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Abstract verge exponentially slowly. Statistical mechanics offers a

Simulated tempering and swapping are two families of saMealth of sampling problems for which these methods are
pling algorithms in which a parameter representing temp8ften applied; it is now well-known that phase transitions
ature varies during the simulation. The hope is that this wil the underlying systems can cause local Markov chains to
overcome bottlenecks that cause sampling algorithms to"8@uire exponential time to reach equilibrium [1].
slow at low temperatures. Madras and Zheng demonstrate A particular example of this phenomenon is observed
that the swapping and tempering algorithms allow efficie®@ the Potts model. In the-state Potts model, vertices of
sampling from the low-temperature mean-field Ising modé&f underlying graph are colored with one gfcolors. In
a model of magnetism, and a class of symmetric bimodB¢ ferromagnetic case, vertices connected by an edge in the
distributions [10]. Local Markov chains fail on these distridraph prefer to have the same color. The strength of this
butions due to the existence of bad cuts in the state spacd?reference is a function of the temperature: at high temper-
Bad cuts also arise in the-state Potts model, anothe@ture the correlation is negligible, while at low temperatures

fundamental model for magnetism that generalizes the Isth§ €ffectis strong. Atlow enough temperatures, local Mar-
model. Glauber (local) dynamics and the Swendsen—Wé?R_:)’ chains that change the color one vertex at a time will be
algorithm have been shown to be prohibitively slow fdprohibitively slow [1]. This is because to move from a con-
sampling from the Potts model at some temperatures ufigpration that is predominantly red to one that is predomi-
6]. It is reasonable to ask whether tempering or S\,\,appm@ntly blue, the chain will have to go through highly unlikely
can overcome the bottlenecks that cause these algorithmogfigurations where no color dominates.
converge slowly on the Potts model. When the underlying graph in the Potts model is the
We answer this in the negative, and give the first egomplete graph, it is known as theean-fieldbor Curie-Weiss
ample demonstrating that tempering can mix slowly. waodel. Mean-field models are important because, despite
show this for the 3-state ferromagnetic Potts model on tHeir simplicity, they capture key features present in more
complete graph, known as the mean-field model. The si6@Mmplicated graphs. Moreover, for natural problems such as
convergence is caused by a first-order (discontinuous) phi$gmean-field Potts and Ising models, there remain obstacles
transition in the underlying system. Using this insight, wi€ Sampling efficiently, even on the complete graph. Gore
define a variant of the swapping algorithm that samples 8?d Jerrum showed that the Swendsen-Wang algorithm, a

ficiently from a class of bimodal distributions, including th&ethod for sampling that often succeeds in circumventing
mean-field Potts model. bottlenecks in the state space, fails on the mean-field Potts

model for ¢ > 3 near the critical temperature (where the
phase transition occurs) [6]. Subsequently, Cooper et al.

1 Introduction A i :
%n3|dered the mean-field Ising model £ 2) and showed

The standa.r d app.roach to sampling via Markov chain Morﬁmt Swendsen-Wang is fast everywhere, except possibly
Carlo algorithms is to connect the state space of configura-

tions 2 via a graph called the Markov kernel. Thtetropo- near the critical point, where it remains unresolved. [2].

lis algorithm proscribes transition probabilities to the edg . . . .
of the kernel so that the chain will converge to any desir(?afd1 Tempering, swapping, and annealing. - Simulated

distribution [14]. Unfortunately, for some natural choices & nea!mg provides the |nS|'ght tha.t varying a parameter rep-
resenting temperature during a simulation can be a key to

the Markov kernel, the Metropolis Markov chain can CorEiesigning efficient algorithms [8]. Annealing is intended for
optimization problems when direct methods are likely to get
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temperature,r,; is the goal distribution from which wethe inverse temperaturg = % wherek is Boltzmann’s

wish to generate samples; at the highest temperattye, constant. Th&ibbs distributionon configurations atinverse
is typically less interesting, but the rate of convergencetemperatures is given by

fast. A Markov chain that keeps modifying the distribution,
interpolating between these two extremes, may produce ePH()

useful samples efficiently. Despite the extensive use of Z(B)’

simulated tempering and swapping in practice, there has ) .

been little formal analysis. A notable exception is work Byhere Z(f) is the normalizing constant. Note thatft=
Madras and Zheng [10] showing that swapping conver Jhis is just the uniform distribution on all (not necessarily

quickly for two simple, symmetric distributions, including®"P€r)¢-colorings of ;. . _
the mean-field Ising model. We consider the ferromagnetitean-field modeihere

