INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. ® Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 e FAX (510) 643-7684

Counting in Lattices:
Combinatorial Problems from
Statistical Mechanics

Dana Randall
TR-94-055
October 1994

Abstract

In this thesis we consider two classical combinatorial problems arising in statistical me-
chanics: counting matchings and self-avoiding walks in lattice graphs. The first problem
arises in the study of the thermodynamical properties of monomers and dimers (diatomic
molecules) in crystals. Fisher, Kasteleyn and Temperley discovered an elegant technique
to exactly count the number of perfect matchings in two dimensional lattices, but it is not
applicable for matchings of arbitrary size, or in higher dimensional lattices. We present
the first efficient approximation algorithm for computing the number of matchings of any
size in any periodic lattice in arbitrary dimension. The algorithm is based on Monte Carlo
simulation of a suitable Markov chain and has rigorously derived performance guarantees
that do not rely on any assumptions. In addition, we show that these results generalize to
counting matchings in any graph which is the Cayley graph of a finite group.

The second problem is counting self-avoiding walks in lattices. This problem arises in
the study of the thermodynamics of long polymer chains in dilute solution. While there are
a number of Monte Carlo algorithms used to count self-avoiding walks in practice, these
are heuristic and their correctness relies on unproven conjectures. In contrast, we present
an efficient algorithm which relies on a single, widely-believed conjecture that is simpler
than preceding assumptions and, more importantly, is one which the algorithm itself can
test. Thus our algorithm is reliable, in the sense that it either outputs answers that are
guaranteed, with high probability, to be correct, or finds a counterexample to the conjecture.
In either case we know we can trust our results and the algorithm is guaranteed to run in
polynomial time. This is the first algorithm for counting self-avoiding walks in which the
error bounds are rigorously controlled.

This work was supported in part by an AT&T gradutate fellowship, a University of
California dissertation year fellowship and Esprit working group “RAND”. Part of this
work was done while visiting ICSI and the University of Edinburgh.

Committee chair: Alistair Sinclair

Acknowledgments

I am extremely fortunate to have worked with Alistair Sinclair. His enthusiastic, inquisitive
approach to research has left a deep impression and has certainly shaped my thinking about
problems. Throughout every stage of this research he was a constant source of insight and
encouragement.

Mike Luby has had a similar impact on my graduate school experience, often acting as
my second advisor. Working with Luby has greatly influenced my appreciation for research.
He has offered a lot of direction and advice, and his friendship has been one of my most
important in Berkeley.

The faculty has made Berkeley a truly wonderful place to be a student. I have benefitted
tremendously from classes and conversations with Dick Karp and Umesh Vazirani. Discus-
sions with Manuel Blum fostered my curiosity and excitement during my initial stages of
thinking about research. I am also grateful to Dick Karp and David Aldous for being on
my thesis committee.

Claire Kenyon was wonderful to work with. I have learned much from her precise,
delightful approach to research. I am very grateful to Rob Pike for implementing our self-
avoiding walk algorithm, as well as for his friendship. Lars Rasmussen also deserves special
thanks for implementing an earlier version of the algorithm.

Perhaps the greatest aspect of my graduate life at Berkeley was the exceptional student
body. I have always turned to Diane Hernek with technical questions and have appreci-
ated her generosity, her friendship and her humor. Will Evans was always available to
bounce ideas off of and greatly enhanced my time here. And whenever the going got tough,
7, Sweedyk helped me put things in perspective. Many of my most enjoyable times were
spent with Eric Enderton, Amie Wilkinson, Sara Robinson and Ashu Rege. My graduate
school experience would not have been complete without the friendships of Nina Amenta,
Sandy Irani, Ronitt Rubinfeld, David Zuckerman, David Wolfe, Dan Jurafsky, Seth Teller,
Leonard Schulman, Michael Mitzenmacher and the Stickhandlers.

Finally, for their love and support, I thank my family: Gladys, Richard, Barbara and
Lisa Randall, and Lori Wood.

Contents

1 Introduction
1.1 Physical systems e e e
1.1.1 The partition function Lo
1.1.2 Freeenergy L e e s
1.1.3 Themodel o . e
1.2 Computational complexity of counting problems L0000
1.2.1 Efficient algorithmso o
1.2.2 Hardmess L
1.3 Approximation algorithmso Lo
1.3.1 Markov chains Lo e
1.4 Summary e e e e e e e
2 Matchings
2.1 Imtroduction L L e e
2.1.1 Historical background L Lo
2.1.2 Results . . . o L e
2.1.3 Overview of the algorithm 0 o
2.2 Rectangular Lattices L L
2.3 Other Lattices o e e
2.3.1 Bipartite Cayley graphs Lo
2.3.2 Non-bipartite Cayley graphs o oo
2.4 Concluding Remarks and Open Problems
3 Self-avoiding walks
3.1 Imtroduction L e
3.1.1 Background
3.1.2 Monte Carlo simulations L L
3.1.3 Ourresults oL e e e
3.2 The algorithms
3.2.1 The Markov chain
3.2.2 Themixing timeo e e
3.2.3 The overall algorithmo o
3.3 Making the algorithm self-testing L
3.4 Improved time bounds
3.5 Numerical resultso
3.6 Concluding remarks and open problems L Lo Lo

11
11
12
13
14
15
17
18

19
19
19
20
21
23
28
28
31
33

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Examples of typical Ising configurations at low and high temperatures. 8
A monomer-dimer arrangement. L0 L oL e e e e e 9
A self-avoiding walk. L L 10
The union of two near-perfect matchings. Lo L oo, 25
Mapping two near-perfect matchings to two perfect matchings. 26
Union of Ny and 7(Na2)..o 27
Proof of Theorem 2.2.4. e 28
Proof of Theorem 2.3.1 for the hexagonal lattice 29
The “bad” graph G, o 34
The concatenation of two self-avoiding walks. o 0oL, 39
The algorithm o e 45
The self-tester oL 47
The improved algorithm Lo 50
The number of self-avoiding walks in 2 dimensions 53
The number of self-avoiding walks in 2 dimensions (cont.) 54
The number of self-avoiding walks in 3 dimensions 55
The number of self-avoiding walks in 3 dimensions (cont.) 56

Chapter 1

Introduction

Statistical mechanics provides a rich source of fundamental combinatorial questions with
natural applications. Physicists use sophisticated algorithms for these problems in order to
understand various physical systems, but often these algorithms are non-rigorous or ineffi-
cient. With the recent developments in computer science for designing efficient algorithms
with rigorous performance guarantees, there is an increasing demand for the exchange of
ideas to tackle these combinatorial problems.

The standard scenario is as follows. There is a set of combinatorial structures corre-
sponding to the allowable configurations of a physical system. The primary challenge is
to count the number of configurations. The second is to sample a configuration from the
set at random. Solutions to these problems would provide valuable insight into the related
physical systems.

This thesis focuses on two types of combinatorial structures: matchings and self-avoiding
walks in lattices. These are classical problems which arise in the context of monomer-dimer
systems and long polymers chains. We present the first provably efficient approximation
algorithms for solving the counting and sampling problems in each case. The algorithms
are based on Monte Carlo simulations similar to those widely used in statistical mechanics,
and the analysis uses insights from computer science for deriving rigorous statistical bounds
on the accuracy of such simulations. A feature which distinguishes these results from other
recent work in the area is that we use the special structure of the lattice in a critical
way. Lattices represent precisely the set of graphs for which there is the greatest physical
significance.

The following sections are intended both to motivate the work in this thesis and to pro-
vide some of the essential background. Section 1.1 gives a brief overview of the statistical
mechanics applications; section 1.2 places these physical problems in the framework of com-
putational complexity theory; finally section 1.3 formalizes the definitions of approximation
algorithms and gives a basic outline of the algorithmic machinery used.

1.1 Physical systems

Statistical mechanics endeavors to relate the observable, macroscopic properties of a physical
system, such as density and temperature, to the microscopic interactions among particles of

the system. The goal is to understand how simple, local interactions between small numbers
of particles determine the macroscopic behavior and to predict how various parameters of
the system contribute to these observable effects.

The complicated, dynamic interplay among large numbers of particles in a system makes
a precise characterization of all microstates impossible, so state information is captured as a
probability distribution over all feasible configurations of particles; a configuration captures
the essential information of a microstate and is assigned a probability according to the
likelihood of the associated microstates. The partition function Z, which is a weighted sum
over the set of possible configurations, is the key to relating the two levels of description.
Most of the thermodynamic properties describing the macrostate of a system can be derived
from knowledge of Z. The goal in this thesis will be to develop tools which will help us
compute close approximations to the partition function for some classical physical systems.

1.1.1 The partition function

A configuration of a system is a description of a possible microstate. For example, consider a
system with N particles in volume V held at a constant temperature 7" through interaction
with some external heat source. A configuration includes the positions of the N particles
as well as any other relevant information such as their magnetic moments. The system is
modeled discretely so that the positions of atoms coincide with vertices of a finite lattice.
This can be thought of as a finite n x n x ... x n subset of the cartesian lattice Z? or a
finite subgraph of some other regular lattice.

Associated with each configuration is an energy. The probability distribution over con-
figurations is defined by a simple function of this energy. The form of this function depends
on which configurations are consistent with the fixed parameters of the system, in the above
example (N, V,T). We describe this distribution for three typical families of systems.

In the simplest case of an isolated system, the internal energy is held constant. All
configurations which have this energy FE are considered equally likely and all others are
considered impossible. This probability distribution over configurations with fixed values
fo the parameters (N,7,V, E) is known as the microcanonical distribution.

In the more interesting cases with which we will concern ourselves in this thesis, the sys-
tem is not isolated but interacts with some external source. In the first case the parameters
(N,V,T) are held constant, but the energy of the system is allowed to vary. The likelihood
of a particular configuration is given by the canonical (or Boltzmann, or Gibbs) distribu-
tion. Again all configurations with equal energy are equally likely, and now the probability
of different configurations is exponentially distributed over energies. More precisely, let G
denote the lattice graph and let E(s) be the energy of a configuration s. The probability
of s is

7(s) = exp(—E(s)/kT)/2,

where k is Boltzmann’s constant and Z is the normalizing constant,

Z = Z(G;N,V,T) = > _exp(—E(s)/kT). (1.1)

The weighted sum over all configurations given in equation (1.1) is known as the partition
function for the canonical distribution.

A third common distribution arises in physical systems which interact with a permeable
membrane allowing the number of particles N to vary. The likelihood of a configuration
with a fixed number of particles is controlled by a parameter x known as the activity or
fugacity of the system. For fixed (z,V,T), the grand canonical distribution is a function in
the parameter . The probability of a configuration s with |s| particles is given by

_exp(—E(s)/kT) - zl*!
7[-(5) - 7 ’

where again the normalizing constant Z is the partition function for this distribution. If
Zn is the partition function for the canonical distribution where the number of particles is
fixed to be N and the number of vertices in the lattice graph G is N, then we can write
the grand canonical partition function as

Z(Giz,T) Zexp $)/KT) -l = Z Zy N (1.2)

Computing the partition function of a system is a primary objective of statistical me-
chanics. The significance of Z stems from the fact that many of the thermodynamic prop-
erties of a physical system are related to log Z or one of its derivatives; we will illustrate
this relationship in the next subsection. For computational purposes, it is often useful to
view the partition function as a generating function. This is possible when the energy levels
are discrete. Specifically, let & be the set of all possible values for the energy of a config-
uration, and let ap be the number of configurations with a particular energy E € £. Let
y = exp(—1/kT). When the number of particles N is fixed, the partition function for the
canonical distribution defined in equation (1.1)is just the generating function

Z:ZaEyE.

Eeg

When the number of particles varies, then we let an g be the number of configurations with
N particles and energy FE. The partition function for the grand canonical distribution from
equation (1.2) is
Z = Z aN,E yE N
EecE
Computing the partition function in these cases can be reduced to computing the coeflicients
ap or ay,g of the relevant generating function.

We now give three classical examples of physical systems to demonstrate these concepts.
The problems are defined for any finite lattice and easily generalize to any finite graph. In
each of the following cases it is convenient to think of the special case of an n X n rectangular
lattice (or chessboard).

Example 1: The Ising Model

The Ising model was introduced in the 1920’s to study ferromagnetism and is one of the
most famous models from statistical mechanics (see, e.g., [8] for a history and review). The
system is modeled by a finite lattice where the vertices represent atoms of a ferromagnetic

material. Fach configuration ¢ consists of an assignment of a +1 or -1 spin o; to each of
the vertices ¢, representing the magnetic moment of each atom. In the Ising model nearest
neighbors tend to align with each other according to a parameter J > 0, and all the atoms
tend to align with an external magnetic field H. The energy of a configuration o is given

by
E(o) = - Z Joioj — ZHUiv
(#.4) g

where the first summation is taken over nearest neighbor pairs. From equation (1.1) the
partition function for the canonical distribution is then

Z = Zexp(—E(U)/kT).

- - - —+ + 4+ + + + + + + -+ ++ - -+ + -+ -
- - - —+ + 4+ + + + + + ++ -+ -+ + -+ -+ +
- - -+ + +++ ++ ++ - - -+ + - -+ -+ -+
- -+ 4+ ++ - - -+ + + +++ -+ - -+ -+ + -
- -+ 4+ + - - - - - + + -+ + 4+ -+ ++ - -+ -
++++--=-=- - - + + + -+ -+ -+ -+ + -+
++ ++++ - - - -+ + -+ + - - -+ + -+ -+
++ +++++ - -+ + + + -+ -+ + -+ -+ + -
++ ++++++++ ++ ++ - -+ + -+ + -+ +
++ ++++++++ ++ -+ + -+ -+ + -+ -+
++ +++ - - - -+ + + +++ - -+ + -+ + + -
++++-- - - - + + + + -+ -+ + -+ + -+ +

o
~—r

Low temperature (with H > High temperature

Figure 1.1: Examples of typical Ising configurations at low and high temperatures.

At low temperatures the parameters J and H will have greater influence and we are
more likely to see large clusters of like spins. At higher temperatures there will tend to be
less organization. Figure 1.1 shows typical configurations for each of these cases.

The Ising model can also be used to represent latlice gases, where a +1 indicates that
a lattice site is occupied by a molecule and a -1 indicates it is vacant. The high and low
temperature diagrams in figure 1.1 reflect the fact that at higher temperatures the gases
move freely and particles do not influence their neighbors much, while at lower temperatures
particles attract each other and will tend to cluster as in the solid state. The partition
function provides information about the phase transition between gaseous and solid states.

Example 2: Monomer-Dimer Systems

Another fundamental challenge in chemical physics is the monomer-dimer problem in which
the sites of a regular lattice are covered by a non-overlapping arrangement of dimers and
monomers. A dimer is a diatomic molecule which covers two adjacent vertices in the
lattice, and a monomer covers each vertex not covered by a dimer (see, e.g., [30] for a

—e (O eo—e
*—e *—e

Py g]
I s III

Figure 1.2: A monomer-dimer arrangement.

history of the problem). In graph theoretic terms, the monomer-dimer arrangement is
just a malching; a matching of size ¢ is a set of ¢ lattice edges such that no two edges
share a vertex. Figure 1.2 shows a typical monomer-dimer arrangement with 16 dimers
and 4 monomers. The two-dimensional monomer-dimer problem serves as a model for
the adsorption of diatomic molecules onto a crystal surface, where monomers correspond to
empty sites [56]. The three-dimensional problem occurs classically in the theory of mixtures
of molecules of different sizes [20] and the cell-cluster theory of the liquid state [9].

Consider a monomer-dimer arrangement consisting of s dimers and N — 2s monomers
on a lattice with N vertices. The energy is sJ, where J is the energy derived from covering
any particular edge with a dimer. Let M be the set of monomer-dimer arrangements with
s dimers, and let | M| be the cardinality of this set. The partition function for the canonical
distribution with a fixed number of dimers s is

Zs = Z(G;N,T) = > exp(—sJ/kT) = |[M,|exp(—sJ/kT).
MEMS

The grand canonical distribution describes more interesting systems where the number of
dimers varies. If z is the activity of a dimer, then following equation (1.2) the grand
canonical distribution is

|V /2] |V /2]
= Z(Gia,T) = > exp(—sJ/kT)z* = > |M|exp(—sJ/kT)z*
s=0 s=0

Letting u = exp(—J/kT) -z gives gives the generating function
|~ /2]
Z = Z(Gyp) = Z | M| p. (1.3)
s=0

Evaluating the coefficients of this generating function is exactly the problem of counting
the numbers of monomer-dimer arrangements with given numbers of dimers.

Example 3: Lattice Animals
A lattice animalis a set U of vertices on the lattice such that the subgraph induced by U is

Figure 1.3: A self-avoiding walk.

connected (see [67]). An important subclass of animals are self-avoiding walks, or animals
where each vertex has degree at most two. Equivalently, a self-avoiding walk of length 2
starts at a fixed origin and follows the lattice edges for ¢ steps with the constraint that
it never visits the same lattice site twice (see figure 1.3). The partition function here is a
generating function where the coeflicients ¢; are the number of walks length ¢. Letting N
be the number of vertices in the lattice and taking z as the monomer fugacity, the grand
canonical partition function from equation (1.2) is

N
Z = Ew|w| = ZCZLL‘Z
w =1

The self-avoiding walk models a dilute solution of long polymer chains in a good solvent.
This model arises since the polymer chain can be thought of as tracing out a random walk
in space, except that the physical restriction that no two molecules can occupy the same
position forces the self-avoidance condition. The dilute solution enables one to study a
single polymer without worrying about further restrictions caused by interactions with
other polymer chains (see [48] for a survey). The more general class of lattice animals arises
similarly in the study of branched polymers in dilute solution.

