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Abstract

Simulated tempering and swapping are two families of sam-
pling algorithms in which a parameter representing temper-
ature varies during the simulation. The hope is that this will
overcome bottlenecks that cause sampling algorithms to be
slow at low temperatures. Madras and Zheng demonstrate
that the swapping and tempering algorithms allow efficient
sampling from the low-temperature mean-field Ising model,
a model of magnetism, and a class of symmetric bimodal
distributions [10]. Local Markov chains fail on these distri-
butions due to the existence of bad cuts in the state space.

Bad cuts also arise in theq -state Potts model, another
fundamental model for magnetism that generalizes the Ising
model. Glauber (local) dynamics and the Swendsen-Wang
algorithm have been shown to be prohibitively slow for
sampling from the Potts model at some temperatures [1, 2,
6]. It is reasonable to ask whether tempering or swapping
can overcome the bottlenecks that cause these algorithms to
converge slowly on the Potts model.

We answer this in the negative, and give the first ex-
ample demonstrating that tempering can mix slowly. We
show this for the 3-state ferromagnetic Potts model on the
complete graph, known as the mean-field model. The slow
convergence is caused by a first-order (discontinuous) phase
transition in the underlying system. Using this insight, we
define a variant of the swapping algorithm that samples ef-
ficiently from a class of bimodal distributions, including the
mean-field Potts model.

1 Introduction

The standard approach to sampling via Markov chain Monte
Carlo algorithms is to connect the state space of configura-
tions
 via a graph called the Markov kernel. TheMetropo-
lis algorithmproscribes transition probabilities to the edges
of the kernel so that the chain will converge to any desired
distribution [14]. Unfortunately, for some natural choices of
the Markov kernel, the Metropolis Markov chain can con-
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verge exponentially slowly. Statistical mechanics offers a
wealth of sampling problems for which these methods are
often applied; it is now well-known that phase transitions
in the underlying systems can cause local Markov chains to
require exponential time to reach equilibrium [1].

A particular example of this phenomenon is observed
on the Potts model. In theq -state Potts model, vertices of
an underlying graph are colored with one ofq colors. In
the ferromagnetic case, vertices connected by an edge in the
graph prefer to have the same color. The strength of this
preference is a function of the temperature: at high temper-
ature the correlation is negligible, while at low temperatures
the effect is strong. At low enough temperatures, local Mar-
kov chains that change the color one vertex at a time will be
prohibitively slow [1]. This is because to move from a con-
figuration that is predominantly red to one that is predomi-
nantly blue, the chain will have to go through highly unlikely
configurations where no color dominates.

When the underlying graph in the Potts model is the
complete graph, it is known as themean-fieldor Curie-Weiss
model. Mean-field models are important because, despite
their simplicity, they capture key features present in more
complicated graphs. Moreover, for natural problems such as
the mean-field Potts and Ising models, there remain obstacles
to sampling efficiently, even on the complete graph. Gore
and Jerrum showed that the Swendsen-Wang algorithm, a
method for sampling that often succeeds in circumventing
bottlenecks in the state space, fails on the mean-field Potts
model for q � 3 near the critical temperature (where the
phase transition occurs) [6]. Subsequently, Cooper et al.
considered the mean-field Ising model (q = 2) and showed
that Swendsen-Wang is fast everywhere, except possibly
near the critical point, where it remains unresolved. [2].

1.1 Tempering, swapping, and annealing. Simulated
annealing provides the insight that varying a parameter rep-
resenting temperature during a simulation can be a key to
designing efficient algorithms [8]. Annealing is intended for
optimization problems when direct methods are likely to get
trapped in local minima and never find the global optimum.
Similarly, simulated tempering and swapping are intended
for samplingwhen direct methods are slow [5, 11].

For the tempering and swapping algorithms, we allow
a chain to modify the temperature and interpolate between
M + 1 different distributions�0; :::; �M . At the lowest



temperature,�M is the goal distribution from which we
wish to generate samples; at the highest temperature,�0
is typically less interesting, but the rate of convergence is
fast. A Markov chain that keeps modifying the distribution,
interpolating between these two extremes, may produce
useful samples efficiently. Despite the extensive use of
simulated tempering and swapping in practice, there has
been little formal analysis. A notable exception is work by
Madras and Zheng [10] showing that swapping converges
quickly for two simple, symmetric distributions, including
the mean-field Ising model.

1.2 Results. In this work, we show that for the mean field
Potts model, tempering and swapping require exponential
time to converge to equilibrium. The slow convergence
of the tempering chain on the Potts model is caused by a
first-order (discontinuous) phase transition. In contrast, the
Ising model studied by Madras and Zheng has a second-
order (continuous) phase transition, which distinguishes why
tempering works for one model and not the other.

In addition, we give the first Markov chain algorithm
that is provably rapidly mixing on the Potts model. Tradi-
tionally, swapping is implemented by defining a set of in-
terpolating distributions where a parameter corresponding to
temperature is varied. We make use of the fact that there is
greater flexibility in how we define the set of interpolants.
Finally, our analysis extends the arguments of Madras and
Zheng showing that swapping is fast on symmetric distribu-
tions so as to include asymmetric generalizations.