G is the complete graph om vertices and all pairs of

1.2 Results. In this work. we show that for the mean field@rticles influence each other. For the 3-state Potts model,
Potts model, tempering and swapping require exponenfiaF 3- L€t 01,02, and o3 be the number of vertices
time to converge to equilibrium. The slow convergen@$Signed the first, second, and third colors. Lettihg=

of the tempering chain on the Potts model is caused b 4/2, we can rewrite the Gibbs distribution for the 3-state

first-order (discontinuous) phase transition. In contrast, thgtts model as

m5(0) =

Ising model studied by Madras and Zheng has a second- B(o3+o3+03)
order (continuous) phase transition, which distinguishes why WE(O') = ’R'E(O'l,O'z,Ug) =
tempering works for one model and not the other. Z(B)

I_n addition, we give t_h(_e first Markov chain algor'thmwhere the linear terms in the exponent are cancelled by those
that is provably rapidly mixing on the Potts model.

Tradlh the denominator since; + o2 + o3 = n. We will

tionally, swapping is implemented by defining a set of iy this formulation from now on, substitutimyfor 3 and
terpolating distributions where a parameter correspondingjté)notinggg + 02 + 02 by H(o) ’
1 2 3 .

temperature is varied. We make use of the fact that there is
greater flexibility in how we define the set of interpolanta,
Finally, our analysis extends the arguments of Madras aeg
Zheng showing that swapping is fast on symmetric distribgr-]
tions so as to include asymmetric generalizations.

Markov chains. To sample from a given distribution,
ommon approach is to design a Markov chain so that
appropriately defined random walk run for a sufficiently
long time provides a good sample. We formalize how long
“sufficiently long” must be, as well as when a sample is
“good” as follows. LetM be an ergodic (i.e., irreducible
2.1 The g-state Potts model. The Potts model wasand aperiodic), reversible Markov chain with finite state
defined by R.B. Potts in 1952 to study ferromagnetism aggace (2, transition probability matrixP, and stationary
anti-ferromagnetism [15]. The interactions between particlgstribution =.  Let Pt(z,y) denote thet-step transition
are modeled by an underlying graph with edges betwagidbability fromz to y.
particles that influence each other. Each of theertices
of the under|ying grap[‘G is assigned one 0& different DEFINITION 2.1. Thetotal variation distancat timet is

2 Preliminaries

spins(or colors). Aconfiguration ¢ = (q1,--+,q,) IS an . 1 .
assignment of spins to the vertices, whegedenotes the 1P, 7|| = max o > P, y) — 7 (y)]-
spin at theit* vertex. The energy of a configuratien is Sy

a function of theHamiltonian

Hoo)= > J-d(aq)

(i,/)EE(G) 7(e) = min{t : [|PY,7|| < &,¥t' > t}.

DEFINITION 2.2. Lete > 0, then themixing time 7(¢) is

where/ is the Kronecker$ function that takes the value 1 if M is rapidly mixing if the mixing time is bounded above

its arguments are equal and zero otherwise. Wliex 0 by a polynomial inn andlog % , wheren is the size of each

the model corresponds to thferromagneticcase where configuration in the state space. When the mixing time is

neighbors prefer the same color, while< 0 corresponds exponential inn, we say the chain i®rpidly mixing

to theanti-ferromagneticase where neighbors prefer to be

differently colored. 2.2.1 The Metropolis algorithm. The Metropolis-
The state spacél of the ¢-state ferromagnetic PottsHastings algorithm is useful for sampling from non-uniform

model is the space of afi” ¢-colorings of G. We will thus distributions [14]. Letr be the distribution to be sampled

use colorings and configurations interchangeably. Defiinem. A graphG (the Markov kernel) is chosen so as to



connectthe state space, where vertices are configurationsieie P;(x, 2') is the Metropolis probability of going from
edges are allowable 1-step transitions. The transition prolbae z' according to the stationary probability .
bilities on G are defined as

e A temperature move connects(z,:) to (x,7 + 1) and

P,y = L. 1, m(y) , the move is accepted with probability
24 m(x) S
P((x,i), (z,i £ 1))
for all z,y, neighbors inG, where A is the maximum 1 F(a,i 1)
degree ofG. Itis easy to verify that if the kernel is connected = 207+ 1) min <1, — )
then is the stationary distribution. (M+1) m(z,1)
For the Potts model, a natural choice for the Markov ~ _ 1 : (1 Z(Bs) e(ﬁiil—ﬁi)H(z)> _

kernel is to connect configurations at Hamming distance 2(M+1) " Z(Bix1)

one. Unfortunately, for large values gf, the Metropolis Notice that while the exponential factor is simple to calculate
algor!thm converges expgnenually slowly on the Potts mod@{,en o andi, it is not easy to compute the ratio of parti-
forthis kernel [1, 2]. This is because the most probable stafgs functions since they are sums over exponentially many
are largely monochromatic and to go from a predominantiynfigurations at different temperatures. The swapping algo-
red configuration to a predominantly blue one we woulghm also an aggregate chain using these temperatures, cir-
have to pass through states that are highly unlikely at IQ4ymyents this difficulty in implementing temperature moves.
temperatures.