As we have already stated, for each of these physical systems, a primary objective is
to calculate the partition function. By interpreting this function as a generating function,
we can instead study the underlying combinatorial problems which are intrinsically tied
to these systems. The typical problem then becomes one of computing the coefficients
of the partition function; this will generally entail counting the number of configurations
in a set (e.g. the number of self-avoiding walks of length 7). We will also be interested
in the problem of randomly sampling these configurations s according to their likelihood,
7(s), in the appropriate canonical distribution. Sampling allows us to examine “typical”
configurations of the system. Moreover, it has been recognized that for large classes of
combinatorial problems the counting and sampling problems are closely related [36]. For

10

each of the problems we consider we will be addressing both of these questions.

1.1.2 Free energy

As indicated earlier, the partition function Z is the key to relating the microscopic and
macroscopic levels of description of a physical system. While the partition function is
defined as a sum over microstates, it captures the essential information determining the
macroscopic behavior of a system. In particular, the free energy F¥ = —kTlogZ is a
thermodynamic primitive from which most other thermodynamic properties can be derived.

To appreciate the role of the free energy, first consider its relation to other well-studied
macroscopic functions, the entropy and the average energy of a system. The entropy, which
is defined as S = Y, 7(s)logm(s), represents a measure of the disorder (or “unavailable
energy”) of a closed system. For the canonical distribution (equation (1.1)),

kTS = XS:E(S)QXP(_EZ(S)/’“T) _kTlogZ

= FE-F

where F is the expected (or average) energy of the system.

More significantly, we can derive information about many thermodynamic properties of
a physical system by studying how the free energy changes due to small perturbations in
the fixed parameters of the system. An important example is the partial derivative with
respect to temperature. Discontinuities in this derivative identify phase transitions. In the
ferromagnetic interpretation of the Ising model, such a phase transition corresponds to the
point of spontaneous magnetization. Other examples of phase transitions are melting and
boiling (see [8]).

In our discussions so far we have restricted our attention to idealized finite systems
where the particles coincide with lattice sites. In fact, these discrete models are really
computational tools for studying the continuous analogues of the partition function and
free energy on infinite lattices. The actual thermodynamic properties of a system are
realized by considering successively larger lattices and studying the behavior as the lattice
size tends to infinity. This is known as the thermodynamic limit. In this limit, observations
regarding the behavior of the free energy determine properties of the actual system under
study. In most cases there is no known way to directly compute the asymptotic behavior of
thermodynamic functions, and defining discrete analogues to these functions appears to be
one of the more promising approaches. Calculating the partition function for various finite
lattices therefore provides valuable insight into the corresponding real physical systems.

1.1.3 The model

Typically we think of the lattice as a finite n X n X ... X n subgraph of the cartesian lattice
2, although other families of lattices are also studied. In some cases it will be more
appropriate to talk about finite configurations on either an infinite lattice or a periodic
lattice where opposite sides are identified. The choice of the lattice will be clear from the
application.

11

As explained above, it is generally accepted that modeling various systems by families
of successively larger lattices will tell us about the limiting continuous behavior. However,
it is not immediately clear why our choice of combinatorial structures is a realistic model
of the physical constraints of the particles in the systems. In particular, self-avoiding walks
on the cartesian lattice appear to have a quite different set of constraints from polymers,
whose bond angles are rarely rectilinear. In fact the bond angles are typically tetrahedral
and do not align with any regular lattice [61].

The justification for using self-avoiding walks to model polymers, and for the other
combinatorial idealizations employed in the field, comes from the empirical existence of
universality classes. Several of the parameters studied in the thermodynamic limit ap-
pear to be dimension dependent, but lattice independent. This means that to study these
universal quantities for any particular member of the class, including physically realistic
models for polymers, it is sufficient to determine them for any other member. Therefore,
the mathematically simpler model of self-avoiding walks on lattices lets us deduce these
thermodynamic properties for the more realistic polymer models.

1.2 Computational complexity of counting problems

Viewing the partition function as a generating function has identified several combinatorial
problems as essential ingredients in understanding a physical system. Recall that when the
energy is discrete the partition function has the form 3, a;3*, where the coefficient a; is
the cardinality of some set of configurations §;. For example, in the partition function of
a monomer-dimer system, §; represents monomer-dimer arrangements with ¢ dimers and
a; is the number of such arrangements (see equation (1.3)). The primary combinatorial
questions fall into two categories:

(i) Counting: e.g., calculate @;, the number of elements in ;.

(ii) Sampling: e.g., pick an element from §; uniformly to determine the expected
value of some function over the elements of S;.

As explained earlier, the counting problem is used to compute the coefficients of the partition
function. The sampling problem is used to gain information about a “typical” configura-
tion. For example, in a monomer-dimer arrangement with N /2 — 1 dimers, one might be
interested in studying the expected distance between the two monomers.

Alternatively, it is sometimes more appropriate to try to solve the weighted analogues of
these problems. Here we have a set § where each element s € § has an associated weight
w(s) = exp(—E(s)/kT) and we are interested in the following questions:

(i) Evaluate the weighted sum 3~ s w(s).
(ii) Generate an element of S at random according to its weight.

Solving the weighted counting problem would allow us to calculate the partition function
directly, although we would not know all of the individual coefficients. Both the unweighted
and weighted versions of the counting and generation problems will fall into a similar frame-
work.

12

Ideally we would like analytic solutions to the counting (or weighted counting) problems.
In 1944, Onsager discovered such a closed-form expression for the partition function of the
two-dimensional Ising model with zero external field [53]. It has not been possible to find
such a precise solution for most other physical systems, or even for the Ising model in higher
dimensions or in the presence of an external field.

Consequently most of the research in recent years has been concentrated on designing
efficient algorithms to solve the counting and generation problems. Algorithms based on
Monte Carlo simulations, in particular, have provided great insight into various physical
systems. However, while they are useful tools, many of the algorithms actually used in sta-
tistical mechanics are nonrigorous applications of the methods and are not reliable. Recent
progress in the design of provably accurate and efficient approximation algorithms enables
us to develop new Monte Carlo algorithms with guaranteed error bounds.

1.2.1 Efficient algorithms

For an algorithm to be practical, it must be efficient in the sense that its running time does
not grow too fast with the input size. The generally accepted formalization of the notion
of efficiency is a polynomial-time algorithm. Such an algorithm takes as input a natural
description of the problem instance and must compute an output in time which is bounded
by some fixed polynomial in the size of the input description (see, e.g., [31]). For problems
in statistical mechanics involving lattices, the input size is taken to be N, the number of
vertices in the lattice; a polynomial-time algorithm (e.g., for the counting or generation
problems) must solve the problem in O(N*) time, for some fixed k. This is a natural
measure of the input size since the number of solutions is exponential in N and it requires
O(N) steps just to write down a typical configuration.

Note that, for any of the physical problems presented in section 1.1, it is trivial to
design an exponential-time algorithm which computes the output in time exp(O(N)). Since
the number of configurations on a lattice of size N is at most exponential in N, we can
do this by exhaustively enumerating each configuration. Of course such an algorithm is
not polynomial-time and is impractical unless the size of the lattice is very small. We
should also note that polynomial-time algorithms are not necessarily efficient in practice;
for polynomials with large degree it might be infeasible to run the algorithm except for
small inputs. However, a polynomial-time algorithm is certainly a dramatic improvement
over a trivial exponential-time one, and typically such algorithms are later improved so as
to be genuinely practical.

A breakthrough in the design of efficient algorithms in statistical mechanics was achieved
in 1961 when Fisher, Kasteleyn and Temperley independently discovered a polynomial-time
algorithm for a special case of the monomer-dimer problem known as the dimer problem
[15,40, 63] (see section 2.1). The dimer problem asks for the number of perfect matchings,
or coverings of the lattice by N /2 dimers (and no monomers). (More generally, a perfect
matching in a graph is a matching in which every vertex of the graph is incident to some
edge in the matching.) The Fisher, Kasteleyn, Temperley technique generalizes to counting
perfect matchings in any planar graph and can also be used to construct a polynomial-time
algorithm for the partition function of the two-dimensional Ising model with zero external

field.

13

Despite major efforts to generalize these techniques, it does not appear that they can be
used to solve the monomer-dimer problem in the presence of monomers or the Ising model in
non-zero field, even in two dimensions. Similarly, the techniques rely critically on planarity
and do not appear to generalize to higher dimensional lattices. The first formalization of this
limitation came when Hammersley et al. [25] proved that there cannot be a straightforward
way of extending the above approach to even three-dimensional lattices.

1.2.2 Hardness

Computational complexity theory offers further evidence for the apparent hardness of these
problems. In 1979, Valiant defined the class #P to classify counting problems [64]. A
counting problem asking for the number of elements in a set &, representing configurations
on a graph G belongs to # P if there is a non-deterministic polynomial-time Turing machine
with input n and G such that the number of accepting computations is exactly |S,|, the
number of elements in §,,. Note that this is exactly the framework for the class NP; while
NP is the set of problems for which the non-deterministic machine decides whether an
accepting computation exists, # P is the class of problems for which the non-deterministic
machine counts how many accepting configurations exist (see [18] for a survey).

Fach of the computational problems from the previous section can be expressed as a
general graph theoretic problem. For instance, the problem #MATCHING(G,7) takes as
input a graph G and an integer ¢ and asks how many matchings of size ¢ exist. This problem
isin # P since we can construct a non-deterministic Turing machine which “guesses” a set of
edges of G' and then checks, in time polynomial in N (the number of vertices of G') whether
this is actually a valid configuration. Similarly, #SAW(G, 1, zg) takes as input a graph G,
and integer ¢ and a designated vertex zg and asks for the number ¢; of self-avoiding walks
of length ¢ starting at the vertex z¢. Finally, #ISING(G, ') takes as input a graph G and
asks how many configurations have a particular energy F. These problems are also in # P
since we can design a non-deterministic algorithm which guesses a candidate configuration
and then decides, in polynomial time, whether this configuration should be included in the
count.

The class # P has a subclass of complete problems which characterize, in a precise sense,
the hardest problems in the class. To formalize this we need the following definition. For any
two counting problems A and B, A is polynomial-time Turing reducible to B if there exists
a polynomial-time algorithm for A which uses B as a subroutine. Thus, if A is polynomial-
time reducible to B, then the existence of a polynomial-time algorithm for B implies that
one also exists for A. A problem B is # P-complete if every problem in # P is polynomial-
time reducible to B. Thus, showing that aeny # P-complete problem can be solved in
polynomial time would imply that there is a polynomial time algorithm for every problem
in #P. #P-completeness is regarded as strong evidence of intractability: exhibiting a
polynomial time algorithm for any # P-complete problem would provide efficient solutions
to many hard problems such as counting the number of satisfying assignments of a boolean
formula. Since it is expected that no polynomial-time algorithm can even decide whether
a satisfying assignment exists, it is even more unlikely that an efficient algorithm exists to
count the number of satisfying assignments.

Valiant showed that # MATCHING(G, ZV/Q), the problem of counting perfect match-

14

ings in a graph with N vertices, is # P-complete [64]. This helps explain why Fisher,
Kasteleyn and Temperley’s algorithm fails to generalize to all non-planar graphs. Further-
more, Jerrum showed that counting the total number of matchings (of all sizes) in a graph
is #P-complete, even when the graph is planar [32]. This gives evidence for why the Fisher,
Kasteleyn, Temperley algorithm does not easily generalize to counting matchings of arbi-
trary size. Similarly, consider the problem #SAW(G,N — 1,2¢) which asks us to count
self-avoiding walks of length N — 1 on a graph G with N vertices starting from xo. This
is just the problem of counting the number of Hamiltonian paths starting at zg, another
problem known to be #P-complete.

Of course we cannot claim that these # P-complete problems, which are hard when
given an arbitrary graph as input, remain hard when the input graph is restricted to be a
lattice. Nonetheless, these hardness results do suggest that any polynomial-time algorithm
to solve these problems must use properties of the lattice in a non-trivial manner. No
polynomial-time algorithm which does this is known. In fact, exploiting lattice properties
to design efficient algorithms has proven to be notoriously difficult.

While initially discouraging, the # P-completeness of many important combinatorial
problems has shifted focus towards designing efficient approzimation algorithms. An ap-
proximation algorithm uses randomization to produce a close estimate to the true answer
with high probability. Recently there has been much progress in the design and analysis of
efficient randomized algorithms for approximately counting. Approximation algorithms are
generally sufficient for combinatorial problems arising from statistical mechanics since we
are interested in studying the limiting behavior of quantities associated with the system,
and these algorithms allow us to approximate the true values to arbitrary precision.

1.3 Approximation algorithms

Approximation algorithms based on computer simulations of a random process have as-
sumed an important role for a wide range of combinatorial problems. The idea is as follows.
Let & be a large but finite set of combinatorial structures. Much information about § can
be gained by sampling elements of § according to an appropriate probability distribution 7.
For example, suppose that 7 is chosen to be the uniform distribution. At least intuitively,
sampling elements uniformly is useful for studying properties of a typical element of S. In
fact, sampling uniformly turns out to be a useful tool for approximate counting as well.

More formally, we will be interested in designing algorithms which meet the following
specifications. These are the standard definitions of approximation algorithms for counting
and sampling (see, for example, [39, 36, 59]).

Let S,, be the set of configurations of size n on a lattice G of size N (for example, S,
might be the set of self avoiding walks of length n on an N1/2 x Nl/Qlattice). Let a, be
the number of elements in S, .

Definition 1.3.1 A randomized approximation scheme for a, on a lattice G of size N is
a probabilistic algorithm which, on input n, G and €,6 € (0,1), outputs a number f(G,n)
such that Pr{a,(1+ ¢)™! < f(G,n) < a,(1+ €)} > 1 — 6. The approzimation scheme
s fully-polynomial, or an fpras, if it is guaranteed to run in time polynomial in N,e‘l

and log 67 1.

15

Definition 1.3.2 An almost uniform generator for S, on a lattice G of size N isa prob-
abilistic algorithm which, on input n, G and € € (0,1), outputs an element o of S, with
probability at least 1/q(1V) for a fized polynomial ¢, such that the conditional probability
distribution over elements of S, has variation distance* al most € from the uniform distri-
bution. The generator is fully-polynomial, or an fpaug, if it runs in time polynomial in N
and log e 1.

The parameter ¢ determines the accuracy required of the estimate, while § controls the
confidence level. A fully-polynomial randomized approximation scheme provides an efficient
means of numerically computing f, in the sense that its running time grows only slowly
(i.e., polynomially) with the lattice size N, the accuracy parameter ¢, and the confidence
parameter ¢. Similarly, a fully-polynomial almost uniform generator gives an eflicient means
for solving the sampling problem.

In the cases we are interested in, S, represents some exponentially large set of combina-
torial objects such as self-avoiding walks of length n, so naive methods based on exhaustive
enumeration are infeasible. Instead we will focus on designing an efficient solution to the
corresponding sampling problem and then show how this will provide a tool for solving the
counting problem.

Suppose we want to sample from &, according to some distribution 7. The standard
approach is to simulate a Markov chain whose state space I' includes §,. At each point
in time ¢ we visit a combinatorial structure s € I'. In the next time step, we move to a
(possibly) new structure by performing some random local perturbation to the structure s.

For example, let §,, is the set of self-avoiding walks of length n and suppose we want
to sample a walk in &, uniformly. We can let I' be the set of self-avoiding walks of length
at most n, and choose a distribution 7’ on I' such that the conditional probability of =’
on &, is the uniform distribution. To simulate the Markov chain we start at the empty
walk wg. At any point in time, if we are currently at a self-avoiding walk w, then at the
next step we move, with some appropriately chosen probability, to a walk w’ € T' which
differs from w by at most one edge. After iterating this process for a sufficient number of
steps i, we examine the walk w;. If w; € §,,, then we output it; otherwise we start again.
In order for this method to satisfy the requirements of a fully-polynomial almost uniform
generator (see definition 1.3.1), the final distribution from which we are sampling must be
reasonably well concentrated on &, (so that one gets a valid sample quite often), and the
Markov chain must converge rapidly to its stationary distribution (so that the number of
simulation steps required is not too large).

Guaranteeing all of these conditions for a particular Markov chain can be difficult. Al-
ready Monte Carlo algorithms based on Markov chains appearing to satisfy these properties
are used extensively in the physical sciences. These simulations have provided great insight
into the asymptotic behavior of physical systems, but they are often nonrigorous. The most
common difficulty arises from not knowing how long to simulate the Markov chain. A sam-
ple taken after simulating the Markov chain for too few steps might be chosen according to
an unknown distribution which is quite far from the stationary distribution. Consequently,

*The variation distance measures the distance between two distributions v;, v2 over S, and is defined
as |[v1 — 2| = %Eses |v1(s) — va(s)| = maxacs |v1(A) — va(A)|.

16

statistics inferred from such samples might appear to have similar properties to those be-
ing tested and yet the results would in fact say nothing about the true distribution being
studied. Therefore it is necessary to rigorously show that the Markov chain has the desired
properties and is simulated a sufficient number of steps.

1.3.1 Markov chains

All of the Markov chains we will be using are variants of the Metropolis algorithm discovered
in 1953 [49]. We will review some of the concepts of Markov chains in the context of this
algorithm. Again, assume we have a set § from which we want to sample according to a
distribution 7. We define the Markov chain on a possibly larger state space I' containing
S. First we choose a graph H underlying the Markov chain whose vertices are the states
in I'. Every element ¢ € I' has a small number d < d of neighbors in H. Furthermore,
assume that for any edge (¢,7) in H, we have an “acceptance probability” A(7,7) € (0,1].

The Markov chain is designed so that if we take a random walk along the edges of
H according to the transition probabilities starting at any state, then we will eventually
converge to a stationary (or equilibrium) distribution 7’ over the state space I'. We choose
the graph H and the transition probabilities A so that the stationary probability of being
in § C T is not too small, and so that the conditional probability 7'(s)/7’(5) of being at
any particular state s € S is 7(s). If we know the stationary distribution in advance, then
by simulating the Markov chain for sufficiently many steps, we can sample according to this
distribution.