2 Preliminaries

2.1 The q -state Potts model. The Potts model was
defined by R.B. Potts in 1952 to study ferromagnetism and
anti-ferromagnetism [15]. The interactions between particles
are modeled by an underlying graph with edges between
particles that influence each other. Each of then vertices
of the underlying graphG is assigned one ofq different
spins(or colors). Aconfiguration � = (q1; � � � ; qn) is an
assignment of spins to the vertices, whereqi denotes the
spin at theith vertex. The energy of a configuration� is
a function of theHamiltonian

H(�) =
X

(i;j)2E(G)

J � Æ(qi; qj);

whereÆ is the Kronecker-Æ function that takes the value 1 if
its arguments are equal and zero otherwise. WhenJ > 0
the model corresponds to theferromagneticcase where
neighbors prefer the same color, whileJ < 0 corresponds
to theanti-ferromagneticcase where neighbors prefer to be
differently colored.

The state space
 of the q -state ferromagnetic Potts
model is the space of allqn q -colorings ofG . We will thus
use colorings and configurations interchangeably. Define

the inverse temperature� = 1

kT
, wherek is Boltzmann’s

constant. TheGibbs distributionon configurations at inverse
temperature� is given by

��(�) =
e�H(�)

Z(�)
;

whereZ(�) is the normalizing constant. Note that at� =
0 , this is just the uniform distribution on all (not necessarily
proper)q -colorings ofG .

We consider the ferromagneticmean-field modelwhere
G is the complete graph onn vertices and all pairs of
particles influence each other. For the 3-state Potts model,
q = 3 . Let �1; �2 , and �3 be the number of vertices
assigned the first, second, and third colors. Lettinge� =
�J=2 , we can rewrite the Gibbs distribution for the 3-state
Potts model as

�e�(�) = �e�(�1; �2; �3) =
e
e�(�2

1
+�2

2
+�2

3
)

Z(e�) ;

where the linear terms in the exponent are cancelled by those
in the denominator since�1 + �2 + �3 = n . We will
use this formulation from now on, substituting� for e� and
denoting�21 + �22 + �23 by H(�) .

2.2 Markov chains. To sample from a given distribution,
a common approach is to design a Markov chain so that
an appropriately defined random walk run for a sufficiently
long time provides a good sample. We formalize how long
“sufficiently long” must be, as well as when a sample is
“good” as follows. LetM be an ergodic (i.e., irreducible
and aperiodic), reversible Markov chain with finite state
space
 , transition probability matrixP , and stationary
distribution � . Let P t(x; y) denote thet-step transition
probability fromx to y .

DEFINITION 2.1. Thetotal variation distanceat time t is

kP t; �k = max
x2


1

2

X
y2


jP t(x; y)� �(y)j:

DEFINITION 2.2. Let " > 0 , then themixing time �(") is

�(") = minft : kP t0 ; �k � ";8t0 � tg:

M is rapidly mixing if the mixing time is bounded above
by a polynomial inn and log 1

"
, wheren is the size of each

configuration in the state space. When the mixing time is
exponential inn; we say the chain istorpidly mixing.

2.2.1 The Metropolis algorithm. The Metropolis-
Hastings algorithm is useful for sampling from non-uniform
distributions [14]. Let� be the distribution to be sampled
from. A graphG (the Markov kernel) is chosen so as to



connect the state space, where vertices are configurations and
edges are allowable 1-step transitions. The transition proba-
bilities onG are defined as

P (x; y) =
1

2�
min

�
1;
�(y)

�(x)

�
;

for all x; y , neighbors inG , where � is the maximum
degree ofG . It is easy to verify that if the kernel is connected
then� is the stationary distribution.

For the Potts model, a natural choice for the Markov
kernel is to connect configurations at Hamming distance
one. Unfortunately, for large values of� , the Metropolis
algorithm converges exponentially slowly on the Potts model
for this kernel [1, 2]. This is because the most probable states
are largely monochromatic and to go from a predominantly
red configuration to a predominantly blue one we would
have to pass through states that are highly unlikely at low
temperatures.

2.2.2 Simulated tempering. Simulated tempering at-
tempts to overcome this bottleneck by introducing a temper-
ature parameter that is varied during the simulation, effec-
tively modifying the distribution being sampled from. Let
0 = �0 < ::: < �M be a set of inverse temperatures. The
state space of the tempering chain isb
 = 
� f0; � � � ;Mg;
which we can think of as the union ofM + 1 copies of the
original state space
 , each corresponding to a different in-
verse temperature. Our choice of�0 = 0 corresponds to in-
finite temperature where the Metropolis algorithm converges
rapidly to stationarity (on the uniform distribution), and�M
is the inverse temperature at which we wish to sample. We
interpolate by setting�i = �M � i

M
, and let theith fixed

temperature distribution�i be

�i = ��i ; 0 � i � M:

The stationary distribution of the tempering chainb� , is
chosen to be uniform over temperatures, and the conditional
distributions are the fixed temperature Gibbs distributions:

b�(x; i) =
1

M+1
�i(x); x 2 
:

The tempering Markov chain consists of two types of moves:
level moves, which update the configuration while keeping
the temperature fixed, andtemperature moves,which update
the temperature while remaining at the same configuration.