. ) ] . 2.2.3 Swapping. The swapping algorithm of Geyer [5]
2.2.2 Simulated tempering.  Simulated tempering at-js 3 variant of tempering. The state space is the product
tempts to overcome this bottleneck by introducing atempgpace) = QM+ the product of M + 1 copies of the
ature parameter that is varied during the simulation, effegiginal state space, corresponding to inverse temperatures
tively modifying the distribution being sampled from. Lelg0 < ... < By. Let my(z) = n(z) be the distribution
0=0 < .. < By be a.set of ip\igrse temperatures. Thegm which we wish to sample and lety(z) = ﬁ (the
state space of the tempering chaiis=  x {0,---, M}, ynitorm distribution), forz € Q. A configuration in the
which we can think of as the union @ff + 1 copies of the swapping chain is aM +1)-tuplez = (2o, .., za1) € 0

original state space!, each corresponding to a different ing;nare each component represents a configuration chosen
verse temperature. Our choice@f = 0 corresponds to in- g0 the jt# distribution. The probability distributiost is
finite temperature where the Metropolis algorithm converggg, product measure

rapidly to stationarity (on the uniform distribution), ad, M

is the inverse temperature at which we wish to sample. We m(z) = H mi(2s).

interpolate by setting?; = [as - 57, and let theit” fixed i=0

temperature distribution; be The swapping chain also consists of two types of moves:
T = 7p, 0 <0 < M. * A level moveconnectst = (zo, ..., z;, ..., £5r) andz’ =

(zo, ...}, ...;zpy) if z and 2’ agree in all but theit®
components, and:; and z; are connected by one-step
psitions of the Metropolis algorithm oft. The move
z') is accepted with probability

The stationary distribution of the tempering chaim is
chosen to be uniform over temperatures, and the conditiol%%
distributions are the fixed temperature Gibbs distributions: L

1 I S S e
(@), v e sy @) = sar (1’ m(:;;))'

The tempering Markov chain consists of two types of move§:A swap moveconnectse = (o, ..., zi, Tit1, ... Tar) 10
level moveswhich update the configuration while keeping: — (20, ..., Tig1, Tiy o Tag), I.€., it interchanges the”

the temperature fixed, anemperature moveshich update and ; 4 1% components, with the appropriate Metropolis
the temperature while remaining at the same configuratiogropabilities onz. In particular,

7(2,0) =

e A level moveconnects(z,i) and («’,i), wherez and - , 1 ) 7(z")
2 are connected by one-step transitions of the Metropotfs(%: %) = o(M+1) 1, 7 ()
algorithm on Q at inverse temperatur@;. The move 1 i1 ()T (Tig1)
. I . . - — . 1 [3 2 [3 2
P((z,7), («',1)) is accepted with probability 20 +1) min < ) —m(:vi)m+1(:vi+1)>
1 1 , (') 1 _ N (H(me)—H (o
— P N = —— 1, 2 _ - (Bigr—B:) (H(w:i)=H(zip1) )
s @) = 5o mm( ’ m(m)) 2(M+1) (1’6 )



Notice that now the normalizing constants cancel odthus, to lower bound the mixing time it is sufficient to show
Hence, implementing a move of the swapping chain tisat the conductance is small.
straightforward, unlike tempering where good approxima- If a chain converges rapidly to its stationary distribution
tions for the partition functions are required. Zheng provédmust have large conductance, indicating the absence of
that fast mixing of the swapping chain implies fast mixing ¢bad cut,” i.e., a set of edges of small capacity separating
the tempering chain [17], although the converse is unknowth.c Q from S = Q \ S. The cut we will use to bound
For both tempering and swapping, we must be carethe conductance in the context of the Potts model comes
about how we choose the number of distributio’s+ 1. from thefirst-order phase transitionThis characterizes the
It is important that successive distributioms and 7;; following phenomenon. At high temperature (Iof) we
have sufficiently small variation distance so that temperatane in adisorderedstate and see roughly equal numbers of
moves are accepted with nontrivial probability. However, each color in a typical coloring, while at low temperature
must be small enough so that it does not blow up the runnifiggh 3) we are in arorderedstate, where one color clearly
time of the algorithm. Following [10], we se/ = O(n). dominates. The crucial concept is how we go from the
This ensures that for the values 6f, at which we wish to disordered to the ordered state as we slowly lower the
sample, the ratio ofr; andr;;; is bounded from above andtemperature. Rather than seeing a gradual change in the size

below by a constant. of the largest color class, the changediscontinuousand
we see an abrupt change around some critical valueTo
3 Torpid Mixing of Tempering on the Potts model show slow mixing of the tempering chain, we show that this