We always choose the graph H so that it is connected; i.e., it is possible to get from any
state of the Markov chain to any other state; such a Markov chain is called irreducible. If,
in addition, we know that there is a time ¢ when it has positive probability of being at each
state, then the chain is aperiodic. A Markov chain with both of these properties is ergodic
and there is a unique stationary distribution 7’ to which the Markov chain converges.

The transition probabilities are defined as follows. Starting at an arbitrary point ¢ € §
we perform the following steps:

(i) Choose a random neighbor j of ¢, each with probability 1/(1?
(ii) Move to j with probability A(%,j); otherwise stay at 1.

Then the transition probabilities are represented by a matrix P where

Pi,7) = Ali,7)/d,

if © # 7, and
P(ii) = 1= A(i,j)/d.
J#i
In the Metropolis algorithm we define A(4,7) = min(1,7(5)/x'(¢)). It is then easy to
verify that P(¢,7) satisfies the detailed balance equation

® ()P0, 5) = ()P,). (1.4)

Informally, the detailed balance equation says that at stationarity the Markov chain is
equally likely to move from 7 to j as the other way around. A Markov chain which satisfies

17

this condition for all states ¢ and j is called reversible, and «’ is the unique stationary
distribution to which the Markov chain converges, starting at any initial state. All the
Markov chains we will be using are reversible.

This framework lets us design Markov chains which will eventually converge to a par-
ticular conditional distribution 7 on our state space §. For this to be useful for efficiently
sampling according to 7, we need to bound the rate of convergence. This property is called
the mizing rate of the Markov chain. Since the state space is typically exponentially large
(in the description of the combinatorial problems we are using it for), we need a strong con-
dition which says that after only a polynomial number of steps we are close to stationarity.
This is called rapid mizing and can be characterized by the expansion properties or conduc-
tance of the graph underlying the Markov chain [59, 34]. We will explain this connection in
greater detail in section 3.2.2.

1.4 Summary

The remainder of this thesis is divided into two chapters. The first chapter addresses the
monomer-dimer problem. We show that there is a fully-polynomial randomized approxima-
tion scheme for counting the number of matchings of any cardinality on any periodic finite
lattice (or, more generally, any Cayley graph.) A periodic lattice includes “wrap-around”
edges which make the lattice into a torus. These results also extend to counting matchings
on non-periodic planar lattices. This gives an approximation algorithm which solves the
monomer-dimer problem in exactly the two cases where the Fisher, Kasteleyn, Temperley
algorithm fails: namely, counting matchings of arbitrary size, and counting matchings on
non-planar lattices. These results are based on an approximation algorithm due to Jerrum
and Sinclair [34] and Broder [7]. In each of these cases we also present an almost uniform
generator for the corresponding sampling problems. This chapter is based on work with
Claire Kenyon and Alistair Sinclair [43].

In chapter 3 we address the problem of counting self-avoiding walks in lattices. We
present a “testable algorithm” to solve this problem. We introduce the notion of a testable
algorithm to describe an eflicient algorithm whose correctness is based on a conjecture
which the algorithm systematically verifies. The algorithm either discovers a counterexam-
ple to the conjecture or produces numerical answers which are correct with high probability.
Therefore, any outputs produced by the algorithm are correct. We design such an algo-
rithm for counting and generating self-avoiding walks in any finite rectangular lattice in
arbitrary dimension. The algorithm relies on a single conjecture which is widely accepted
in the physics community. Consequently, we expect that the algorithm will always output
correct numerical outputs; on the other hand, should the algorithm find that the conjecture
is incorrect, this would have interesting implications as well. These are the first algorithms
for counting and generating self-avoiding walks where the error bounds are rigorously con-
trolled. These results are based on work with Alistair Sinclair [54]. An optimized version of
the algorithm was implemented by Rob Pike yielding numerical estimates for the number
of self-avoiding walks in 2 and 3 dimensions; these estimates are presented in section 3.5.

18

Chapter 2

Matchings

2.1 Introduction

2.1.1 Historical background

The first problem we consider is the monomer-dimer problem, in which the sites of a regular
lattice are covered by a non-overlapping arrangement of monomers (molecules occupying
one site) and dimers (molecules occupying two sites that are neighbors in the lattice). For
a given monomer-dimer arrangement with d dimers and N — 2d monomers on a lattice of
size N, the dimer densily is defined as 2d/N. We are interested in counting the number
of monomer-dimer arrangements with any fixed density. In this section we present some of
the highlights in the history of this problem. For further information see, e.g., [30, 42, 66]
and the references given there.

The monomer-dimer problem gained prominence in 1937 through the early paper of
Fowler and Rushbrooke [17]. A breakthrough was achieved in 1961, when, independently,
Fisher, Kasteleyn and Temperley provided an analytic solution for the case of dimer cover-
ings (i.e., arrangements with dimer density 1) on a two-dimensional rectangular lattice [15,
40, 63]. The key idea is to express the number of dimer coverings as a Pfaffian, which in
turn can be evaluated as the square root of an associated determinant. These calculations
give precise asymptotics for f(n), the number of dimer coverings of an n x n rectangular
lattice (with n even); specifically,

,
%ln f(n) — Xas n — oo, where A = lz (_71)2 = 0.29156...
n TS (2r+1)
Moreover, since the problem is reduced to evaluation of a determinant, the quantity f(n)
can be computed numerically for any value of n in an efficient manner. In fact, this
technique is more general and allows the number of dimer coverings of any planar graph
(or indeed of any family of graphs with fixed genus) to be computed efficiently [41].
Unfortunately, these methods do not extend to two-dimensional lattices with dimer den-
sity less than 1, or to lattices in higher dimensions even when the dimer density remains 1.
In fact, the three-dimensional dimer covering problem, which asks for the number, f(n), of
ways of filling an n X n X n rectangular lattice with dimers, is one of the classical unsolved
problems of solid-state chemistry. A few facts are known: for example, In(f(n))/n> tends

19

to a finite limit A as n tends to infinity [21]. Hammersley [22] proved the lower bound
A > 0.418347, while the early paper by Fowler and Rushbrooke [17] showed the upper
bound A < 0.54931. It has been conjectured that A lies between 0.43 and 0.45. In other
work, Bhattacharjee et al [4] studied the phase transition behavior of the three-dimensional
model. However, no reliable method is known for computing f(n) to good accuracy. A
similar lack of rigorous results holds for the problem at dimer densities less than 1, even
in two dimensions. Notable exceptions are series expansions valid at low densities [19] and
lower bounds on the free energy [6, 26].

2.1.2 Results

We make progress on the monomer-dimer problem in cases where the technique of Fisher,
Kasteleyn and Temperley fails. Specifically, we give a polynomial-time algorithm for com-
puting, to arbitrary precision, the number of coverings of a rectangular lattice in any di-
mension with any specified dimer density.

More precisely, for a fixed dimension d, let G be the d-dimensional rectangular lattice
[1,...,n]¢ (with periodic boundary conditions). We let f(G,s) denote the number of
coverings of G by s dimers and 2% — 2s monomers. Our main result is a fully-polynomial
randomized approximation scheme (see definition 1.3.1) for computing the function f(G,s)
above for rectangular lattices of any dimension d. This extends previous computational
techniques in two ways. First, it enables one to compute the number of dimer coverings in
lattices in three and higher dimensions. And second, it enables one to count coverings with
dimer density less than 1, a problem that was not approachable by the methods of Fisher,
Kasteleyn and Temperley even in two dimensions.

Our algorithm provides a feasible approach to numerical computation of quantities such
as f(n), the number of dimer coverings of an n X n X n rectangular lattice in three dimen-
sions. This is apparently the first such method whose running time provably grows only
polynomially with n. We should, however, inject three caveats here. First, the running
time of the algorithm, though polynomial, is not small enough to be genuinely practical;
nonetheless, it is quite likely that careful honing of the algorithm and its analysis will lead
to a practical method. Secondly, the algorithm provides only statistical estimates of f,
rather than precise values; we stress, however, that the error bars on these estimates can be
made arbitrarily small, and, in contrast to previous Monte Carlo approximation methods,
are completely rigorous and require no assumptions of any kind. Thirdly, although the
algorithm allows f(n) to be computed efficiently for each n, we do not provide bounds on
the time required to compute the asymptotics of f(n) as n tends to infinity, and therefore
the entropy A. This would require, in addition, bounds on the rate of convergence of the

series In(f(n))/n.

The above result holds for lattices with periodic boundary conditions (i.e., the edges of
the lattice are “wrapped around” to make it toroidal). In the two-dimensional case, our
method extends to lattices with fized boundaries: i.e., we again get a fpras for computing
the number of coverings with any specified dimer density. This result again goes beyond
the technique of Fisher, Kasteleyn and Temperley for planar graphs, which holds only for

20

dimer density 1.*

Finally, we can extend the above results to a broader class of lattices. Specifically, we
get a fpras for counting coverings, with any specified dimer density, of any bipartite graph
that is the Cayley graph of some finite group. This includes other commonly studied lattices
such as the hexagonal lattice with periodic boundary conditions.t

2.1.3 Overview of the algorithm

The algorithms mentioned above are all based on a Monte Carlo procedure due to Jerrum
and Sinclair [34] and Broder [7], for approximating the number of matchings in a graph.
A matching in a 2m-vertex graph G = (V, E) is any subset M of the edge set £ such
that no two edges in M have a common endpoint. Clearly, matchings of cardinality s
correspond precisely to monomer-dimer arrangements in G with s dimers and 2(m — s)
monomers. The classical monomer-dimer problem discussed in the previous two subsections
is the special case in which G is the d-dimensional rectangular lattice [1,.. ., n]? for some d.

Let us now associate with each matching M in G a weight w(M) = p™M| where |M|
denotes the cardinality of matching M and p is a positive real number. Recall that the
monomer-dimer partition function (or generating function) of G is

Z(Gip) = Y w(M) = iaslf’,

M

where the coefficient a, is the number of matchings in G of cardinality s (see equation
(1.3)). Thus, in the monomer-dimer problem on G, we are trying to compute the coeffi-
cients ag for various values of s.

The Monte Carlo method described in [34] simulates a Metropolis-style Markov chain
whose state space is the set of matchings in G' (see section 1.3.1). The stationary distribution
of the Markov chain is

M) = p!Ml
i Z(G;p)
The stationary probability of a matching M is proportional to its weight, and the normal-
izing factor is just the partition function.

Transitions correspond to local random perturbations such as the addition, deletion
or exchange of an edge of the matching. More precisely, suppose we are at a state M (a
matching in G'). The graph H underlying the Markov chain is defined so that each state M

*If the number of monomers is some fixed constant 2c¢ (so that the dimer density tends to 1 as n — oo)
then the Fisher, Kasteleyn and Temperley technique can in principle be used, as follows. For each possible
set of 2¢ positions for the monomers, use the technique to count dimer coverings in the graph formed by
removing these sites from the lattice: this works because the graph remains planar. Now sum over all possible
positions for the monomers. However, this approach no longer runs in polynomial time if ¢ is allowed to
grow with n, and is inefficient even for quite small fixed values of c.

T An analytic solution to the dimer covering problem for this planar lattice has been known for some time
[65, 41]. In contrast to the rectangular lattice, the assumption of periodic boundary conditions is important
here: Elser [14] has solved the dimer covering problem on a hexagonal lattice with fixed boundaries, and
shown that the result depends significantly on the shape of the boundary.

21

has at most | E| neighbors, where |E| is the number of edges in . To move to a new state,
we first randomly choose an edge from the graph G. Either the edge e corresponds to a
new state M’ (in a manner to be described), in which case we move to M’ with probability
A(M,M'"); otherwise we remain at M. When g < 1 the transitions of the Markov chain
are as follows.}

(i) if e € M, move to the state M' = M —e (ie.,, A(M,M") =1).

(ii) if exactly one of the vertices w or v is matched by an edge ¢’ € M, move to
the state M' = M —¢e' +e (e, A(M,M') = 1).

(iii) if neither endpoint of e is matched in M, move to the state M’ = M + e with
probability A(M,M'") = u.

(iv) in all other cases do nothing.

This Markov chain is ergodic and reversible, and from the detailed balance equation (1.4)
it is easy to see that the unique stationary distribution is 7. The case defined above for
¢ < 1 is of greater physical interest, but for computation purposes it is also useful to define
the Markov chain for g > 1. The Markov chain has the same underlying graph H, so a
matching M has the same set of neighbors as the Markov chain defined above. The new
transition probabilities are defined as A(M,M') = 1/p if M’ is formed by removing an
edge from M, and A(M,M') = 1 if M’ is formed by adding or exchanging an edge. Again
from the detailed balance equation it follows that the stationary distribution is w.

The algorithm works by observing this process at equilibrium for various values of p.
By running a series of experiments, using suitable values of u, we can estimate the succes-
sive ratios of coefficients a;/a;_y. If our estimates are sufficiently good, then appropriate
products of these estimates would yield an estimate for each of the coefficients a;. For the
details of the algorithm, see [34].

The dominant factor in the running time of this algorithm is the number of steps that
need to be simulated in order for the Markov chain to reach equilibrium for the values of p
needed in the above experiments. This quantity is analyzed rigorously in [34] and shown to
be a polynomial function of the ratio a(G) = a@y,—1/am , specifically O(a(G)*| E|*). (This
has since been improved to O(a(G)?*|V||E|); see [58].) The Monte Carlo procedure will
therefore be efficient for graphs (¢ in which the ratio (@) is small.?

Matchings in G of cardinality m are called perfect matchings, and those of cardinal-
ity m — 1 are called near-perfect matchings: these correspond respectively to dimer cover-
ings and coverings with precisely two monomers. The ratio a(G) measures the amount by
which the number of near-perfect matchings in GG exceeds the number of perfect matchings.

!The transition probabilities of the actual Markov chain described in [34] are a slight variant of these
where we allow self-loops at each state to ensure aperiodicity.

In [34, 59] it is shown that the same approach yields a fpras for the partition function Z — though
not for all its coefficients — in an arbitrary graph, regardless of the value of a(G). Moreover, it is also
possible to obtain all the coefficients a, with s < (1 — §)m, in time polynomial in m'/1=¢) This enables
one to approximately count the number of coverings with fixed dimer density p = 1 — £, for £ > 0, but the

running time grows exponentially with p~'.

22

Note that this ratio is always at least m, since the removal of any edge from a perfect
matching yields a unique near-perfect matching. For an efficient algorithm, we want the
ratio to be not too much larger than m: specifically, for a fpras it must be bounded above
by a polynomial function of m for the family of graphs in question. Note that this is not
a trivial property: it is not hard to construct a family of 2m-vertex graphs, m = 1,2,...,
for which the ratio grows exponentially with m. We will discuss this issue in more detail
in section 2.4.

Our main technical contribution is to prove that the ratio is small for lattices and, more
generally, for arbitrary Cayley graphs. Specifically, we show that if G is the d-dimensional
rectangular lattice [1,...,n]? with periodic boundary conditions (so that m = %nd), then
a(G) < m* = In?. This ensures that the Monte Carlo algorithm is in fact a fpras: i.e., its
running time grows only polynomially with n for any fixed dimension d. A similar bound
holds for arbitrary Cayley graphs. We stress that our Monte Carlo algorithm differs from
earlier ones for monomer-dimer systems (see, e.g., [23]) in that it is guaranteed (independent
of any heuristic arguments) to provide statistically reliable estimates in a running time that
grows only polynomially with the number of lattice sites.

Our proofs of the above bound for lattices and Cayley graphs, presented in the next two
sections, are elementary and rely on a novel “translation” technique: the strong symmetry
properties of the lattice (and of arbitrary Cayley graphs) allow any matching (monomer-
dimer configuration) to be translated, which in turn permits the symmetry to be broken. We
conjecture that this technique may shed more light on other quantities related to monomer-
dimer systems, and in particular the correlation between monomers at two specified sites,
as studied in two dimensions by Fisher and Stephenson [16].

The remainder of the chapter is organized as follows. In the next section, we prove
bounds of the above form for rectangular lattices with periodic boundary conditions in any
dimension, and with fixed boundaries in two dimensions. In section 2.3 we extend our
technique to handle arbitrary Cayley graphs. Finally, in section 2.4 we conclude with some
further remarks on the physical and combinatorial significance of the above ratio, together
with some open problems.

2.2 Rectangular Lattices

We begin by introducing some definitions and notation concerning lattices. We will be
interested in two classes of lattices: the first class are those with fized boundary conditions, in
which the lattice is not perfectly regular but has distinguished boundary vertices. Thus, we
consider the d-dimensional rectangular (or cartesian) lattice L(n,d), where the vertices are
the n? integer lattice points in [1,7n]¢, and two points x,y are connected by an edge iff they
are unit distance apart. The second class is lattices with periodic boundary conditions, in
which the lattice includes wrap-around edges to make it toroidal; that is, we augment L(n,d)
with an edge between (z1,...,%;—1,7,%it1,...,24) and (@1,...,2i—1,1,&i41,...,24), for
each i. We will write L(n,d) for the periodic lattice.

We shall adopt the terminology of graphs and matchings introduced in section 2.1.3.
We view L(n,d) and i(n, d) as graphs with 2m = n? vertices, and we always assume that
n is even, so that both L(n,d) and L(n,d) contain a perfect matching (dimer covering).
For any 2m-vertex graph, we let M be the set of perfect matchings and N the set of

23

near-perfect matchings (monomer-dimer coverings with exactly two monomers). In any
matching (monomer-dimer covering), we refer to the set of unmatched vertices in the graph
as holes, and we write N(u,v) for the set of near-perfect matchings with holes u and v.
All the graphs we consider will be bipartite, with m vertices on each side of the bipartition.
It will sometimes be convenient to view the vertices on one side of the bipartition as being
colored white, and those on the other side black. (In the case of the two-dimensional lattice,
this coloring corresponds to the usual black and white coloring of the checker-board squares
which form the dual graph.) Note that in any near-perfect matching, one hole is white and
the other black.

