,_1/c,, we randomly sample walks of length n — 1 using the Markov
chain M, _; and estimate the average number of one-step extensions of a walk: we can
compute the number of one-step extensions of any given walk by explicitly checking each of
the 2d — 1 possibilities. Note that, for a random walk, this is a bounded random variable
taking values in [0,2d — 1] with mean at least 1 (since ¢, > ¢,—1). The sample size is
controlled by the parameter 7,,. A simple generalization of the 0/1-estimator theorem (see
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[16]) to handle non-negative, bounded random variables shows that 7}, need not be too
large to obtain a good estimate with sufficiently high probability. Specifically, we get:

Lemma 6 In the algorithm of figure 2, assuming that stages 1,2,...,n — 1 are good,
stage m is good with probability at least (1 — §/2n?), provided the sample size T, is at
least cn*e™2(logn + log §™1) for a suitable constant ¢ (which depends on the dimension d ).
O

The algorithm is designed so that, assuming all previous stages 1,2,...,n—1 are
good, stage n will be good with probability at least (1 — §/2n?). The reason for this
requirement is the following. If all stages 1,2,...,n are good, then the value ¢, =

", B! output by the algorithm at the end of stage n approximates [[7,(c;/ci—1) = ¢n
within ratio []";(1 + ¢/4i?) < 1+ ¢; moreover, this happens with probability at least
[T%,(1 —§&/2i?) > 1 — §&. Thus our algorithm, run to stage n, satisfies the requirements of
a randomized approximation scheme for ¢, (see Definition (i)), which was one of our prin-
cipal goals. Moreover, by the end of stage n we have computed values §; for 1 < i < n;
thus we have constructed a Markov chain M,, which we can simulate to produce an almost
uniform generator for self-avoiding walks of any length up to n (see Definition (ii)). This
was our second principal goal.

Ignoring EstAlpha for a moment, the running time of stage n of the algorithm is dom-
inated by the time required to produce 7T, (almost) uniform random self-avoiding walks of
length n — 1 using Markov chain M,,_;. As in the analysis of EstAlpha in the previous
subsection, we can bound this by O(T,,n?a %, (logn + log 1)) for any fixed dimension d.9
Plugging in the bound on 7, from lemma 6, we deduce that the total running time of stage n
is polynomial in n, a;!, ¢! and logd=!. This is true also for the call to EstAlpha, as
we saw in the previous subsection. Thus the approximation scheme for ¢, has the prop-
erties claimed in theorem 1. By the same reasoning, simulating the Markov chain M, for
O(n*a; ' (logn + loge™')) steps can be used as the basis for an almost uniform generator
of walks of length n with the properties claimed in theorem 1.

This algorithm is particularly well suited to applications where many samples of self-
avoiding walks of a given length are required. In order to produce just one sample, a fair
amount of work is required in order to determine estimates for the 3; and «;. However,
once this work is done, the Markov chain M, can be used to generate as many samples
as desired much more efficiently. It is worth noting that in this sense the algorithm is
interruptible; as long as the estimates for each ; and «; are stored (to specified accuracy
and confidence), this initial work does not have to be repeated.

3.3 Making the algorithm self-testing

In the previous subsection we presented an algorithm whose correctness is independent of
any conjectures; however, to get an a priori bound on the running time of the algorithm
we must appeal to conjecture C2. In this section we show how to place the algorithm on a
firmer theoretical footing by algorithmically testing conjecture C2, thus guaranteeing that

T0Once again, we should point out that the analysis of theorem 5 refers to the idealized Markov chain in
which all values 3; are exact. However, it is a simple matter to check that, assuming all stages are good,
the effect on the mixing time of these small perturbations of the 3; is at most a constant factor.

15



the algorithm runs in polynomial time. This is a particular instance of what we believe is a
generally useful idea of using self-testing to make an algorithm whose correctness depends
on a conjecture more robust.