We will show lower bounds on the mixing time of the temdiscontinuity translates to a bad cut, even when we take the
pering chain on the mean-field Potts model by boundiH§ion of Metropolis chains at many temperatures.
the spectral gapof the transition matrix of the chain. Let

X0, AL, .-, Al 1 be the eigenvalues of the transition ma-1 Slow mixing. ~ Let n = [V]| be the size of the
trix P, sothatl = Ao > |\i| > |A;| forall i > 2. Let vertex set of the underlying graph being colored. Let
Gap(P) = Ao — M. Q = 3" be the set of (not necessarily proper) colorings
The mixing time is related to the spectral gap of tH¥f the graph. Consider a partition d? into sets (2,
chain by the following theorem (see [16]) : S0 thato = (01,03,05) and oy + 0 + 05 = n With
o1,02,03 € {0,---,n}. Since there are exactly " )
THEOREM3.1. Let 7, = ;rggw(x). Forall e > 0, colorings in©2,, , we have o
(@) 7(2) < Gaprpy lo8(72)- ) < n >eﬁi(of+a§+o§)
mi(ds) = VAN
! 01,02,03 Z(/BZ)

(b) 7(2) > sganlpy log(x).

The conductanceintroduced by Jerrum and Sinclair, proLet {2,/3 denote the set of configuratiol, , whereo =
vides a good measure of the mixing rate of a chain [7]. F&},%,%2); /3, configurations wherer = (2,2, 2);

S c Q,let and ,/,, configurations whereo = (§,%,%). The
following lemmas will demonstrate that there is a critical

m(z)P(z,y) temperature at which, ;s and Q,,,; have very large

Bg = Fs _ 2€Sy¢S ‘ weight although there is a region aroufig ,» that has very
Cs 7(S) small weight. This will allow us to bound the conductance.

(For convenience, we assume throughout that 12k, for

Then, the conductandds given by some integet: )

¢ = i bg.
S:ﬂ'?&%%l/? s LEMMA 3.1. There existd) < . < oo such that
It has been shown by Jerrum and Sinclair [7] that, for any; e (Q — 14 (O +o(1
reversible chain, the spectral gap satisfies W) 75 () 8 (Banss) £ o(1).

THEOREM 3.2. For any Markov chain with conductance (i) 75.(,/3) is exponentially larger thanrs_(9,,/2).
and eigenvalue gafrap(P),
) Proof. (i) First we determine3. using Stirling’s equation.

% < Gap(P) < 29. Let 7s,(Q,/3) = 75, (Q2ny3). Then,

(an2 a2
Lit suffices to minimize overr(S) < 1/p(n), for any polynomialp; n (5 +1s) _
2n non | Ty T\ R
676 (Bi) 3

n\ eBfi(n’/3)
this decreases the conductance by at most a polynomial factor (see [16]). %, % )

R , Z(B:)



This implies

e _ () (3) (3) g o SR
(3) (3) (2 O - )G o)
2\ (1) 3 /
_ (3) 1 (na) <%> (1+0@m™)) To test the sign of the derivativég((:))) , We compare the
a 2 r 7 r 7
) (3) quantities” and £, where L = gin(4z — 1) and £ =
:E(1+O(n’1)), In(+2) + 158 Atz = 1 wehavel =0 =2,
. andg # 0, giving a stationary point. Lef. = 21n(2)/n,
which occurs when and thusB;n < 21n(2). Forn > 100,
21n(2) 2 o '
;= + In(1+0(n . 9 1
21n(2 ! 11
Setting 3. to 2122) gives the desired resuilt. Ben(dz — 1) < 9_’ I c <Z’ 5) )

(i) Let 8. = 222 Then we have ,
As j; is decreased, the slope of the Ii@e decreases from