Recall from the previous section that our aim is to construct efficient approximation
algorithms for the number of monomer-dimer coverings of various lattice graphs with any
specified number of dimers. As indicated earlier, all our algorithms are based on an earlier
result of Jerrum and Sinclair about counting matchings in a graph subject to a certain
condition on the graph. We now state this result precisely. Recall that, for a 2m-vertex
graph G, the quantity a(G) = |N|/|M| is defined to be the ratio of the number of near-
perfect matchings to the number of perfect matchings in G'.

Theorem 2.2.1 (Jerrum and Sinclair [34, Theorem 5.3]) There exists a fpras for the num-
ber of perfect matchings in any family of 2m-vertex graphs G that satisfies a(G) < q(m),
for a fized polynomial q. O

The remark following this result in [34] points out that this polynomial relationship between
the numbers of near-perfect and perfect matchings also allows one to construct a fpras for
counting matchings of arbitrary cardinality in G'.

We now proceed to prove that such a relationship does in fact hold for families of lattice
graphs, and (in the next section) for more general Cayley graphs. The technique that we
use in our proofs relies on the structure of the union of two matchings in a graph. Consider
the subgraph C' consisting of the union of the edges in two perfect matchings M; and M.
If we color the edges from M; red and those from M; blue, we find that every vertex is
adjacent to exactly one red edge and one blue edge, so C' is the union of even-length cycles,
each of which alternates colors. (Some of these cycles may be trivial, consisting of a single
edge colored both red and blue.) Clearly the converse is also true, i.e., any covering of the
graph with even-length cycles which alternate colors defines two perfect matchings: the set
of red edges and the set of blue edges.

Similarly, suppose we have two near-perfect matchings, Ny with holes u and v, and Ny
with holes «' and v', where u,u’,v and v’ are distinct vertices. Then in the subgraph C
defined by the union of the red edges Ny and the blue edges Ny, vertices w,u’,v and o’
all have degree one and all other vertices have degree two. So C consists of even-length
alternating cycles, plus two alternating paths whose endpoints are u, ', v and v'. Moreover,
either both of these paths have even length or both have odd length. See figure 2.1.

Our proofs rely on the observation that, if «’ is a neighbor of w and v is a neighbor
of v, then by augmenting C' with edges (u,u’) and (v, '), we can ensure that every vertex
has degree two. When the graph is bipartite, the resulting subgraph must consist solely of
even-length cycles, and therefore the cycle containing u and «' must also contain v and v’.
By recoloring some of the edges on this new cycle, we can force it to alternate colors so that

24

Py ey

*——e e0ed——@eooe

SeSe BN snuh & R

1l 1L iy

Figure 2.1: The union of two near-perfect matchings.

the cycle cover defines two perfect matchings. We use this observation to define a mapping
from the set of pairs N (u,v) x N(u',v") to the set of pairs M x M that is injective, which
in turn, by virtue of the symmetry properties of the lattice, implies that |[A| is not much
larger than |M]|.

We are now in a position to state our first result.

Theorem 2.2.2 For the d-dimensional periodic lattice L(n,d), the ratio a(L(n,d)) is
bounded above by n*? /4.

Before proving this theorem, we combine it with Theorem 2.2.1 to obtain the following
immediate corollary.

Corollary 2.2.3 There exists a fpras for the number of monomer-dimer coverings with
any specified number of dimers in the d-dimensional periodic lattice L(n,d), for any fived
dimension d.

Proof of Theorem 2.2.2. Let M and N be the sets of perfect and near-perfect matchings
respectively in L(n,d), so that a(L(n,d)) = |N|/|M|. First we fix two holes, u and v.
Let u' be the neighbor one to the right of w, ie., ' = v+ (1,0,...,0) mod n. Similarly,
let v’ be the neighbor one to the right of v.

We proceed to construct an injection ¢ from N(u,v) x N(u/,v") into M x M. To do
this, let Ny € AN(u,v) and Ny € N(u',v'), and consider the subgraph C of L(n,d) defined
by the union of red edges Nj, blue edges N, and special edges (u,u’) and (v,v"). If we
color the special edges red, then u’ and v’ are each adjacent to two red edges, and every
other vertex is adjacent to one edge of each color; if we now flip the colors of the edges
along one of the paths from u' to v’, every vertex will be adjacent to exactly one edge
of each color. To avoid ambiguity, we choose the path from u’ to v’ which does not pass
through w. As we saw earlier, the sets of colored edges now define two perfect matchings.
See figure 2.2.

We need to check that this map ¢ is injective: given any pair of perfect matchings
(M, M3) in the image of the map, we show that we can uniquely reconstruct the pair of
near-perfect matchings, one with holes « and v and the other with holes «’ and ', that
are mapped by ¢ to (My, M;3). Note that the union of any pair of matchings in the image
of ¢ always contains an alternating cycle that includes the edges (u,u') and (v,v"). Now

25

, ¢)
d‘——f Lo) Lo) —> @u—@u [) [)
e IS o3

Figure 2.2: Mapping two near-perfect matchings to two perfect matchings.

color the edges of the matching containing (u,u’) red, and the edges of the other matching
blue. By flipping the colors of the edges along the path from «’ to v/ (again choosing the
path which avoids u, for consistency), we make u' adjacent to two red edges. Since u' and
v" are the holes of some near-perfect matching, they lie on opposite sides of the bipartition
and any path between them must have odd length. Therefore, after the flipping operation
v must be adjacent to two red edges as well, while all other vertices are still adjacent to
one edge of each color. If we now remove the edges (u,u’) and (v,v’), the colored edges
must correspond to the two near-perfect matchings that are mapped by ¢ to (My, Ms).
The above construction demonstrates that |A(u,v)|- |A(u',v")] < |M]|?. To finish the
proof, we use the structure of the lattice i(n,d): in a periodic lattice, the operation of
shifting a matching one position to the right is a bijection between the sets A (u,v) and
N, v"), so [N(u,v)| = [N(u',v")]. Thus the above relationship gives |V (u,v)|? < [M]?,
which implies |V (u,v)| < |[M]|. Summing over all choices of a black vertex u and a white
vertex v, we find that |A| < n2?|M|/4, so that a(L(n,d)) < n**/4, as claimed. O

Remark. It should be clear from the above proof that Theorem 2.2.2 (and hence Corol-
lary 2.2.3) generalizes to “hybrid” lattices that have fixed boundary conditions in some
dimensions provided there exists at least one dimension in which the lattice has periodic
boundary conditions. It also holds in more general bipartite rectangular lattices of size
n1 X ng X ... X ng with periodic boundary conditions (i.e., for any dimension ¢ in which the
boundary is periodic, n; must be even). O

The following theorem extends the above technique to handle two-dimensional lattices
with fized boundaries. We again show that in these lattices the number of near-perfect
matchings cannot be too large compared to the number of perfect matchings, and then
appeal to Theorem 2.2.1.

Theorem 2.2.4 For the two-dimensional lallice with fized boundaries L(n,2), the ratio
a(L(n,d)) is bounded above by n*/4.

Corollary 2.2.5 There exists a fpras for the number of monomer-dimer coverings with
any specified number of dimers in the two-dimensional lattice with fized boundaries L(n,2).
0

26

Proof of Theorem 2.2.4. We will prove the theorem for the slightly more general case
of ny X ng lattices with fixed boundaries, where ny is even. Let 7 be a map which shifts
the lattice L(n,2) one position to the right in Z?; that is, for a vertex w = (wy,ws),
define 7(w) = (wy 4+ 1,wz). This map extends to matchings in the natural way: if N is a
matching, then 7(N) € [2,n1 + 1] X [1,ng] is just: (7(z),7(y)) € 7(N) iff (z,y) € N.

Let M and N be the sets of perfect and near-perfect matchings respectively in the
lattice L(n,2). As in the last proof, we will fix holes u and v and show that [N (u,v)| <
IM|. We again define an injection ¢ : N(w,v) X N(u,v) — M x M as follows. Let
N1, Ny € N(u,v) be two near-perfect matchings. Consider the subgraph C obtained by
taking the union of N; with a shifted version of N; and adding the two special edges as
before, i.e., C' = Ny UT(N2) U {(u,v),(v,v")}, where v’ = 7(u) and v’ = 7(v). Then all
the vertices in the leftmost column 1 and the rightmost column n 4 1 have degree one in C',
and all other vertices have degree two. Thus C' is the union of even-length cycles and paths
with each endpoint in either the first or (n + 1)st column (see figure 2.3). Color the edges
from N red and the edges from Nj blue.

-@—i

[—

&—e ¢
G® b @@

g

é
C—e@ - —o
@ © o—o--®
1 n n+1

Figure 2.3: Union of Ny and 7(Na3).

We will argue that, because the two-dimensional lattice is planar, any path or cycle
which passes through u and u' must also pass through v and »'. This is immediate if u
and u’ lie on a cycle, so we focus on the case where u and u’ lie on a path. The proof is
by contradiction, and there are two cases to consider (see figure 2.4).

First, suppose that we have a path P from the first column to the (n + 1)st column
which passes through « and u', and not through v and »'. Without loss of generality we
can assume that v and v’ lie below P. Then P starts with a red edge, ends with a blue
edge, and has one special edge, so it has odd length. It follows that if P starts at a black
vertex then it ends at a white vertex, and conversely. Therefore, the number of vertices in
the first column above P has opposite parity to the number of vertices in the (n + 1)st
column above P. (Since n is even, corresponding vertices in each of these columns fall on
the same side of the black-and-white bipartition.) But consider the set of all vertices that
lie above the path P. There must be an even number of these vertices lying in the first
through nth columns, since these vertices are matched in Ny, and an even number lying
in the second through (n + 1)st columns, since these vertices are matched in N;. This is a
contradiction.

27

De2
[]
L

o=
o=
o=

1 n+1 1 n+1

Figure 2.4: Proof of Theorem 2.2.4.

Second, suppose that P, the path going through u and u’, starts and ends in the first
column. By interchanging the roles of w,u’ and v, v’ if necessary, we may assume without
loss of generality that » and v’ lie outside the cycle defined by the path P and the first
column. Now P starts and ends with a red edge and has one special edge, so it must have
even length. If it starts at a black vertex it ends at a black vertex, and conversely, so there
are an odd number of vertices in the first column that lie between these endpoints. Let 5
be the set of points that lie strictly inside the path P. Then |S| must be even since Ny
matches all the vertices in 5. But Ny matches all the vertices in S except those which lie
in the first column, a contradiction since this number is odd.

Therefore we can conclude that u,u’,v,v" all lie on the same even-length cycle or the
same path. In either case we can proceed as in the proof of Theorem 2.2.2: color the special
edges red and then flip the colors of the edges along the path between u' and o' (in the
case of a cycle, where this is ambiguous, we always choose the path which does not pass
through w). The sets of colored edges then define two perfect matchings M; and 7(M3).

Furthermore, given any two matchings in the image of the map ¢ we can uniquely
reconstruct the pair of near-perfect matchings which are their preimage, so ¢ is injective.
To see this, note that any element in the image of ¢ consists of two perfect matchings
My and Mj; such that M; U 7(M3) contains a cycle or path which passes through all of
u,u’,v,v', and from here we can reconstruct Ny with holes w and v and 7(N3) with holes
u’ and v’ by reversing the color flipping operation as in the proof of Theorem 2.2.2. Thus
we have |N(u,v)| < |M|. Summing over choices of u and v, we get |[N| < ninZ|M|/4,
which yields the required bound on a(G). O

2.3 Other Lattices

2.3.1 Bipartite Cayley graphs

The following theorem extends the techniques from the last section to handle other lattices.
More precisely, we can, in polynomial time, approximately count the number of monomer-
dimer coverings with any specified number of dimers in any 2m-vertex bipartite graph
which is the Cayley graph of some finite group.

28

Recall that the Cayley graph of a group G with a given set of generators is defined by
identifying vertices with words in G and connecting vertices and y by an edge in the graph
if, for some generator a of G, xa = y. This class of graphs includes any finite hexagonal
lattice which has periodic boundaries around some fundamental domain. One group which
generates this lattice is (a,b,c | a?,b2, c?, (abc)?, (ab)', (be)?, (ca)), for any integer i, where
@, b and ¢ are the generators and the words which follow are relators equivalent to the
identity in the group. See figure 2.5.

Figure 2.5: Proof of Theorem 2.3.1 for the hexagonal lattice
(a,b,c|a® b ¢ (abe)?, (ab)?, (be)*, (ca)?)

Theorem 2.3.1 Let G be a 2m-vertex bipartite graph which is the Cayley graph of a finite
group. Then a(G) < m?.

Note that this theorem, applied to the Cayley graph I}(n,d), yields precisely the same
bound on a as Theorem 2.2.2.

Corollary 2.3.2 There exists a fpras for the number of monomer-dimer coverings with any
specified number of dimers in any bipartile graph which is the Cayley graph of a finite group.
0

Proof of Theorem 2.3.1. Given a group G, we consider its Cayley graph, which we
assume to be bipartite. Choose a vertex and label it with e, the identity element of G'.
This determines a label in G for every vertex in the graph, corresponding to the product
of the labels along any path leading to it from the identity vertex.

Fix a pair of holes u and v in the graph. Let «' = wua be the neighbor of u defined
by some fixed generator a. Let ¢ = wvu'~! be the word in G which maps u' to v by
multiplication on the left. Then, since group multiplication on the left preserves adjacency
in G, ou is a neighbor of v. Moreover, since the group is finite, there exists some k such

29

that o® = e. We will show that |A(u,v)| < |M]| by exhibiting an injection ¢ from the
cartesian product [[%, [M(0*~1u, o'~ 10)] into M*.

We define the map ¢ in k — 1 stages. Let N; € N(Lu, 0t~), for 1 < i <k, be
a set of near-perfect matchings. Stage one maps the pair (Nl,Ng) into (My, N}), where
M, is a perfect matching and N} is an “auxiliary” near-perfect matching. In stage j, for
2 < j < k-2, wemap the pair (N}, N;y1) into (M;, N/, ,), where N} is the auxiliary
near-perfect matching from the previous stage. The (k — 1)st stage maps (N]_, Ni) into
the final pair of perfect matchings (Myg_1, My).

In the first stage we consider the subgraph C; = Ny U Ny U {(ou,v)}. We color the
edges from Ny U {(cu,v)} red and those from N, blue. Then all vertices have degree two
except u and owv, each of which has degree one, and v is the only vertex that has two edges
of the same color incident to it. By flipping the colors of the edges along the portion of the
path from v to ov, we can force the path from u to ov to have alternating colors. Because
the graph is bipartite, the two vertices of degree one, u and ov, will both be adjacent to a
blue edge. Then the blue edges form a perfect matching, M;, and the red edges form the
first auxiliary near-perfect matching, NJ, with holes v and owv.

Beginning the jth stage in this mapping, we have already mapped
[TE, V(o tu, 0" 10)] into MI~1 x N(u, 077) x Hf:j-u [(N(o" " u, 0")], Stage j
itself will consist of an injection from N (u,0’"'v) x N(0?u,07v) into M x N(u,0?v). In
particular, we will map the pair (N7, N;41) to (M;, Ni,,), as follows.

If we consider the subgraph C; = N/ U N;yi U {(07u,07" v)}, we get an odd-length
path from u to o/v. By flipping the colors of the edges along the portion of the path from
o' v to U]v,_we get a perfect matching, M;, and a near-perfect matching, N]_H7 with
holes u and o’v.

At the (k — 1)st stage the mapping terminates. Here, we are mapping N, ; €
N(u,0%2v) and N € N(cFtu,0* 1v). But v = ou', so o 1o = ofu/ = o/, since
% is the group identity. Therefore, the subgraph N} |, U Ni U {(c* tu,0*=2v), (u,u')}
consists only of even-length cycles. By flipping colors along one of the paths from o*~2v
to u' (choosing the path which passes through «, to avoid ambiguity), we get even cycles
with alternating colors: again this follows because the Cayley graph is bipartite. The two

sets of colored edges now define the final two perfect matchings My_; and M.

Given the labels of the holes v and v, the vertex «' = wua is uniquely determined, as is
the word o = vu/~! and its inverse. We can then invert the map ¢ by working backwards
in stages, each stage being similar to the proof of Theorem 2.2.2. This shows that ¢ is
injective, and therefore [, |V (0" u, o'~ 0)| < |M|".

The last step is to see that, for any word o, translation by o' is a bijection between
matchings A'(u,v) and matchings N (c'u, o'v). More precisely, we extend o' to matchings
by defining (o'z,o'y) € o(N) iff (z,y) € N, where N € N(u,v). This is valid since
if ¢ and y are nelghbors in the Cayley graph then there is some generator b such that
y = xb, so o'x and o'y = o'zb are also neighbors. And, since u and v are unmatched
in N, o'u and o'v are the unmatched vertices in ¢'(N), so o'(N) € N(co*u,o'v). Thus
N (u,v)| = |N(c'u,a'v)| for any i. Combining this with the fact that ¢ is injective, we see
that [A(u,v)* < |M]|*, and hence |N(u,v)| < |M]. Since G has 2m vertices, summing
over u and v gives |[N| < m?| M| as claimed. 0

30

The proof of theorem 2.3.1 actually holds for a larger class of graphs which we call
neighbor-automorphism graphs. A graph G is in this class if for every pair of vertices « and
v, there exists an automorphism ¢ from G onto itself such that ¢(u) is a neighbor of v.
Notice that this class includes Cayley graphs, since they are vertex transitive. However, it
includes a much larger set of graphs which need not even be regular. The proof of theorem
2.3.1 demonstrates that for any bipartite neighbor-automorphism graph G with vertex sets
V1 and V3, the ratio a(G) < |Vi||V2].

This is noteworthy when coupled with the following theorem.

Theorem 2.3.3 Counting the number of perfect malchings in a bipartile neighbor-automorphism
graph is # P-complete.