Recall that conjecture C2 states that, for all j and &,

cicr < g(i+k) cipr, (6)

where ¢ is some fixed polynomial. The point of this conjecture is that it immediately
implies a;! < g(n) for all n, which in turn gives us a polynomial upper bound on the
mixing time of the Markov chain M, .

Clearly, to argue about the chain M,, it is sufficient to establish condition (6) only for j 4+
k < n. Thus, provided we can test the condition in this range using only information from
the previous stage n — 1, we can be sure that stage n is reliable also. As it turns out, our
procedure for calculating &, (figure 1) at the end of stage n — 1 makes testing the conjecture
in the above range almost immediate. Recall that in section 3.1 we derived statistical
guarantees stating that «,/4 < &, < a, with very high probability. Therefore, if 04;1 <
g(n), then our estimate must satisfy & ! < 4g(n) with high probability. Conversely, if our
estimate satisfies this condition then we can assert with high confidence that o' < 4g(n).
Thus our testing procedure, spelled out in figure 3.3, simply amounts to comparing & !
with 4¢(n). In practice we could use for g(n) either the polynomial implied by conjecture C1
(which is essentially just f, with a slightly different constant A) or, to give ourselves a bit
more room, a slightly larger polynomial. Note that our choice of g will affect the running
time, since we will be substituting g(n) in place of a;! in our previous analysis.

SelfTest
let o, = EstAlpha(a,_1,01, ..., Bn-1)

''> 4g(n)

if a;,
then output “Warning: conjecture fails”

else continue

Figure 3: The self-tester

Summing up the above discussion, we have:

Theorem 7 The algorithm of figure 2 with the self-tester incorporated runs in time poly-

' and log 6='. Furthermore, assuming that no warning has been issued at

any stage © < n, it satisfies the following properties:

nomial in n, ¢

(i) if ;! < g(n) (i.e., conjecture C2 holds), then the algorithm outputs a reliable
numerical answer with probability at least 1 — §;
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(ii) if ot > 4g(n) (i.e., conjecture C2 fails “badly”), then the algorithm outputs
an error message with probability at least 1 — 6 ;

(iii) if g(n) < a;! < 4g(n), then the algorithm either outputs an error message
or outputs a reliable numerical answer. O

Notice that in every case the algorithm runs in polynomial time, and any numerical answer
which is output is reliable with high probability.

The idea of a tester has been used before, but in a much more restrictive sense. For
example, Berretti and Sokal [2] propose testing possible “errors in scaling” due to the con-
jecture that f(n) ~ An?~! by trying other specific polynomial forms for f(n). This gives
evidence that f(n) might be of the correct form, but falls short of proving it probabilis-
tically. In contrast, the tester we present is designed to verify exactly the conjecture we
require, and therefore offers precisely quantified statistical evidence that our algorithm is
operating as we expect.

4 Open questions

Our most obvious and compelling open problem is verifying conjecture C2 for dimensions
d < 4. This would constitute a substantial breakthrough in the classical theory of self-
avoiding walks. However, it is less well studied than conjecture C1, and its more elementary
combinatorial nature should make this task more feasible. The results in this paper show
that proving conjecture C2 for any polynomial g (even, say, for g(n) = An'%!) would yield
the first provably polynomial time Monte Carlo approximation algorithms for self-avoiding
walks.

Another direction is to find other natural problems that can be approached using the
Monte Carlo techniques based on sub-Cayley trees described in this paper. For example,
matchings (monomer-dimer coverings) in lattices can be uniformly generated using a Markov
chain of this kind, and again the efficiency of the algorithm rests on a single combinatorial
assumption. Unfortunately, however, unlike conjecture C2, in this case the analogous con-
jecture seems unlikely to be true. Nevertheless, perhaps it is possible to further adapt the
algorithm so as to obtain a more reasonable conjecture.

Finally, we predict that there are other applications in which the type of self-testing
described in this paper can be used to convert heuristics into robust algorithms. It would
be interesting to explore the generality of this method for testing a conjecture in the region
where it is sufficient to verify the correctness of an algorithm.
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