<n Z n> eB:(3n/8) the (positive) slope of the ling.n(4x — 1). Thus, it is
5. (Q/2) _ \274°4 sufficient that the above inequalities hold/t to prove the
75 (Un/3) L n) eBe(n?/3) lemma for3; < f. since- is independent off;. ]
37303
n\3 LEMMA 3.3. For every inverse temperatures; < f.,
— (ns)g()mf eBen?/24 7 (2 /2) is exponentially smaller than;(2,,/3) -
27/ \1 )
57 /3\ & Proof. Note that only the exponential term ﬁgg—"g;
=3 §> 12 (14 0(n 1)) varies with 3;. Thus, for some functioh(n), we have
27 _L]n(ﬁ) _1 ﬂ-z(Qn/Z) B-n2(H(l L1y _pf(l 11y
— - 12 213 . — 77 = ph i 2°4°4 3:3°3
32 ¢ (1+0(™)). = Ti@y) )
The first part of the lemma verifies that at the critical = h(n)efin” (1/29)

temperature there are 3 ordered modes (one for each color,
by symmetry) and 1 disordered mode. In the next lemmas,
we show that the disordered mode is separated from the
ordered modes by a region of exponentially low densiffhe claim follows by the second part of Lemma 3.1. =
To do this, we use the second part Lemma 3.1 and show
that 7;(€2,,/,) bounds the density of the separating reguWe use these facts to bound the conductance of the tempering
at eachs, . chagn at the critical tempera_turféc _Let A C Q be the

Let 7i(z) = (%,m, n m) for = € [0, %], region bounded by gnd including thelines = o5 = 03 =
be the continuous extension of the discrete functionr L&t S = {(f”all) |z € A, Bo < B < Bc}. Let
i (2, am, 2 — an). B={zxeS] 3a’ €5, prar # Q} be the boundary of

S. The setS defines a bad cut in the state space of the

LEMMA 3.2. For n sufficiently large, the real functiontempering chain.

7i(z) is unimodal for0 < z < i and attains its maximum
atz = 1 forall i suchthats; < .. THEOREM3.3. For n sufficiently large, there exists

0 < a < oo such thatdg < e—onto(n)

< n(nyetr/zn = T (Sngz)
- T3, (Qn/3)

Proof. Examining7; on this line, we find

n S ((3) 427 +(3-2)") Proof. Using the definition of conductance, we have
() = .
) (2735"’2 w”) Z(B:) S @) S P,
Neglecting factors not dependent srand simplifying using Be — Fs _ B =€B )
Stirling’s formula, we need to check for the stationary points s Cs Z Z 75(x)

of the function B z€A



Z Z ma(x) THEOREM4.1. The swapping chain with inverse tempera-
B z€B tures Bo, -+, Bm, where 3; = B* - 47 is rapidly mixing
B Z Z 5(z) on the bimodal exponential distribution defined[eniV, N']
where M = max(N,N').

73y (Qny2) + - +75,(Qny2)
T T (Qn/B) + - +mg, (Qn/B)

T3, (Qn/2) n
S (@) O

We briefly state the comparison and decomposition the-
orems, which will be the main tools used to prove the results
in this section.

n)

Comparison: The comparison theorem of Diaconis
o _ and Saloff-Coste is useful in bounding the mixing time of
The first inequality follows from Lemma 3.2, and the secorgMarkov chain when the mixing time of a related chain on

from Lemma 3.3. By Stirling’s formula, we find the same state space is known.
sn? a8 Let M and M be two Markov chains orf2. Let
By = e F+3(5)+OMm) _ ,-anto(n) P and = be the transition matrix and stationary distri-
am 1 . _ 2in() butions of M and let P and 7 be those of M. Let
where—a = 5 + $In (§) at g, = =5~ B E(P) = {(z,y) : P(z,y) > 0} and E(P) = {(z,y) :

P(z,y) > 0} be sets of directed edges. Fory €

factor of each other. By Theorem 3.2 the upper bound Sich thatP(z,y) > 0, define apath ., a sequence of
glgtese = @o,-- -,z =y such thatP(z;,z;11) > 0.

&5 bounds the spectral gap of the tempering chain at Y

inverse temperaturg, . Applying Theorem 3.1, we find theLet I'(z,w) = {(l“,y) € E(P): (z,w) € %y} denote
tempering chain for the 3-state Potts model mixes slowly. &g set of endpoints of paths that use the e(igey).

a consequence of Zheng's demonstrating that rapid mixing ) ]

of the swapping chain implies fast mixing of the temperingHEOREM4.2. (Diaconis and Saloff-Coste [3])

chain [17], we also have established the slow mixing of the 1 ~

swapping chain for the mean-field Pott model. Gap(P) > 1 - Gap(P),

It can be verified thaC's and C5 are within a linear

4 Modifying the Swapping Algorithm for Rapid Mixing where

We now reexamine the swapping chain on two classes of 1 o~
distributions: one is an asymmetric exponential distributioh = , MaX =()P(z,w) Y belT@)Pla,y) 5
(generalizing a symmetric distribution studied by Madras I'(z,w)