The proof uses a reduction from counting perfect matchings in an arbitrary bipartite graph;
this was also shown by Valiant to be # P-complete [64]. Briefly, the idea behind the reduc-
tion is as follows. Let G = (V1,V3, E) be an arbitrary bipartite graph. We will construct
a new bipartite graph Hy = ((Vi1 U Via), (Va1 U Vaa), E'), where the subgraph induced
on Vi1 U Vay is isomorphic to G, as is the subgraph induced on Vs U Vay. The edge set
connecting V77 and Vi, is a multigraph consisting of k£ copies of the complete graph. Simi-
larly, k copies of the complete graph connect Vi5 and Vop. It is easy to verify that Hy is a
neighbor-automorphism graph. For any fixed value of k, the number of perfect matchings

in Hj is a linear combination of a?,a2,...,a% , where a; is the number of matchings of

M
size 7 in G'. Thus, if we could determine the number of perfect matchings in each H;, for
1 < 5 < m, we would be able to solve a system of linear equations to determine the value

of each a;, including a,, , the number of perfect matchings in G.

2.3.2 Non-bipartite Cayley graphs

Recently Jerrum pointed out that the ratio a(G) of near-perfect matchings and perfect
matchings could be bounded for any Cayley graph using an argument based on the tech-
niques presented in the previous two sections. This gives us a fpras for important non-
bipartite periodic lattices, such as the triangular lattice and the face- and body-centered
cubic lattices. We include this argument for completeness.

Theorem 2.3.4 [Jerrum] Let G be a 2m vertex graph which is the Cayley graph of a finite
group. Then a(G) < m?.

This, of course, gives us the immediate corollary:

Corollary 2.3.5 There exists a fpras for the number of monomer-dimer coverings with any
specified number of dimers in any graph which is the Cayley graph of a finite group. O

Proof of Theorem 2.3.4. Recall that for any Cayley graph G, the vertices are labeled
with words in the group. We will consider all near-perfect matchings A (u,v) with fixed
holes « and v in the graph and will show that |N(u,v)| < 2m|M|. Summing over all
choices of pairs u and v, this will give us a m?® bound for the ratio a(G).

31

For a fixed pair of vertices w and v in the Cayley graph, we define the distance d to be
the length of a shortest path between w and v. Clearly d < 2m since the graph has 2m
vertices. We will show that |A(u,v)| < d|M| by induction on d.

Suppose d = 1. Then u and v are neighbors in the Cayley graph. We can injectively
map the set of near-perfect matching with holes u and v into the set of perfect matchings
by adding the edge (u,v). Therefore |N(u,v)| < |[M]| when « and v are neighbors.

Now assume inductively that we have verified the claim for all d < d. Let u and v be
two vertices at distance d in the Cayley graph. Let vy be the neighbor of v on a shortest
path between u and v. Consider the set of near-perfect matchings where one of the holes
is wg and let ug be any vertex so that the number of near-perfect matchings with holes vg
and wug is maximized (i.e., |V (ug, vo)| > |[N(w,v0)| for all v’ € G'). Note that because the
graph is vertex transitive, |V (ug,vo)| > [N (w/,v")| for all choices of u’ and v'.

We define a map ¢ on pairs of near-perfect matchings N (wu,v) x N (ug,vp). Choose
Ny € N(u,v) and Ny € N(ug,v9) . Color the edges of Ny red and those of Ny blue.
Consider the union of edges N; U Ny U {(v,vg)}. Now every vertex except for u and ug
has degree 2. There are two cases: either we have formed a path between w and wg and a
cycle including v and vy, or we have formed a single path between w and wug.

In the first case we can flip the colors on the cycle and remove the edge (v,v9). Now
the red edges form a near-perfect matching with holes w and vy and the blue edges form
a near-perfect matching with holes v and wg. In the second case we can color the edge
(v,v) red and flip the colors on the part of the path from v to ug. The red edges form
a near-perfect matching with holes u and ug and the blue edges form a perfect matching.
In either case we can uniquely reconstruct the original near-perfect matchings from the
image of the map. Summarizing this discussion, we find ¢ is an injective map between the
following sets:

¢ N(u,v) x N(ug,vo) — (N(u,vg) X N(up,v))U (N(u,ug) x M).

It follows that

IV (w, v)] - [N (o, vo)| < [N (w, vo)l - [V (uo, v)| + [V (u, uo)| - [M] (2.1)
Recall that |A(ug,vp)| was chosen so as to be maximal over all choices of holes ug and vg.
In particular |N(uo,vo)|] > |N(uo,v)| and [N (uo,vo)| > |N(u,up)|. Combining this with
equation (2.1) we find

IV (u,)| [N (uo, v0)| < [N (w, vo)l - [N (uo, vo)| + [N (uo, vo)| - [M]
and hence

NV (u,)] < [NV (u,v0)| + [M]. (2:2)
Since the distance between u and vy is d — 1, we know inductively that
IV (u,00)| < (d = 1)|IM|.
Combining this with equation (2.2) we find
N (u,0)| < dlM|,

thereby completing the induction.
Hence, for any choice of u and v, [N (u,v)| < 2m|M|. Summing over all m?/2 distinct
pairs of vertices u and v, we can conclude that |A] < m3|M]|. O

32

Note that this gives an alternative proof of theorem 2.3.1. For a bipartite graph only
one of the two cases described in the proof is possible, and equation (2.2) becomes

|IN(u,v)| < |M].

This proves the bound a(G) < m? for bipartite Cayley graphs.

2.4 Concluding Remarks and Open Problems

We have used elementary combinatorial techniques to show that, for any Cayley graph G,
the quantity a(G) is small, i.e., the number of near-perfect matchings (monomer-dimer
coverings with two monomers) exceeds the number of perfect matchings (dimer coverings)
in G by only a small polynomial factor. This allowed us to deduce rigorous polynomial
time bounds for a Monte Carlo algorithm for counting coverings in such graphs with any
specified number of dimers.

Our results show that, for a 2m-vertex bipartite Cayley graph G, the quantity a(G)
lies in the range [m, %mQ]. (The upper bound comes from Theorem 2.3.1, while the lower
bound is trivial—see section 2.1.3.) It would be interesting to know whether either of these
bounds can be improved for Cayley graphs, and to determine the precise value of a for
the d-dimensional rectangular lattice z(n, d). Similarly, for non-bipartite lattices we only
know the weaker bound «(G) < m?. Apart from their inherent interest, improving these
bounds would affect the efficiency of the Monte Carlo algorithm since the quantity a(G)
enters into the running time as explained in section 2.1.3.

Our technique also breaks down in the case of lattices with fixed boundary conditions
(in dimensions higher than two). Techniques similar to those we have presented can be
used to reduce the question of bounding « to that of establishing the local property that
the number of near-perfect matchings with fixed holes u and v is polynomially related to
the number of matchings with holes ' and v’, where u' is a neighbor of u and v’ is a
neighbor of v. However, we have been unable to use this observation to obtain a proof for
fixed boundary conditions in higher dimensions.

One can go further and ask for a characterization of those families of graphs for which
the ratio a is polynomially bounded, and hence for which the monomer-dimer problem
is tractable using the above Monte Carlo approach. This question is also of considerable
combinatorial interest, since counting perfect matchings (dimer coverings) in a bipartite
graph is equivalent to computing the permanent of a 0-1 matrix [51]. This is a widely studied
problem in combinatorics for which the existence of an efficient approximation algorithm is
an important open question in the theory of computation [64]. The Monte Carlo algorithm
sketched above runs in polynomial time for a wider class of graphs than any other currently
known algorithm, so it is of interest to establish precisely which graphs are amenable to
it. (For other simpler, but apparently less widely applicable approximation algorithms, see
[38, 33] and [55].) Moreover, it is conceivable that any graph G for which a(G) is large can
be efficiently decomposed in such a way that the resulting components have a small value
of a, and hence fall within the scope of the Monte Carlo algorithm; this idea was used
in [37] to obtain an approximation scheme for general graphs whose running time, though
still exponential, improves substantially on naive deterministic methods.

33

The question of whether « is polynomially bounded for a given family of graphs is
apparently rather subtle. It is not hard to construct “bad” examples. Consider, for example,
the family of graphs {G,, : n = 1,2,...} defined in figure 2.6, where G,, has 2m = 4n + 2
vertices. It is easy to see that G, has only one perfect matching but more than 2" =
20m=1)/2 pear-perfect matchings (consider just those with holes at w and v), so the ratio
a(G,) > 2" is exponentially large. On the other hand, a is known to be polynomially
bounded for all sufficiently dense graphs, all graphs with sufficiently good “expansion”
properties, and almost every random graph in a suitable model [34]. Interestingly, the
technique used to prove this property in all these cases is not applicable to lattices since
it involves constructing short augmenting paths for near-perfect matchings; such paths do
not exist in lattice graphs, which have large diameter. The injective mapping technique
presented here is therefore a new approach, and we hope that it will lead to a better
understanding of the behavior of the ratio a in general graphs.

Figure 2.6: The “bad” graph G,

In the case of lattices, we conjecture that the explicit mappings we have exhibited
between near-perfect matchings with two fixed holes and perfect matchings might shed light
on the behavior of the number of near-perfect matchings as a function of the positions of
the holes. In physical terms, this corresponds to the correlation between a pair of monomers
in a sea of dimers, a quantity for which partial results were obtained in two dimensions by
Fisher and Stephenson [16]. Our techniques immediately yield a simple and rigorous proof
that, in any dimension d, the number of configurations with two monomers at any fixed pair
of vertices u, v is bounded by n~? times the number of configurations with two adjacent
monomers. A more careful analysis may enable one to make more precise statements about
this correlation.

34

Chapter 3

Self-avoiding walks

3.1 Introduction

3.1.1 Background

Self-avoiding walks in Z? have been studied by mathematicians and natural scientists for
many years and are the subject of an extensive literature; for a state-of-the-art survey, see
the recent book of Madras and Slade [48]. (See also the book by Lawler [45] for related
topics.) One of the most important applications is as a model for the spatial arrangement
of linear polymer molecules in chemical physics. Here the walk represents a molecule com-
posed of many (perhaps 10° or more) monomers linked in a chain, and the self-avoidance
constraint reflects the fact that no two monomers may occupy the same position in space.
The length |w]| of a self-avoiding walk w is the number of edges in w. For any fixed dimen-
sion d, let §,, denote the set of self-avoiding walks of length » in Z%, and let ¢, = 1S5
be the number of walks of length n. The two most fundamental computational problems
concerning self-avoiding walks are:

(i) count the number of walks of length n: i.e., compute ¢, for any given n;

(ii) determine the characteristics of a “typical” walk of length n: for example, com-
pute the mean-square displacement, which is the expected squared distance of
the free end of the walk from the origin under the uniform probability distribu-
tion over walks of length n.

Despite much research in this area, and many heuristic arguments and empirical studies,
almost nothing is known in rigorous terms about the above problems for the most interesting
cases of low-dimensional lattices with 2 < d < 4. In higher dimensions rather more is
known, essentially because the self-avoidance constraint becomes less significant and the
behavior resembles that of simple (non-self-avoiding) walks, which are well understood.
Thus although the algorithmic results we present will be stated for arbitrary dimensions d,
they are of greatest interest in the case of low-dimensional lattices with 2 < d < 4.

One key fact that holds in all dimensions was discovered in 1954 by Hammersley and
Morton [27]; they observed that lim,_ C}z/n = u exists, and that p" < ¢, = p"f(n),
where lim,, o f(7)"/" = 1. This is a straightforward consequence of the obvious fact that

35

the sequence ¢, = logec, is subadditive, i.e., £, 1, < L, + £, for all n,m. Hammersley
and Welsh [28] later showed that f(n) = O(a”l/z) for some constant a. It is a celebrated
and long-standing conjecture that f(n) is in fact polynomially bounded. More precisely,
we have:

Conjecture 1: ~

o = p"f(n) (1 +0(1)),

Ano~1, d= 2,3
where f(n) =< A(logn)/9, d =4
A, d>5.

Here g, A and v are all dimension-dependent constants. Note that the dominant behavior
of ¢, is the exponential function p”; comparing this with the case of simple walks, whose
number is precisely (2d)", we see that the effect of the self-avoidance constraint is to reduce
the effective number of choices the walk has at each step from 2d to p. The dimension-
dependent number u is known as the connective constant. This crude behavior is modified
by the correction term f(n) as in conjecture 1. Here 7 is a so-called critical exponent.
(Note, however, that v, unlike g, is not even known to exist.)

Although unproven, conjecture 1 is supported by extensive (though non-rigorous) em-
pirical studies and ingenious heuristic arguments, which have also been employed to ob-
tain numerical estimates for the constants g and 7. Elementary considerations show that
p € (d,2d —1). For d = 2, it has actually been proven that p € (2.62,2.70) [2, 10]. (See
also [29] for similar bounds in higher dimensions.) However, these rigorous bounds are much
weaker than the non-rigorous estimates obtained by empirical methods, which are typically
quoted to four decimal places. There are even precise conjectured values for the critical
exponent 7 in two and three dimensions (despite the fact that v is not known to exist):
for d = 2, v is believed to be %, and for d = 3 it is believed to be approximately 1.16.
(See [48] for a detailed summary of numerical estimates.)

Much effort has been invested in obtaining statistical estimates of the above quantities
using Monte Carlo simulations. However, the error bars on these estimates are only justified
heuristically. In this chapter, we attempt to put such experiments on a firmer footing. We
present Monte Carlo algorithms for approximating the number of self-avoiding walks of
a given length for a given dimension d, and for generating self-avoiding walks of a given
length almost uniformly at random. The running time of our algorithms is polynomial in
the walk length n and grows only slowly with parameters controlling the accuracy and
confidence levels of the estimates. These are the first polynomial time algorithms where the
statistical errors are rigorously controlled. Our algorithms are based on modifications and
extensions of a Monte Carlo approach studied originally by Berretti and Sokal [3]. In the
next subsection we sketch this approach and point out its limitations. Then, in section 3.1.3,
we summarize our algorithms and explain how they overcome these problems.

36

3.1.2 Monte Carlo simulations

We are interested in sampling from the uniform distribution over the set §,, of walks of
length n. A natural Markov chain to use here has as its state space the set of all self-
avoiding walks (of all lengths): if the chain is currently at a walk w, it extends the walk in
an allowable direction with some probability, while with some other probability it deletes
the last edge and “backtracks” to a shorter walk. Note that the naive approach of simply
growing the walk one edge at a time breaks down because of the self-avoidance constraint:
the number of possible extensions of a given length can vary hugely for different walks due
to the possibility of walks “getting stuck.” This is why we require the more sophisticated
dynamic scheme provided by the Markov chain.

The above type of Markov chain was considered by Berretti and Sokal [3], who used a
single parameter 3 < 1 to control the relative probabilities of extending or contracting the
walk by one edge. Given a walk of length ¢, one of the 2d lattice edges incident to the
free endpoint of the walk is chosen with equal probability. If the edge extends the walk so
as to be self-avoiding, then it is added with probability §; if the edge is the last edge of
the walk, then it is removed; otherwise, nothing is done.* Assuming conjecture 1, Berretti
and Sokal argue that, for any given value of n, taking § sufficiently close to (but smaller
than) p~!, where u is the connective constant, ensures that the stationary distribution
assigns reasonably high weight (i.e., 1/¢(n) for some polynomial ¢) to S,,. Furthermore,
again assuming conjecture 1, Sokal and Thomas [62] argue that with such values of 3 the
Markov chain is rapidly mixing, i.e., it gets very close to stationarity after a number of
steps that is only polynomial in n (see also [46]). In order to appreciate the role of 3 here,
consider a truncated version of this Markov chain in which the length of a walk is never
allowed to exceed m, so that the stationary distribution is always well defined; if § is too
much smaller than p~! then we will only generate short walks, while if 3 is too much
larger then the Markov chain will not backtrack often enough and consequently will take a
long time to reach stationarity. Thus 8 must be very carefully chosen. Berretti and Sokal
perform their experiments by “fine-tuning” S and observing the Markov chain until the

observations suggest that 3 is sufficiently close to p=1.

Berretti and Sokal’s algorithm suffers from two drawbacks. First, one must assume
conjecture 1 (for appropriate values of the constants p, v and A) in order to bound the
time required before the Markov chain reaches stationarity. Aslong as conjecture 1 remains
open for any choices of these constants, there is no guarantee that the algorithm produces
reliable answers in polynomial time. Second, in order to implement the algorithm it is
necessary to have a good estimate of p already, since 3 needs to be taken a little smaller
than p~'. This leads to circularity, since determining p is one of the principal goals of
the algorithm. While many similar Monte Carlo algorithms have been used to study self-
avoiding walks (see Chapter 9 of [48] for a summary), all of these suffer from a similar lack

of rigorous justification, and thus offer no guarantee that their results are reliable.

*Actually, these transition probabilities are a slightly simplified version of those used in [3], but this
difference is inessential to the behavior of the chain.

37

3.1.3 Our results

We develop a Monte Carlo algorithm for self-avoiding walks by modifying the Markov chain
used by Berretti and Sokal so as to overcome the difficulties discussed in the last subsection.
We make two elementary but important innovations. First, we allow the parameter § to
vary at each level of the Markov chain (i.e., we let 3 depend on the length of the walks),
and we calculate an appropriate value of 3 at each level based on observations of the
Markov chain at earlier levels. Thus we require no prior knowledge of 3. Second, we show
that, while the efficiency of our Markov chain simulation is still based on an assumption
(conjecture 2, defined below), this is weaker than conjecture 1 and, more importantly, is
tested in advance by the algorithm in the region in which it is being assumed. Thus when we
run our algorithm, either we will gather strong evidence (in the form of a counter-example)
that the conjecture is false, or we will know that we can trust our simulations. This notion
of self-testing, which either gives us confidence in our results or warns us that they may be
erroneous, has been previously explored in the context of program checking (see, e.g., [5]).
The conjecture we require is the following;:

Conjecture 2:
For any dimension d, for some fixed polynomial g,

CnCm < g(n+m)cpgm, Yn,m.