and Zheng [10]), and the other a class of the mean-field pecomposition: Decomposition theorems are useful
models. First, we show that swapping and tempering are fasthreaking a complicated Markov chain into smaller pieces
on the exponential distribution. The proofs suggestthat a k@t are easier to analyze [9, 12]. L&, ---,Q,, be a
idea behind designing fast sampling algorithms for mode{fjoint partition ofQ2. For eachi € [m], define the Markov

with first-order phase transitions is to define a new set @ain A1, on Q; whose transition matri®;, = P[], the
interpolants that do not preserve the bad cut. We start Wilttrictionof P to €, is defined as

a careful examination of the exponential distribution since .
the proofs easily generalize to the new swapping algorithm® Fi(2,y) = P(z,y), if = # y andz,y € Q;;
applied to bimodal mean-field models. « P(z,2) =1 Z Pi(z.y), Vo € Q.
Example I: Let C' > 1 be a real constant. LeV and N’

YyEQ;,y#
be positive integers. The bimodal exponential distribution is A
defined as The stationary distribution ofM; is ;(4) = “ST(SI_)Z)
olel Define theprojection P to be the transition matrix on the
() = mo(@) = ——, = €[-N,N], state spacén]
=/ . 1
where Z is the normalizing constant. Define the interpolat- P(i,j) = () Z m(2)P(z,y).
ing distributions for the swapping chain as ¥ z€Qi,yeQ;
Cazlel ) , THEOREM4.3. (Martin and Randall [12])
mi(x) = 7 , 0<i< M,z e [-N,N']

Gap(P) > %Gap(?) <min Gap(Pi)> .

where Z; is a normalizing constant. i€[m]



4.1 Swapping on the exponential distribution. Bounding the mixing rate of the projection:

We are now prepared to prove Theorem 4.1. The staige graph underlying the Markov chain for the projection
space for thle A;leapplng chain applied to Example | 5 js an A7 + 1 dimensional hypercube. The stationary
Q= {-N,N}. probabilities of the projection chain are given by

DEFINITION 4.1. Let z = (.Z’g,...,.]Z’WMz e 0. Thetrac_e 7(t) = Z 7).
Tr(z) =t = (to,....,tnm) € {0,1}M+1 wheret; = 0 if -
2 <Oandt; = 1ifz; >0,i=0,--,M. welt « Tr(z)=t
M1 i i Intuitively, we can think about a simpler random walk
The 2 possible values of the trace characterize &y on the weighted hypercube as follows. Start at some
partition we use. Letting); be th_e_ set of configurations with r + 1 bit vector, say0,0,...,0. At each step we are
tracet, we have the decomposition allowed to transpose two neighboring bits, or we can flip
Q= U a, just the lowest bit. Each of these moves is performed with
' the appropriate Metropolis probability. We will show that
this chain is rapidly mixing for the weights that arise in
This partition of(2 into sets of fixed trace sets the stagiéde projectionP’. This captures the idea that for the true
for the decomposition theorem. The restrictidhssimulate projection chain, swap moves (transpositions) always have
the swapping Markov chair? on regions of fixed trace.constant probability, and at the highest temperature there
The projectionP is the M + 1-dimensional hypercube,is high probability of changing sign. Of course there is a
representing the set of allowable trades The analysis of chance of flipping the bit at each higher temperature, but we
the restrictions follows precisely from [10], the symmetriwill see that this is not even necessary for rapid mixing.
case. Analyzing the projection, however, becomes more To analyze RW1, we can compare it to an even simpler
difficult, since in this case the stationary distribution over thealk, RW2, that chooseanybit at random and updates it to
hypercube is highly non-uniform. This reflects the fact th@tor 1 with the correct stationary probabilities. It is easy to
at “low temperatures,” one side of the bimodal distributictrgue that RW2 converges very quickly and we use this to
becomes exponentially more favorable. We resolve this injer the fast mixing of RW1.
appealing to the comparison theorem. More precisely, letP be a new chain on the hypercube
] o ] ) for the purpose of the comparison. At each step it picks
Bounding the mixing rate of the restricted chains: i €, {0,..,M} and updates the’” componentt; by
If we temporarily ignore swap moves on the restrictionshoosingt; exactly according to the appropriate stationary
the restricted chains move independently according to thistribution at3;. In other words, thei** component is
Metropolis probabilities on each of the + 1 distributions. at stationarity as soon as it is chosen. Using the coupon
The following lemma reduces the analysis of the restrictedllector’s theorem, we have
chains to analyzing the moves éf at each fixed tempera-
ture.

te{0,1}M+1

LEMMA 4.2. The chain P on {0,1}*! mixes in time
O (Mlog(M +¢71)) and Gap(P)~' = O(M log M).
LEMMA 4.1. (Diaconis and Saloff-Coste [3])For i =
1,...,m, let P; be a reversible Markov chain on a finite
state space;. Consider the product Markov chai® on THEOREM4.4. The projectionP of the swapping Markov

We are now in a position to prove the following theorem.

the product spacé€), x - -- x Qas, defined by chain is rapidly mixing on{0, 1}M+!
1 M To apply the comparison theorem, we translate transi-
P = I - QIPRI®--®1. tions in the chain”, (whose mixing time we know) into a
M+1= Y e canonical path consisting of moves in the ch&inLet (¢, t')

be a single transition iP from t = (to, ..., 4, ..., tar) tO

ThenGap(P) = g7 min {Gap(P))} . t' = (to, ..., 1 — t;, ..., tar) thatflips thei’® bit.