This conjecture says that if we choose random self-avoiding walks of lengths n and m, then
with non-negligible probability we can glue the walks together to produce a self-avoiding
walk of length n + m. To be more precise, for self-avoiding walks w; and wy, define the
concatenation wy o wy to be the walk formed by the union of the edges in w; and 7(ws),
where 7 translates wy so that its origin coincides with the free endpoint of w;. Note that
wi o wy need not be self-avoiding. If w; and wy are selected uniformly at random from

n+m

S, and §,, respectively, then the quotient g £ represents the probability that wy o ws
~1

is self-avoiding (see figure 3.1). Conjecture 2 asserts that g(n)™" is a lower bound on this
probability.

This conjecture is no more restrictive than conjecture 1, on which previous Monte Carlo
methods, including that of Berretti and Sokal, rely. To see this, note that ¢, ~ Au"n?~1
implies £nm ~ A(%)W_l < A(%)W_l. Thus conjecture 2 is also widely believed
to hold. Moreover, for any given dimension there is a precise conjectured value for the

polynomial ¢g: as the above calculation shows, it is essentially just the function f from
conjecture 1, with appropriate values for the constants v and A.

The behavior of our algorithm may now be stated more precisely as follows. Fix a
dimension d and a polynomial ¢, and suppose first that conjecture 2 holds. Then, on
inputs €,6 € (0,1), the algorithm outputs a sequence of numbers ¢,¢;,¢s, ..., such that,
for each n, the time to output ¢, is a polynomial function of n, ¢! and logé~! and, with
probability at least (1 — ¢), ¢, approximates ¢, within ratio (1 + €). If, on the other hand,

38

7(ws) G—6—6—20
—o ¢ wq
6—o—0 0
7(0)

Figure 3.1: The concatenation of two self-avoiding walks.

the conjecture happens to fail for some value n = ng, then with high probability an error
will be reported and we will know that the algorithm is reliable in the region previously
explored (i.e., for n < ng), but may be unreliable for larger values of n. Moreover, in
this case the algorithm will actually have discovered a counter-example to the conjecture
for the polynomial ¢ under consideration; since precise conjectured values for ¢ exist, this
in itself would be of substantial interest in the theory of self-avoiding walks. The details
of the self-tester are described explicitly in section 3.3. Note that, in the presence of the
self-tester, the answers output by our algorithm are always correct (with high probability),
and the algorithm is guaranteed always to run in polynomial time.

The algorithm is in fact more flexible and can be used in addition to solve problem (ii) of
section 3.1.1 by generating random self-avoiding walks of any specified length in the region
where conjecture 2 holds: once the algorithm has output ¢, , it provides a method for gener-
ating, in time polynomial in n and logé~!, a random self-avoiding walk of length n from a
distribution whose variation distance from the uniform distribution is at most §. This gives
us a fully-polynomial almost uniform generator for self-avoiding walks (see definition 1.3.2),
and can be used in the obvious fashion to obtain good statistical estimates in polynomial
time of quantities such as the mean-square displacement.

In section 3.2 we present approximation algorithms which work assuming conjecture 2.
In section 3.3 we show how to make the algorithms robust by adding a self-tester to verify
the conjecture. In section 3.4 we present a more eflicient version of the algorithm which
was implemented to get the numerical estimates for ¢, tabulated in section 3.5.

3.2 The algorithms

Our goal is to design a fully-polynomial randomized approximation scheme and a fully-
polynomial almost uniform generator for self-avoiding walks of length n. The following
quantity associated with self-avoiding walks will play an important role in our algorithms.

39

For a fixed dimension d and each n, define

. Citk
o, = min Rl
nk cck

J+k<n

The quantity «, is a lower bound on the probability that the concatenation of two walks
wy and wy is self-avoiding, where w; and wy are chosen so that the sum of their lengths
is at most n. Note that conjecture 2 says precisely that a, > g(n)~! for a polynomial ¢
(which depends on d). We have the following:

Theorem 3.2.1 For any fized dimension d, there exists a randomized approximation
scheme for self-avoiding walks that runs in lime polynomial in n,e ' logé=! and a?,
and an almost uniform generator that runs in time polynomial in n,loge tand o, t.

It is interesting to observe that this result, combined with the asymptotic bound on ¢,
of Hammersley and Welsh [28] quoted in section 3.1.1, immediately gives us approximation
algorithms for self-avoiding walks whose running time is sub-exponential. Specifically, the
bound of [28] implies that a,! = O(a”1/2) for some constant @, and closer inspection of
the running time of the algorithms of theorem 3.2.1 (see section 3.2.3) reveals that the
dependence on a;! is linear. Thus we get a randomized approximation scheme and an
almost uniform generator whose running times grow with n only as exp(O(n'/?)).

If we assume conjecture 2, however, we get something much stronger. Since conjecture 2
asserts that a, > g(n)™! for a polynomial g, we immediately deduce the following.

Corollary 3.2.2 Assuming conjecture 2, there exists a fully-polynomial randomized approz-
tmation scheme and a fully-polynomial almost uniform generator for self-avoiding walks in
any fized dimension d. O

Our algorithms are based on randomly sampling walks of length n using Monte Carlo
simulation of a series of successively larger Markov chains My, ..., M,,. In section 3.2.1 we
define the nth Markov chain M, , and in section 3.2.2 we derive a bound on its rate of
convergence to stationarity. With this machinery in place, in section 3.2.3 we assemble the
Markov chains into a single scheme that provides algorithms satisfying the requirements of
theorem 1.

3.2.1 The Markov chain

As indicated in section 3.1.2, we consider a Markov chain that explores the space of self-
avoiding walks by letting a walk expand and contract randomly over time, under the in-
fluence of a weighting parameter 3. Rather than working with a single Markov chain and
a global value of the parameter §, we incrementally construct Markov chains My, Mo, .. .,
the nth of which, M, , has as its state space the set X, = [JL,S; of all self-avoiding
walks of length at most n. The transition probabilities in M,, depend on parameters
B, ..y Br € (0,1), discussed below.

Transitions in the Markov chain M, are defined as follows. In state w € A),, a self-
avoiding walk of length ¢ < n, choose one of the 2d edges incident to the free endpoint of w
uniformly at random. If the chosen edge coincides with the last step of w, remove this last

40

edge from w. If the chosen edge extends w to a walk which is self-avoiding and has length
at most n, add the edge to w with probability 3;41. Otherwise, leave w unchanged.

More precisely, define the partial order < on the set of all self-avoiding walks by w < w’
if and only if |w| < |w'| and the first |w| steps of w’ coincide with w. Also, define w <; w’
if w< w and |w'| = |w| 4+ 1 (i.e., if @' extends w by one step). Then the transition
probabilities P, of the Markov chain M,, are defined by

Biury/2d, if w <1 w';
1/2d, if w' <y w;
r(w), if w=w';
0, otherwise,

Po(w,w') = (3.1)

where r(w) is chosen so as to make the probabilities sum to 1, and w,w’ are in the state
space &, (i.e., |w|,|w'| < n).

Note that we may view M, as a weighted random walk on the tree defined by the
partial order <. This tree has the trivial walk of length 0 at the root, and the children
of walk w are walks w’ with w <; w’. Thus the tree has n + 1 levels, the ¢th of which
contains all walks of length ¢ — 1. The transition probability from any state to its parent
is 1/2d, and from a state at level ¢ to each of its children is §;41/2d. In the case that
By = ... = B, = u~! this is just the Markov chain used by Berretti and Sokal [3], but
truncated at level n.

It is evident that the Markov chain M, is irreducible (all states communicate) and
aperiodic. This implies that it is ergodic, i.e., it converges asymptotically to a well-defined
stationary distribution m, over X, . It is straightforward to show the following:

Lemma 3.2.3 The stationary distribution w, of the Markov chain M, is given by

| Il

ﬂ-n(w) = Z_ Hﬁza for w € ‘¥n7
=1

where Z, is a normalizing factor.

Proof. It suffices to show that the chain is reversible with respect to the distribution =, ,
i.e., that it satisfies the detailed balance condition (see equation (1.4)). This is readily
verified from the definition of P, given in (3.1). O

Note that the stationary distribution is always uniform over all walks of a given length,
for any choice of values of the parameters 3;. Moreover, by choosing the §; carefully we
can achieve a distribution over lengths which assigns sufficiently high weight to §,,. Ideally,
the value we want for §; is the ratio ¢;_1/¢;. (The fact that this ratio is always strictly
less than 1 was proven surprisingly recently by O’Brien [52].) Of course, this is unrealistic
since we do not know the quantities ¢;_; and ¢;—these are precisely what we are trying to
compute—but we will see in section 3.2.3 how to determine good approximations to these
ideal values before they are needed. For the moment, we consider the ideal behavior of the
Markov chain assuming that each f; is equal to ¢;—1/¢;.

41

Under this assumption, lemma 3.2.3 says that the stationary probability of any walk
w € X, is

||

1 C;—1 N 1
C; N ch|w|'

(3.2)
=1
Thus the stationary distribution is uniform over lengths, and the probability of being at a
walk of length ¢ is 1/Z,, = 1/(n+ 1) for each i. It follows that the stationary distribution
is reasonably well concentrated on §,,, and uniform over §,,. We may therefore, at least in
principle, generate random self-avoiding walks of length n by simulating M, until it has
reached equilibrium, starting with, say, the empty walk, and outputting the final state if it
has length n. We now need to show that the number of simulation steps required by the
Markov chain is small. This is the key component of the running time of our algorithms
and is quantified in the next subsection.

3.2.2 The mixing time

The mixing time bounds the time it takes for a Markov chain to get close to equilibrium;
this addresses the question of how many simulation steps are required to produce a sample
from a distribution that is very close to m,. Note that, if the overall running time of our
algorithm is to be polynomial in n, the Markov chain M,, should be rapidly mizing, in the
sense that its mixing time is very small compared to the number of states (which grows
exponentially with n).

In recent years several useful analytical tools have been devised for analyzing the mixing
time of complex Markov chains of this kind. We make use of the idea of “canonical paths”,
first developed in [34, 59]. Consider an ergodic, reversible Markov chain with state space X,
transition probabilities P and stationary distribution 7. We can view the chain as a
weighted undirected graph G with vertex set X and an edge between each pair of vertices
(states) z,y for which P(z,y) > 0. We give each oriented edge e = (z,y) a “capacity”
Q(e) = Q(z,y) = n(z)P(x,y); note that, by detailed balance, Q(z,y) = Q(y,).

Now for each ordered pair of distinct vertices z,y € X, we specify a canonical path 7.,
in the graph G from z to y. Then, for any such collection of paths I' = {y,, : z,y €
X,z # y}, define

D) = miax s 3 () (3.3)

Yoy D€

where the maximization is over oriented edges e. Thus p measures the maximum loading
of any edge e by paths in I' as a fraction of its capacity Q(e), where the path from z to y
carries “flow” w(z)m(y). Note that the existence of a collection of paths I' for which p(I")
is small implies an absence of bottlenecks in the graph, and hence suggests that the Markov
chain should be rapidly mixing. This intuition can be formalized and a bound obtained
on the mixing time in terms of the quantity p = minr p(1'), using a measure known as
conductance [60]. However, we can get a slightly sharper bound in this case by following
an idea of Diaconis and Stroock [12] and using the alternative measure p = minrp p(I'){(1'),
where {(I') is the maximum length of a path in I'. The appropriate version of this bound
can be found by combining Proposition 1 and Corollary 6 of [58] and is stated precisely in
the theorem below.

42

As a measure of rate of convergence, let P'(z,-) be the probability distribution of the
Markov chain at time ¢, starting in state z, and for € € (0,1) define

ro(6) = min{t : [|P¥(z,)= 7| < € W' > 1}.

Here || - || denotes variation distance: for distributions vy, vy over X, |11 — v2f| =
7 eex [vi(@) — va(2)] = maxacx [v1(A) - va(A)].

Theorem 3.2.4 [58] For an ergodic, reversible Markov chain with stationary distribu-
tion w, we have

Tz(€) < ﬁ(log m(z)™" + log 6_1),

(where all logarithms are assumed to be base €). O

We now use theorem 3.2.4 to show that the mixing time of the Markov chain M, can
be bounded in terms of the quantity «,, defined at the beginning of section 3.2. Assuming
conjecture 2, this will imply that the Markov chain is rapidly mixing. For simplicity we will
work with the idealized version of M, discussed at the end of section 3.2.1, in which each j;
is exactly equal to ¢;_1/¢;. It should be clear that our analysis is not unduly sensitive to
small perturbations in the values of the ;.

Theorem 3.2.5 For the Markov chain M, , starting at the empty walk 0, we have
To(€) < 4dn*a? (log n + log 6_1).

Proof. From (3.2) we have that 7,(0) = 1/(n+ 1). Also, since the graph corresponding
to the Markov chain M,, is a tree, there is only one choice of (simple) paths between each
pair of vertices; we will denote this collection of paths I' = {7;,}. Since the depth of the
tree is n, we have {(I') = 2n. Therefore, the result will follow from theorem 3.2.4 if we can
show that p(I') < K'dna;! for some constant K'.

Now let e be any edge of the tree, and suppose the endpoints of e are a walk w of
length k& and a walk w’ of length & 4 1. Let S be the subtree rooted at w', and S =
X, — 5. Since e is a cut edge, it is clear that (3.3) becomes

p(l') = max Q(e) ' mu(9)ma(9). (3.4)

In what follows we will make essential use of the fact that the tree defining M, is a sub-
Cayley tree, so that the number of vertices at level [of any subtree is bounded above by
the total number of vertices at level [of the whole tree. This is evident since any initial
segment of a self-avoiding walk is also self-avoiding.

Now we have
1

_ ! ! _
Qe) = malw) (' w) = g

43

and

wrw’
" 1
= > goHoz o i) =)
j=k4+1 T
1 n Cr+1
= 2 o Ho =l al =)
nCh+l ;50
n
1 Chy1 Cj_k—1
T ZnChy1 ioht1 C;
n
< 0,
chk—l—lan

where the first inequality follows from the sub-Cayley property of the tree. Putting this
together, we see that Q(e)™'m,(95)m.(9) < Q(e) '7,(9) < 2dna;'. Since e was arbitrary,
(3.4) now gives us the required upper bound on p(I'). m|

Remark. A similar bound on the mixing time of the Berretti-Sokal Markov chain was
obtained using ad-hoc methods by Sokal and Thomas [62]. Again the essential feature that
makes the argument work is the sub-Cayley property of the tree underlying the chain. A
rather weaker bound was obtained by Lawler and Sokal [46], using the discrete Cheeger
inequality or conductance. This latter proof is very similar in spirit to the one above;
essentially, the effect is to replace p by p? in the bound of theorem 3.2.4. O

3.2.3 The overall algorithm

In this subsection, we show how to assemble the family of Markov chains just described into
a single algorithm that outputs a sequence of numbers {¢, }, each of which is a good estimate
of the corresponding ¢, . The accuracy of the estimates is controlled by two parameters, €
and §, exactly as in the definition of a randomized approximation scheme (definition 1.3.1).
We shall see that the algorithm provides both an approximation scheme and an almost
uniform generator with the properties claimed in theorem 3.2.1.

The main new ingredient in the algorithm is a bootstrapping procedure for computing
the parameters (3, governing the transition probabilities of the Markov chains. Recall that
our analysis so far has assumed that 3, = ¢,_1/¢, for each n. However, these values are
not available to us; in fact, calculating the quantities ¢, is one of our main objectives.
Instead, our overall algorithm computes estimates of these ideal values ¢,_1 /¢, for each n
in turn, using the previous Markov chain M,_;. This is consistent since the first time
that 3, is required is in the Markov chain M, .

The algorithm, spelled out in detail in figure 3.2, works in a sequence of stages corre-
sponding to the iterations of the for-loop. We call stage n of the algorithm good if it runs
to completion and computes a value 3, that approximates the value ¢,_1/¢, within ratio
(1 + €/4n?), where €, § are the accuracy and confidence inputs.

Let us consider the operation of stage n in detail. To compute a good approxima-
tion G, of the ratio ¢,_1/¢,, we randomly sample walks of length n — 1 using the Markov

44

for n = 2,3,4,... do

using M,,_1, generate a sample of size 2nT,, from
(close to) the distribution 7,1 over X),_4

let Y be the set of walks in the sample with
length n — 1

ext(Y) = 3 ey Hw' € Sp tw <1 w'}]
if Y| < T, or ext(Y) = 0 then abort
else set 5, = |Y|/ext(Y)

output ¢, = ¢,_1/0,

Figure 3.2: The algorithm

chain M,_; and estimate the average number of one-step extensions of a walk: we can
compute the number of one-step extensions of a given walk by explicitly checking each of
the 2d — 1 possibilities. Note that, for a random walk, this is a bounded random variable
taking values in [0,2d — 1] with mean at least 1 (since ¢, > ¢,—1). The sample size is
controlled by the parameter 7,. A simple generalization of the 0/1-estimator theorem
(see [39]) to handle non-negative, bounded random variables shows that 7, need not be
too large to obtain a good estimate with sufficiently high probability. Finally, since we
are in fact sampling from the larger set X,_1, we need to generate a sample of size 2nT,
to ensure that, with high probability, we get at least 7}, walks of length n — 1; that this
sample is large enough follows from the fact that, by (3.2), in the stationary distribution of
the chain M,_; walks of length n — 1 have weight 1/n.* In the algorithm of figure 3.2, we
abort in the unlikely event that the sample does not contain enough walks of length n — 1.
Summarizing the above discussion, we get:

Lemma 3.2.6 [In the algorithm of figure 3.2, assuming that stages 1,2,...,n— 1 are good,
stage n is good with probability at least (1 — §/2n?), provided the sample size T, is at least
ente 2(logn + log 671) for a suitable constant ¢ (which depends on the dimension d). O

The algorithm is designed so that, assuming all previous stages 1,2,...,n—1 are good,
stage n will be good with probability at least (1 — §/2r?). The reason for this requirement

*Actually the Markov chain we are simulating here is not precisely that analyzed in sections 3.2.1
and 3.2.2, since the parameters #; will differ slightly from their ideal values. However, it should be clear
from lemma 3.2.3 that the stationary distribution is always uniform within each level of the tree, and that, if
all previous stages are good, then the distribution over levels of the tree differs from the uniform distribution
by at most a constant factor.