R o The canonical path from to ' is the concatenation of
Now ; restricted to each of thé/ + 1 distributions is three pathsp; o p, o p3. In terms of temperingp,; is a
unimodal, suggesting tha®; should be rapidly mixing at heating phase angs is a cooling phase.
each temperature. Madras.and Zheng fprmalize this inl[_10]. p. consists of i swap moves from ¢ to
and show that the Metropolis chain restricted to the positive (.t P tar):
or negative parts of2; mixes quickly. Thus, from Lemma 00 e By By e BM
4.1 and following the arguments in [10], we can concludee p, consists of one step that flips the bit corre-
that each of the restricted Markov chaidg is rapidly sponding to the highest temperature to move to
mixing. (1 —ti,to, -y tag);



e p; consists ofi swaps until we reaclf = (t,...,1 — Continuing in this way we find
ti, ceey tM) .

To boundA in Theorem 4.2, we will establish that H me(ze) > H me(t7),
t=j t=j

— 5 i — D /
(4.1) 7(2) P(z,2') > 7(t) P(t,1'), and thus
for any transition(z, z') in the canonical path. Second, we m(z) 2 7(tY).
need to ensure that the number of paths using the transition Likewise, by taking one more term, we find that
(z,2'), I ., is at most a polynomial. These two conditions(z') > 7(¢*). Together with equation 4.2 this implies
are sufficient to give a polynomial bound on the parameter

A in the comparison theorem. For any,z') we have 7(2) P(z,2') > ®(t) P(t,t').

IT(z,2")] < M?, so it remains to establish the condition in

Equation 4.1. Case 2: (The transition alongp,) Consider the tran-
Case 1(Transiti0ns a|ong)1) sition from z = (ti, t(), ey ti—l, ti+1, ey tM) to

2" = (1 — t,to,...,tas) that flips the first bit of z.

Let z = (to, -, tj—1,tistjy ey tiz1, i1y ey b and ; :
(o, s bzt by by o tim i, o 1) Repeating the argument from Case 1, it follows that

2 = (t07 "'7ti7tj—17 "'7ti—17ti+17 7tM) .

o . 7(2) ) 7(2') min (f(z),ﬁ(z')) > T(t*).
T(2)P(2,2") = s min (1, = . . . o
(4.2) 2(M +1) T(z) Therefore, again we find equation 4.1 is satisfied.
: A N o
RIS N (7(2),7(2")) Case 3(Transitions along; ) This is similar to Case 1.

In all three cases, we find that {&, z’) is one step on
the canonical path fromt to #', equation 4.1 is satisfied.
Therefore, it follows that

M M
= Y m@2 ng(zz)- S e /() P11

=0 T""(I)Z = zy

First we considef(z).

A= max — < M2
Let us assume, without loss of generality, that< N'. (z.2)€E(P) 7(2)P(z,2") B
Then we have
P 1) = ) <1 f(t')> By the comparison theorem we find th@tp(P) > M.
’ 2(M +1) T 7 (t) We have now established all the results necessary to apply
1 PR the decomposition theorem 4.3 and show Theorem 4.1.
= mmm (w(t),7(t')

7(t*) 4.2 Bimodal mean-field spin models. We now Ioek

= m, more closely at mean-field models to see how to modify the

swapping algorithm. Consider the following very general
wheret* = (to,...,ti1,0,ti11,...,tar). We want to show €lass of mean-field models.

that 7(¢*) < 7(2). Itis useful to partitiont" into blocks gy ample 11: Bimodal mean-field spin models: Fix con-
of bits ¢, that equal 1, separated by one or more Zeros. 's?énts,é’ > 0, Ay, As, ..., A, and letn be a large integer.
k < i bethe largest value such that = 0. Thenitis €asy The state space of the mean-field model consists of all
to verify that spin configurations on the complete gragti,, namely
i i Q = {1,..,q}" The probability distribution over these
H Te(ze) > H mo(t). configurations is (.jete'rmlned.bﬁ, inverse temperature,
and {A;}, the k-wise interactions between particles. The
Hamiltonian is given by
Similarly, considering the next block af (i.e., the next set

{=k+1 {=k+1

of bits such thatt, = 1) until the first indexk’ such that Hxz) =Y Y Akbay.my)
tk’ = 0, ko {i1,...,ix }C[n]
k k
H me(ze) > H mo(th). whered is the Kroneckers function that takes the value 1
k1 - (k1 if all of the arguments are equal and is 0 otherwise (when



k = 1 we setd,, =1iff z; = 1). The Gibbs distributionis wheregs; = BMﬁ' and Z; normalizes the distribution. Our
new algorithm stems from the observation that this is a poor
, forz € Q, choice of interpolants because they preserve the first-order
phase transition. We can do much better by exploring a wider
class of interpolating distributions.
To see the flexibility we have in defining the set of

eBH(z)
W(l‘) = W(B,Al,---,Ak)(x) = 7

whereZ = ) ¢?#(¥) is the normalizing constant.

yeQ L . .
For any partition ofn, o = (01, ...,04), >-, 04 = n, distributions, define
define 2, as the set of configurations with; vertices (@) fi (@)
assigned colot. Let us consider thtal spins distribution pir) = ———,
Se = () = Z (). whereZ; = > o mi()fi(x) is another normalizing con-

2€Q, stant. Whenf;(z) is taken to be the constant function, then
We consider here the cases whén is a bimodal function We obtain the distributions of the usual swapping algorithm.

in Z2~! (i.e., when there are exactly two local optima). The Flat-Swap Algorithm:

~ An important special case of Example Il is the meagq, oy variant, thélat-Swapalgorithm, let us consider

field Ising model in the presence of an external field. This

model is defined by parametegs= 2, 5 > 0, the inverse n M
(Ula 7011)

temperature, and’ > 0, the external magnetic field. The filz) =
Gibbs distribution over configurations € Q is

We shall see that this gradually flattens out the total spins
distributions uniformly, thus eliminating the bad cut that can
occur when we takef;(x) constant. The functiory;(x)
éa_ffectively dampens the entropy (multinomial) just as the
change in temperature dampens the energy term coming
from the Hamiltonian. We have the following theorem.

(i Feime; + T baim1)
7T(.’L’) = 7T(/37J)(1') = Z(B J) i

where Z(3, J) is the normalizing constant. This can be d

scribed by the model in Example Il by taking= 2, 4, =

J and A, = 2. It can be shown that this distribution is bi

modal for all V‘?"“es off and J.' . . T,—|EOREM4.5. The Flat-Swap algorithm is rapidly mixing
A second important special case included in Examplefbr any bimodal mean-field model.

is the g-state Potts model where we restrict to the part of the

state spac€l,.q C (! suchthai; > o2 > ... > 0,. Note To prove Theorem 4.5, we follow the strategy set forth
that 7(Qora) = 7(2)/n!. Consequently, sampling fromgo; Theorem 4.1, using decomposition and comparison in a
Qora is sufficient since we can randomly permute the cologgnijar manner. For simplicity, we concentrate our exposi-
once we obtain a sample and get a random configurationjgh here on the Ising model in an external field. The advan-
the Potts model on the nonrestricted state spaceHere taqe of this special case is that the total spins configurations
we takek = 2, A, = 0 and 4, = J, and the Gibbs form g one-parameter family (i.e., the number of vertices as-

distribution becomes signed +1), much like in Example I. The proofs for the gen-
JERD SHPE IS eral class of models, including the Potts modektyp, , are
m(z) = m,g)(x) = W analogous. We sketch the proof of Theorem 4.5.

For the Ising model, we have
Restricting toQ,.q provides a bimodal distribution, which
is required for the arguments that follow. n\ ™
Our results from the previous section indicate that swap- fi(z) = <k> ’
ping is not always fast on models defined in Example Il; it is
easy to see that the arguments directly apply to Potts mod#8ere k vertices are assigneg1 andn — k are assigned
restricted toQ2o,q . In contrast, the new swapping algorithnr1. Again we take3; = 3* - ;. Note thatf;(z) is easy
we define next is can be shown to be rapidly mixing for tfi@ compute givenz. A simple calculation reveals that, for

entire class of models defined in Example 1. T € Q)

i—M

4.3 A new swapping algorithm. In the traditional swap- Pi(Qpmi) = <n>p'($) - i(pM(Q(k k)))ﬁ'
i e,n—k [ Zz{ k,n—k .

ping algorithm, the interpolating distributions are defined as k

eBiH(x) ] Thus, all the total spins distributions have the same relative
mi(T) = T A0 (8) = 7 0<i< M, ghape, but get flatter as is decreased. This no longer
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