45

is the following. If all stages 1,2,...,n are good, then the value ¢, = []i; 52—1 output by
the algorithm at the end of stage n approximates [[i~(¢;/ci—1) = ¢, within ratio [T, (1 +
€/4i?) < 1+ €; moreover, this happens with probability at least []" (1 —§/2:%) > 1 6.
Thus we get a randomized approximation scheme for ¢, , which was one of our principal
goals. Moreover, by the end of stage n we have computed values §; for 1 < ¢ < n; thus
we have constructed a Markov chain M,, which we can simulate to generate random self-
avoiding walks of any length up to n. This was our second principal goal.

The running time of stage n of the algorithm is dominated by 2nT, = 2cn’e *(logn +
log 671) times the time required to produce a single sample from M,,_;. From our analysis
in the previous subsection (theorem 3.2.5), this latter time is O (n?a;!(logn + loge™!)) for
any fixed dimension d.! Run to the nth stage, the algorithm is therefore an approximation
scheme satisfying the requirements of theorem 3.2.1. (Note that the exponent of n in
the running time could be improved by a more refined statistical analysis.) By the same
reasoning, simulating the Markov chain M,, for O (n%a;!(logn + loge™!)) steps gives us
the almost uniform generator claimed in theorem 3.2.1.

3.3 Making the algorithm self-testing

In this section we show how to place the algorithm of the previous section on a firmer
theoretical basis by replacing our assumption of conjecture 2 by an algorithmic test of the
conjecture. This is a particular instance of what we believe is a generally useful idea of
using self-lesting to make an algorithm whose correctness depends on a conjecture more
robust.

Recall that we have reduced the problem of constructing polynomial time approximation
algorithms for self-avoiding walks to that of verifying a single widely believed conjecture
about the behavior of the walks. An important feature of this reduction is the structure
of the conjecture. Conjecture 2 bounds the probability that one can glue together two
random self-avoiding walks to produce a new self-avoiding walk; since the algorithm also
lets us generate random self-avoiding walks, we can actually estimate this probability. For
any specified polynomial g, this allows us to verify the conjecture (and therefore also the
algorithm itself) for a new value of n by using the algorithm in the region in which it has
already been tested. This is precisely the idea behind the self-tester which we introduce in
this section.

We showed in the last section how to construct a sequence of Markov chains for uniformly
generating and counting self-avoiding walks of successively longer lengths. The running
time of these algorithms is polynomial in the walk length n and the unknown parameter
a;!; this quantity enters into the time bound because it governs the mixing time of the
Markov chains (see theorem 3.2.5). We then appealed to conjecture 2 to argue that a;!
is itself polynomially bounded in n. The idea behind the self-tester is to obtain a good
estimate for a;! in advance, so that we know how long to simulate our Markov chains
to ensure our samples are sufficiently close to the stationary distribution. This will give

TOnce again, we should point out that the analysis of theorem 3.2.5 refers to the idealized Markov chain
in which all values §3; are exact. However, it is a simple matter to check that, assuming all stages are good,
the effect on the mixing time of these small perturbations of the 3; is at most a constant factor.

46

Qp = O0p_q
for:=1,2,...,n—1 do
repeat { times
generate u; € §; u.a.r.

generate v; € §,_; u.a.r.

{1 if u;0v; € Sy

0 otherwise

;=

&, = min{a,, q,,;/2}

' > 4g(n)

if a;;
then output “Warning: conjecture fails”

else continue

Figure 3.3: The self-tester

us a probabilistic guarantee that the algorithm is correct, independent of conjecture 2.
Moreover, by examining the growth rate of successive values a_ !, we can simultaneously
test conjecture 2. The algorithm will proceed successfully for as long as we never exceed
some projected upper bound g(n) on a;!; however, should a;! grow too quickly we will
detect this fact and we will have found a counter-example to the conjecture.

More precisely, after each stage n of the algorithm of the previous section, we use the
procedure shown in figure 3.3 to compute a quantity &, such that, with high probability,
a,/4 < @, < a,. The conservative estimate &T_Ll is then used in place of a;l in the
next stage when computing the mixing time of the Markov chain M, from theorem 3.2.5.

1

We also test conjecture 2 by comparing our estimates @, at each stage with (a constant

multiple of) the projected polynomial upper bound g(n). The algorithm with the self-tester
has the following properties with high probability:

(i) if a;! < g(n) (ie., conjecture 2 holds), then the algorithm outputs a reliable
numerical answer;

(i) if a;! > 4g(n) (i.e., conjecture 2 fails “badly”), then the algorithm outputs an
error message;

(iii) if g(n) < a,;' < 4g(n) then the algorithm either outputs an error message or
outputs a reliable numerical answer.

Furthermore, in every case the algorithm runs in polynomial time.

47

Our method for computing the estimate @, again uses random sampling from the sta-
tionary distribution of the Markov chain M,,_;. The idea is to generate self-avoiding walks
of lengths ¢ and n — ¢ uniformly at random, and thus estimate the probability that such a
pair can be glued together to form a walk of length n that is self-avoiding. The details are
given in figure 3.3. Elementary statistics show that the sample size { required to ensure that
the estimate @, is within the bounds specified above with high probability is a polynomial
function of n, so the self-testing portion of the algorithm also runs in polynomial time.

Theorem 3.3.1 The algorithm of section 3.2 with the self-ltester incorporated runs in time
polynomial in n,e~! and log ¢, and satisfies properties (i)-(iit) above. O

It is worth noting that, while the primary motivation for the self-tester is to check the
unverified conjecture 2, this idea could greatly increase the efficiency of the algorithm even
if conjecture 2 were proven for some polynomial ¢g. The self-tester is computing a close
estimate for a,,, so that simulating the Markov chain for about O(n?a;!) steps is sufficient
to allow us to sample from close to the stationary distribution. This might be far more
efficient than basing the number of simulation steps on some proven, but potentially loose,
upper bound g(n).

The idea of a tester has been used before, but in a much more restrictive sense. For
example, Berretti and Sokal [3] propose testing possible “errors in scaling” due to the con-
jecture that f(n) ~ An?~! by trying other specific polynomial forms for f(n). This gives
evidence that f(n) might be of the correct form, but falls short of proving it probabilis-
tically. In contrast, the tester we present is designed to verify exactly the conjecture we
require, and therefore offers precisely quantified statistical evidence that our algorithm is
operating as we expect.

3.4 Improved time bounds

In sections 3.2 and 3.3 we presented a testable algorithm whose running time is polynomially
bounded. In this section we are concerned with improving the efficiency. The numerical
results which are presented in the next section are based on this improved algorithm. A
careful honing of the analysis of the algorithm presented in figure 3.2 already produces
significant improvements in the running time. We restrict our discussion to the conceptual
changes to the algorithm which yield even greater improvements in the running time.

As before we will run the algorithm in stages, where the nth stageis based on simulating
a Markov chain whose state space is the set of self-avoiding walks of length at most n — 1.
The inputs to the nth stage are parameters 3y, ..., 8,_1, and again we will produce a new
numerical estimate of the number of self-avoiding walks of length n and a new parameter
B, . The modification to the algorithm involves how we generate these outputs. Recall that
previously we calculated our estimate 3, and then set ¢, = ¢,_1/08,. In contrast, we now
calculate ¢, directly and then set (3, to be the quotient é,/é,_1. To calculate ¢, , we will
take the median of &, independent random variables, Zi,...,Z; ; each Z; is an estimate

kn?
for é,. To determine Zj, we again take the product of n independent random variables
Zk 1y ey Lkym, Where each Zp; is an estimate of the number of 1-step extensions of a walk

of length ¢. In stage n we update the values of all of these random variables.

48

The improvement in the running time comes from two observations. The first is a
standard trick for reducing the number of samples required to get a good estimate of the
product of random variables (see, e.g., [13]). Rather than requiring that the variance of all
n random variables be exztremely small (so that the product will be close to its mean), we
bound the variance of the product directly. This allows us to reduce the number of samples
needed since each factor no longer needs to be quite as good; the deviations tend to cancel
each other out.

The second observation is more specialized to features of our process. Previously at
stage n we used only sample walks of length n; all others were rejected. In our new
implementation, we use each sample walk of length 7+ < n to update our estimate for 7 ;.
By the nth stage we have taken many samples to calculate Zj; when 7 < n, and so Zj;
will be very accurate. Consequently, we are able to tolerate a relatively weaker estimate of
the Zj ; where j is close to n; the product will still be a good estimate of ¢,,. In successive
stages our estimates for all of the Z;; improve.

We find that instead of requiring a polynomial number of samples of size n, using these
two ideas we only require O(logn) samples of each size in the nth stage. Since the Markov
chains are designed so that the outputs are uniformly distributed over levels, this will lead
to a large improvement in the running time. The new algorithm is presented in figure 3.4.

The use of the median in the algorithm is a standard trick for boosting the confidence
parameter. We will show that for each of the k independent trials, the estimate Z; will
approximate ¢, to within a factor of 1 + € with probability at least 3/4. From this it follows
that the median of {Z1, ..., Z;} will approximate ¢, to within 1 4 ¢ with probability at least

1—6/(nlog?n) if k is chosen to be at least ¢log(nlog?n/6), for some constant é. Therefore
the probability that all the outputs are correct is at least 1 — 3.2, §/(ilog*7) > 1 — 6.

The “buffer data” alluded to in the algorithm is used to get around the anomaly arising
from the fact that as n increases, so will the number of trials required to compute the
median. By taking an additional sample of size 47, at each stage of the algorithm, we
can remedy this problem. Whenever i increases from the previous stage, we use m; buffer
samples of size i (for each i) to evaluate est(i,n — 1) and samp (i, n — 1) for the kth trial;
we then proceed as usual. With high probability we will have a sufficient number of buffer
samples of each size.

We are now in a position to analyze the algorithm. Call a stage n “good” if it runs
to completion and computes an estimate that approximates ¢, to within a factor of 1 + .
Clearly, if all of the stages 1,...,n — 1 are good, then the stationary distribution of the nth
Markov chain will be close to 7, where m(w) = ((n + 1)¢j,)~". As before, our analysis
will not be unduly affected by the small deviations in these probabilities.

To analyze the behavior of stage n, we first assume that all previous stages are good
and we show that stage n is also good with high probability. Let E[-] be the expected value
of a random variable, and let Var[-] be its variance. Note that by stage n the number of
samples of size 1 < n is at least

My = zn:ce_Q [logj] > ce *(n — i+ 1)[log(n/2)]. (3.5)

We show that this is suflicient to bound the variance of Zj for an appropriate choice of c.
The following two lemmas perform the role of lemma 3.2.6 for the original algorithm.

49

B =1/2d; ¢ = 2d
for n = 2,3,4,... do
my, = ce2[logn]; T, = 2enmy; ky, = [¢log(nlog?n/6)]
if fcn > l%n_l use buffer data to create a new sample
(if the buffer sample is too small then abort)

for 1 <k <k, do

using M,,_1, generate a sample of size T, from (close to)
the distribution 7,_; over A,_1

for1 << n do
let Y; be the set of walks in the sample with length ¢z — 1
(if |Y;| < m, then abort)
ext(i,n) = ext(i,n — 1)+ Y ey, {w' € S 1w <1 w'}|
samp(¢,n) = samp(i,n — 1) + |Y;

Zy; = ext(i,n)/samp(i, n)
Zr = 11; Zg,
output ¢, = MEDIAN(Z, Z, ..., Z})
let 8, = é,_1/Cx

using M,,_1, generate buffer sample of size 47,

Figure 3.4: The improved algorithm

Lemma 3.4.1 Assume that in the algorithm of figure 3.4 stages 1,2,....,n — 1 are good.
Then in stage n, for each k,
Var[Zy]
<
E[Z]*

assuming stage n runs to completion.

/4,

Proof. The random variable Z; is the product of n independent random variables Zj, 1 X
Zkg X o X Zip, so E[Zy] = TIi=i E[Zk;]. Using the fact that Zj; is the sum of m;,
independent random variables between 0 and 2d we can bound the variance.

Var[Zy) {4/ ELZE]
E[Z:]2 U(E[Zk Z»]2) -1

=1

< ﬁ(2‘?]’ +1) -1, (3.6)

if p™' < min; E[Z;;]. Now, to get a bound on the right hand side of this inequality, we
take the following natural logarithms

og (TT(2% +1)) = Los(22 +1)

] VMg o
< " 2dp
=1 Min
2d " 1 1
< Tp€2 ;(n — 14 1) (logn/Q)
< de?
< log(c'(e + 1)e* + 1), (3.7)

where we use the fact that for small z > 0,2/(e+ 1) < log(z + 1) < z. The second
inequality follows from equation (3.5) for the number of samples of each size. From the
monotonicity of the log function, equation (3.7) gives us that

mr2dp

1) < d(et+ 1) + 1. :
1 mm—l—)_c(e—l— Je + (3.8)
We can choose ¢ so that ¢’/(e+ 1) < 1/4. Substituting equation (3.8) back into equation
(3.6), we find

Var[Zy]

<
B[z 2 =€

O

This bound on the variance allows us to analyze the performance of this algorithm using
Chebyshev’s inequality in the next proof.

Lemma 3.4.2 [In the algorithm of figure 3.4, assuming that stages 1,2,...,n — 1 are good,
stage n is good with probability at least 1 — &/(2nlog*n).

Proof. Assuming that all the previous stages are good, the outputs from Markov chains
M, _, are reliable. We will bound the probability that stage n is not good, i.e., our
estimate for ¢, is not within a factor of 1 4+ €. Chebyshev’s inequality tells us that for
each independent trial k,

Var[Z] < 1/4

Pr(|Zk — E[Z]| > E[Z;](1+ €)] < A

51

from lemma 3.4.1 above. Using a standard technique for boosting the confidence parameter,
since we let ¢, be the median of k, = c¢/log(nlog? n/§) independent trials, we get

P1[|é, — ¢n| > cn(1+€)] < §/(nlog?n).

|

Using the algorithm presented in figure 3.4, only O (ne=%log n(logn + logé=1)) samples
are required in each stage. This is a large improvement over the corresponding bound
from lemma 3.2.6 which included a factor of n*. Summarizing our discussion, we have the
following.

Theorem 3.4.3 The algorithm in figure 3.4 oulpuls estimales ¢q,¢Cq,... such that all
the estimates &, are within 1 4+ €) of the number of self-avoiding walks of length n
with probability at least 1 — 6. The running time for each incremental value of n is

O(n’a; e ?log nloge ! (logn + log 671)).

3.5 Nwumerical results

In this section we present our estimates for the number of self-avoiding walks on the 2-
and 3-dimensional cartesian lattices. These were obtained by implementing the algorithm
presented in section 3.4 with improvements in the constants.

There has already been substantial effort in the physics community to count the num-
ber of self-avoiding walks ezactly, especially in two dimensions. Using various ingenious (al-
though exponential-time) algorithms the number of self-avoiding walks on the 2-dimensional
lattice is now known to length 50 [10]. We include the published results up to length 39
for comparison with our estimates [48, 10]. In three dimensions, where there are far more
self-avoiding walks than in two dimensions, exact enumerations have been less successful;
the exact number of walks in the 3-dimensional cartesian lattice have only been computed
to length 21 [48].

In contrast, notice that our algorithm actually performs better in higher dimensions
(assuming conjecture 1 which suggests that the factor a=! is expected to decrease as the
dimension increases). Consequently, we have concentrated our efforts on the 3-dimensional
lattice which has the greatest physical significance.

The program was implemented in C for the 2- and 3-dimensional lattices. The accuracy
parameter ¢ was chosen to be .05 and the confidence parameter § was chosen to be .01
(i.e., we expect all of our answers to be within a factor of 1 £ 0.05 of the real counts
with 99% reliability). The 2-dimensional problem ran for just under two weeks on a 4-
processor SGI Challenge. The 3-dimensional problem ran for a week and a half on an
8-processor SGI Challenge. The results of the computation are presented in figures 3.5
and 3.5. Comparing with the exact numbers, where they exist, we see that the program
actually achieves a much greater accuracy than the 5% relative error guaranteed by the
analysis, typically less than 0.6 %. (This error was calculated relative to the larger number,
i.e. 100|¢,, — €,|/ max(cy, €,).

52

| Walk Length | Exact Count Estimates Relative Error (%) |
1 4 4 0
2 12 12 0
3 36 36 0
4 100 99.9864 0.0136
5 284 283.976 0.0084507
6 780 780.67 0.0858237
7 2172 2173.59 0.0731509
8 5916 5919.81 0.0643602
9 16268 16266.1 0.0116794
10 44100 44161.7 0.139714
11 120292 120473 0.150241
12 324932 325934 0.307424
13 881500 885486 0.450148
14 2.37444e+06 2.38211e+06 0.321816
15 6.4166e+06 6.4414e+406 0.385072
16 1.72453e+07 1.73229e+07 0.447777
17 4.64667e4-07 4.65599e4-07 0.200224
18 1.24659e+-08 1.25075e+4-08 0.332815
19 3.35117e4-08 3.3596e+4-08 0.251036
20 8.97697e4-08 8.9852e+4-08 0.0915768
21 2.40881e4-09 2.41378e4-09 0.206066
22 6.44456e4-09 6.45119e4-09 0.102764
23 1.72666e+10 1.72786e+10 0.0693701
24 4.61464e4-10 4.61653e4-10 0.0409457
25 1.23481e411 1.23373e+411 0.08775
26 3.29712e4-11 3.29722e4-11 0.00294605
27 8.81317e411 8.7936e+411 0.22211
28 2.35138e+12 2.34174e+12 0.409912
29 6.2794e412 6.24908e+12 0.482789
30 1.6742e413 1.66857e+13 0.33603
31 4.46738e+413 4.45826e4-13 0.204184
32 1.19035e+14 1.18761e+14 0.230183
33 3.17407e+14 3.16251e+414 0.364075
34 8.45279e+414 8.42589e+14 0.318247
35 2.25253e+15 2.23976e415 0.567098

Figure 3.5: The number of self-avoiding walks in 2 dimensions

53

‘ Walk Length ‘ Exact Count Estimates Relative Error (%) ‘
36 5.99574e+415 5.95715e+15 0.643632
37 1.59689e+16 1.58591e+16 0.68729
38 4.24868e+16 4.22069e416 0.658678
39 1.13102e+17 1.12524e+17 0.510759
40 - 2.98747e+17 -
41 - 7.96097e+17 -
42 - 2.12048e+18 -
43 - 5.64604e+418 -
44 - 1.506e+19 -
45 - 4.00693e+19 -
46 - 1.06809e+20 -
47 - 2.83977e+20 -
48 - 7.59756e+20 -

Figure 3.6: The number of self-avoiding walks in 2 dimensions (cont.)

54

‘ Walk Length ‘ Exact Count Estimates Relative Error (%) ‘
1 6 6 0
2 30 30 0
3 150 150 0
4 726 726.092 0.0126706
5 3534 3533.47 0.0149972
6 16926 16930.4 0.0259888
7 81390 81392.2 0.00270296
8 387966 388358 0.100938
9 1.85389e+4-06 1.85468e+06 0.0428106
10 8.80988e4-06 8.81417e406 0.0486943
11 4.19342e+407 4.20031e+407 0.164155
12 1.98843e+408 1.99187e+08 0.172832
13 9.43974e4-08 9.4585e+4-08 0.198324
14 4.46891e+09 4.47983e+09 0.243722
15 2.11751e+10 2.12181e+10 0.20244
16 1.00122e+11 1.00373e+11 0.250191
17 4.7373e+11 4.74175e+11 0.093794
18 2.23772e+12 2.24042e+412 0.120349
19 1.0576e+13 1.05863e+13 0.0969818
20 4.99173e+13 4.99634e+13 0.0922118
21 2.3571e+14 2.358be+14 0.0593214
22 - 1.11191e+15 -
23 - 5.24224e+415 -
24 - 2.47294e+416 -
25 - 1.16544e+17 -
26 - 5.49127e417 -
27 - 2.58801e+18 -
28 - 1.21876e+19 -
29 - 5.74323e+19 -
30 - 2.70513e+420 -
31 - 1.27351e+21 -
32 - 5.98999e4-21 -
33 - 2.82177e+422 -
34 - 1.32874e+23 -
35 - 6.25858e4-23 -

Figure 3.7: The number of self-avoiding walks in 3 dimensions

55

| Walk Length | Exact Count | Estimates Relative Error (%) |
36 - 2.94424e+424 -
37 - 1.38338e+4-25 -
38 - 6.50602e4-25 -
39 - 3.06604e4-26 -
40 - 1.44248e+427 -
41 - 6.78155e+427 -
42 - 3.18745e+28 -
43 - 1.49918e4-29 -
44 - 7.05367e+29 -
45 - 3.30457e+30 -
46 - 1.55367e+31 -
47 - 7.31748e+31 -
48 - 3.44242e+32 -
49 - 1.61518e+4-33 -
50 - 7.59255e+33 -
51 - 3.558e+4-34 -
52 - 1.66594e+4-35 -
53 - 7.81908e+35 -
54 - 3.68407e+36 -
55 - 1.73431e+37 -

Figure 3.8: The number of self-avoiding walks in 3 dimensions (cont.)

3.6 Concluding remarks and open problems

The most obvious and compelling open problem arising from the work in this chapter is
verifying conjecture 2. This would constitute a substantial breakthrough in the classical
theory of self-avoiding walks. However, it is less well studied than conjecture 1, and its more
elementary combinatorial nature should make this task more feasible. Our results show that
proving conjecture 2 for any polynomial g would yield the first provably polynomial-time
Monte Carlo approximation algorithms for self-avoiding walks.

In addition, we predict that there are other natural applications for using self-testing to
convert heuristics into robust algorithms. For example, a likely candidate from statistical
mechanics is uniformly generating and counting latlice lrees. A lattice tree is an acyclic
lattice animal which is made up of n — 1 lattice edges. Lattice trees model branched
polymers in dilute solution and are believed to fall in the same universality class as lattice
animals [67]. There is strong evidence that the expression for the number of lattice trees
of size n has a similar form to conjecture 1. It is likely that the techniques used here to
design a testable algorithm for self-avoiding walks can be extended to this wider class of
lattice animals.

Another feature discussed in this chapter which is likely to lead to approximation algo-
rithms for other lattice structures is the use of sub-Cayley trees for Monte Carlo simulations.

56

Again taking lattice trees as an example, imagine describing each tree by the unique path
created by a breadth-first search traversal of its edges. There is a natural sub-Cayley tree
which describes the set of these paths during all stages of the breadth-first search. By
adding appropriate weights, we can modify the sub-Cayley tree so as to guarantee that at
stationarity those paths which represent a complete traversal of a lattice tree will have sig-
nificant weight. Yet, as usual, it is difficult to guarantee that we reach stationarity rapidly.
The sub-Cayley feature of the graph underlying this or some closely related Markov chain
may be the a useful tool for demonstrating rapid convergence.

Finally, notice that we have restricted our attention throughout this chapter to the
unweighted problem in which we want to sample each walk of a given length with equal
probability. A generalization worth exploring is sampling self-avoiding walks with attractive
or repulsive forces among the bonds. We associate with each self-avoiding walk a weight
describing how “spread out” or “tightly wound” the walk is, and we want to sample a walk
proportional to its weight. In addition to the more obvious applications to long polymer
chains, this problems arises in computational biology in the context of protein predictlion.
The sites of the self-avoiding walk represent carbon atoms of a long protein chain, and forces
between carbon atoms which are adjacent in the lattice, but not along the protein, determine
the structure of the protein. Biologists are interested in generating such “potential” protein
structures according to their likelihood in order to infer properties about actual proteins
which are difficult to probe directly[47].

57

Bibliography

[4]

[5]

Aldous, D. Some inequalities for reversible Markov chains. Journal of the London
Mathematical Society (2) 25 (1982), pp. 564-576.

Alm, S.E. Upper bounds for the connective constant of self-avoiding walks. Combi-
natorics, Probability & Computing. To appear.

Berretti, A. and Sokal, A.D. New Monte Carlo method for the self-avoiding walk.
Journal of Statistical Physics 40 (1985), pp. 483-531.

Bhattacharjee, S.M., Nagle, J.F., Huse, D.A. and Fisher, M.E. Critical behaviour of a
three-dimensional dimer model. Journal of Statistical Physics 32 (1983), pp. 361-374.

Blum, M., Luby, M. and Rubinfeld, R. Self-testing/correcting with applications to nu-
merical problems. Proceedings of the 22nd ACM Symposium on Theory of Compuling
(1990), pp. 73-83.

Bondy, J.A. and Welsh, D.J.A. A note on the monomer dimer problem. Proceedings
of the Cambridge Philosophical Society 62 (1966), pp. 503-505.

Broder, A.Z. How hard is it to marry at random? (On the approximation of the per-
manent). Proceedings of the 18th ACM Symposium on Theory of Computing (1986),
pp- 50-58. Erratum in Proceedings of the 20th ACM Symposium on Theory of Comput-
ing (1988), pp. 551.

Cipra, B.A. An introduction to the Ising model. American Mathematical Monthly
94 (1987) pp. 937-959.

Cohen, E.G.D., de Boer, J. and Salsburg, Z.W. A cell-cluster theory for the liquid
state II. Physica XXI (1955), pp. 137-147.

[10] Conway, A.R., Enting, [.G., Guttmann, A.J. Algebraic techniques for enumerating

self-avoiding walks on the square lattice. Journal of Physics A 26 (1993) pp. 1519-
1552.

[11] Diaconis, P. Group representations in probabilily and statistics. Lecture Notes

Monograph Series Vol. 11, Institute of Mathematical Statistics, Hayward, California,
1988.

[12] Diaconis, P., and Stroock, D. Geometric bounds for eigenvalues of Markov chains.

Annals of Applied Probability 1 (1991), pp. 36-61.

58

[13] Dyer, M. and Frieze, A. Computing the volume of convex bodies: a case where ran-
dommness provably helps. Probabilistic Combinatorics and ils Applications, Proceed-
ings of AMS Symposia in Applied Mathematics Volume 44 (1994) pp. 123-170.

[14] Elser V. Solution of the dimer problem on a hexagonal lattice with boundary. Jour-
nal of Physics A: Math. Gen. 17 (1984), pp. 1509-1513.

[15] Fisher, M.E. Statistical mechanics of dimers on a plane lattice. Physics Review 124
(1961), pp. 1664-1672.

[16] Fisher, M.E. and Stephenson, J. Statistical mechanics of dimers on a plane lattice II.
Dimer correlations and monomers. Physics Review 132 (1963), pp. 1411-1431.

[17] Fowler, R.H. and Rushbrooke, G.S. Statistical theory of perfect solutions. Transac-
tions of the Faraday Society 33 (1937), pp. 1272-1294.

[18] Garey, M.R. and Johnson, D.S. Computers and Intractability. Freeman, San Fran-
cisco, 1979.

[19] Gaunt D.S. Exact series-expansion study of the monomer-dimer problem. Physics
Review 179 (1969), pp. 174-179.

[20] Guggenheim, E.A. Mixtures. Clarendon Press, Oxford, 1952.

[21] Hammersley, J.M. Existence theorems and Monte Carlo methods for the monomer
dimer problem. In Research papers in statlistics: Festschrift for J. Neyman F.N.David
ed., John Wiley, New York, 1966, pp. 125-146.

[22] Hammersley, J.M. An improved lower bound for the multidimensional dimer problem.
Proceedings of the Cambridge Philosophical Society 64 (1968), pp. 455-463.

[23] Hammersley, J.M. Calculation of lattice statistics. Proceedings of the Computational
Physics Conference 1970, London, Institute of Physics and the Physical Society, pp. 1-
8.

[24] Hammersley, J.M. The number of polygons on a lattice. 2 7.,73¢33,34 62 (1966),
pp. 503-505

[25] Hammersley, J.M., Feuerverger, A., [zenman, A. and Makani, K. Negative finding for
the three-dimensional dimer problem. Journal of Mathematical Physics 10(3) (1969),
pp. 443-446.

[26] Hammersley, J.M. and Menon, V.V. A lower bound for the monomer-dimer problem.
Journal of the Institute of Mathematics and its Applications 6 (1970), pp. 341-364.

[27] Hammersley, J.M. and Morton, K.W. Poor man’s Monte Carlo. Journal of the Royal
Statistical Society B 16 (1954), pp. 23-38.

[28] Hammersley, J.M. and Welsh, D.J.A. Further results on the rate of convergence to
the connective constant of the hypercubical lattice. Quarterly Journal of Mathematics,
Ozford (2) 13 (1962), pp. 108-110.

59

[29] Hara, T., Slade, G. and Sokal, A.D. New lower bounds on the self-avoiding-walk
connective constant. Journal of Statistical Physics 72 (1993), pp. 479-517.

[30] Heilmann, O.J. and Lieb, E.H. Theory of monomer-dimer systems. Communications
in Mathematical Physics 25 (1972), pp. 190-232.

[31] Hopcroft, J.E. and Ullman, J.D. Introduction to Automata Theory, Languages, and
Comutation. Addison-Wesley, Reading MA, 1979.

[32] Jerrum, M.R. Two-dimensional monomer-dimer systems are computationally in-
tractable. Journal of Statistical Physics 48 (1987), pp. 121-134.

[33] Jerrum, M.R. An analysis of a Monte Carlo algorithm for estimating the perma-
nent. Proceedings of the 3rd Conference on Integer Programming and Combinalorial
Optimization (1993), CORE, Louvain-la-Neuve, Belgium, pp. 171-182.

[34] Jerrum, M.R. and Sinclair, A.J. Approximating the permanent. SIAM Journal on
Computing 18 (1989), pp. 1149-1178.

[35] Jerrum, M. R. and Sinclair, A. J. Polynomial-time approximation algorithms for the
Ising model. SIAM Journal on Computing 22 (1993), to appear.

[36] Jerrum, M.R., Valiant, L.G. and Vazirani, V.V. Random generation of combinato-
rial structures from a uniform distribution. Theoretical Computer Science 43 (1986),
pp. 169-188.

[37] Jerrum, M.R. and Vazirani, U.V. A mildly exponential approximation algorithm for
the permanent. Proceedings of the 33rd IEEE Symposium on Foundations of Com-
puter Science (1992), pp. 320-326.

[38] Karmarkar, N., Karp, R.M., Lipton, R., Lovdsz, L. and Luby, M. A Monte Carlo
algorithm for estimating the permanent. Preprint, 1988. To appear in Journal of
Algorithms.

[39] Karp, R.M., Luby, M. and Madras, N. Monte-Carlo approximation algorithms for
enumeration problems. Journal of Algorithms 10 (1989), pp. 429-448.

[40] Kasteleyn, P.W. The statistics of dimers on a lattice I. The number of dimer arrange-
ments on a quadratic lattice. Physica 27 (1961), pp. 1209-1225.

[41] Kasteleyn, P.W. Dimer statistics and phase transitions. Journal of Mathematical
Physics 4 (1963), pp. 287-293.

[42] Kasteleyn, P.W. Graph theory and crystal physics. In Graph Theory and Theoretical
Physics (F. Harary ed.), Academic Press, London, 1967, pp. 43-110.

[43] Kenyon, C., Randall, D. and Sinclair, A. J. Matchings in lattice graphs. Proceedings
of the 25th Symposium on Theretical Computer Science (1993), pp. 738-746. (Extended
version to appear in the Journal of Statistical physics under the title Approximating
the number of monomer-dimer coverings of a hyper-rectangular lattice.)

60

[44] Landau, L.D. and Lifshitz, E.M. Statistical Physics. Pergamon Press, New York,
1980.

[45] Lawler, G.F. [Intersections of Random Walks. Birkhduser, Boston, 1991.

[46] Lawler, G.F. and Sokal, A.D. Bounds on the L? spectrum for Markov chains and
Markov processes: A generali zation of Cheeger’s inequality. Transactions of the
American Mathematical Society 309 (1988), pp. 557-589.

[47] Lengauer, T. Algorithmic Research Problems in Molecular Bioinformtics. Proceed-
ings of the 2nd Israel Symposium on the Theory of Computing and Systems (1993),
pp. 177-192.

[48] Madras, N. and Slade, G. The Self-Avoiding Walk. Birkh&user, Boston, 1993.

[49] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A. H. and Teller, E.
Equation of state calculations by fast computing machines. Journal of Chemical
Physics 21 (1953), pp. 1087-1092.

[50] Mihail, M. and Winkler, P. On the number of Eulerian orientations of a graph. Pro-
ceedings of the 3rd ACM-SIAM Symposium on Discrete Algorithms (1992), pp. 138-145.

[51] Minc, H. Permanents. Addison-Wesley, Reading MA, 1978.

[52] O’Brien, G.L. Monotonicity of the number of self-avoiding walks. Journal of Statis-
tical Physics 59 (1990), pp. 969-979.

[53] Onsager, L. Crystal statistics I. A two-dimensional model with an order-disorder
transition. Phys. Rev. 65 (1944), pp. 117-149.

[54] Randall, D. and Sinclair, A. Testable algorithms for self-avoiding walks. Proceedings
of the 5th ACM/SIAM Symposium on Discrete Algorithms (1994), pp. 593-602.

[55] Rasmussen, L.E. Approximating the permanent: A simple approach. Random
Structures and Algorithms 5 (1994), pp. 349-361.

[56] Roberts, J.K. Some properties of adsorbed films of oxygen on tungsten. Proceedings
of the Royal Society of London A 152 (1935), pp. 464-480.

[57] Ruelle, D. Statistical Mechanics: Rigorous Results. Addison-Wesley, New York,
1989.

[58] Sinclair, A.J. Improved Bounds for Mixing Rates of Markov Chains and Multicom-
modity Flow. Combinatorics, Probability and Computing 1 (1992), pp. 351-370.

[59] Sinclair, A.J. Algorithms for random generation and counting: a Markov chain ap-
proach. Birkhduser, Boston, 1993.

[60] Sinclair, A.J. and Jerrum, M.R. Approximate counting, uniform generation and
rapidly mixing Markov chains. Information and Computation 82 (1989), pp. 93-133.

61

[61] Sokal, A.D. Monte Carlo methods for the self-avoiding walk. ~Manuscript (1994).

[62] Sokal, A.D. and Thomas, L.E. Exponential convergence to equilibrium for a class of
random walk models. Journal of Statistical Physics 54 (1989), pp. 797-828.

[63] Temperley, H.N.V. and Fisher, M.E. Dimer problem in statistical mechanics—an ex-
act result. Philosophical Magazine 6 (1961), pp. 1061-1063.

[64] Valiant, L.G. The complexity of computing the permanent. Theoretical Computer
Science 8 (1979), pp. 189-201.

[65] Wannier G.H. Antiferromagnetism. The triangular Ising net. Physics Review 79
(1950), pp. 357-364.

[66] Welsh, D.J.A. The computational complexity of some classical problems from sta-
tistical physics. In Disorder in Physical Systems (G. Grimmett and D. Welsh eds.),
Clarendon Press, Oxford, 1990, pp. 307-321.

[67] Whittington, S.G. and Soteros, C.E. Lattice animals: rigorous results and wild
guesses. In Disorder in Physical Systems (G. Grimmett and D. Welsh eds.), Clarendon
Press, Oxford, 1990, pp. 323-335.

62