� A level moveconnects(x; i) and (x0; i) , wherex and
x0 are connected by one-step transitions of the Metropolis
algorithm on 
 at inverse temperature�i . The movebP ((x; i); (x0; i)) is accepted with probability

1

2(M+1)
Pi(x; x

0) =
1

2(M+1)
min

�
1;
�i(x

0)

�i(x)

�
:

HerePi(x; x0) is the Metropolis probability of going from
x to x0 according to the stationary probability�i .

� A temperature moveconnects(x; i) to (x; i � 1) and
the move is accepted with probability

bP ( (x; i); (x; i� 1))

=
1

2(M+1)
min

�
1;
b�(x; i� 1)

b�(x; i)
�

=
1

2(M+1)
min

�
1;

Z(�i)

Z(�i�1)
e(�i�1��i)H(x)

�
:

Notice that while the exponential factor is simple to calculate
given � and i , it is not easy to compute the ratio of parti-
tion functions since they are sums over exponentially many
configurations at different temperatures. The swapping algo-
rithm, also an aggregate chain using these temperatures, cir-
cumvents this difficulty in implementing temperature moves.

2.2.3 Swapping. The swapping algorithm of Geyer [5]
is a variant of tempering. The state space is the product
spaceb
 = 
(M+1) , the product ofM +1 copies of the
original state space, corresponding to inverse temperatures
�0 < ::: < �M . Let �M (x) = �(x) be the distribution
from which we wish to sample and let�0(x) = 1

j
j
(the

uniform distribution), forx 2 
 . A configuration in the
swapping chain is an(M+1)-tuplex = (x0; :::; xM ) 2 b
 ,
where each component represents a configuration chosen
from the ith distribution. The probability distributionb� is
the product measure

b�(x) =

MY
i=0

�i(xi):

The swapping chain also consists of two types of moves:

� A level moveconnectsx = (x0; :::; xi; :::; xM ) andx0 =
(x0; :::; x

0
i; :::; xM ) if x and x0 agree in all but theith

components, andxi and x0i are connected by one-step
transitions of the Metropolis algorithm on
 . The movebP (x; x0) is accepted with probability

1

2(M+1)
Pi(x; x

0) =
1

2(M+1)
min

�
1;
�i(x

0)

�i(x)

�
:

� A swap moveconnectsx = (x0; :::; xi; xi+1; :::; xM ) to
x0 = (x0; :::; xi+1; xi; :::; xM ) , i.e., it interchanges theith

and i+ 1st components, with the appropriate Metropolis
probabilities onb� . In particular,

bP (x; x0) =
1

2(M+1)
min

�
1;
b�(x0)
b�(x)

�

=
1

2(M+1)
min

�
1;
�i+1(xi)�i(xi+1)

�i(xi)�i+1(xi+1)

�

=
1

2(M+1)
min

�
1; e(�i+1��i)(H(xi)�H(xi+1)

�
:



Notice that now the normalizing constants cancel out.
Hence, implementing a move of the swapping chain is
straightforward, unlike tempering where good approxima-
tions for the partition functions are required. Zheng proved
that fast mixing of the swapping chain implies fast mixing of
the tempering chain [17], although the converse is unknown.

For both tempering and swapping, we must be careful
about how we choose the number of distributionsM + 1 .
It is important that successive distributions�i and �i+1

have sufficiently small variation distance so that temperature
moves are accepted with nontrivial probability. However,M

must be small enough so that it does not blow up the running
time of the algorithm. Following [10], we setM = O(n) .
This ensures that for the values of�M at which we wish to
sample, the ratio of�i and�i+1 is bounded from above and
below by a constant.

3 Torpid Mixing of Tempering on the Potts model

We will show lower bounds on the mixing time of the tem-
pering chain on the mean-field Potts model by bounding
the spectral gapof the transition matrix of the chain. Let
�0; �1; : : : ; �j
j�1 be the eigenvalues of the transition ma-
trix P , so that1 = �0 > j�1j � j�ij for all i � 2 . Let
Gap(P ) = �0 � j�1j .

The mixing time is related to the spectral gap of the
chain by the following theorem (see [16]) :

THEOREM 3.1. Let �� = min
x2


�(x) . For all " > 0 ,

(a) �(") � 1

Gap(P )
log( 1

�
�
"
) .

(b) �(") � j�1j

2Gap(P )
log( 1

2"
) .

The conductance, introduced by Jerrum and Sinclair, pro-
vides a good measure of the mixing rate of a chain [7]. For
S � 
 , let

�S =
FS

CS
=

X
x2S;y=2S

�(x)P (x; y)

�(S)
:

Then, the conductance1 is given by

� = min
S:�(S)�1=2

�S :

It has been shown by Jerrum and Sinclair [7] that, for any
reversible chain, the spectral gap satisfies

THEOREM 3.2. For any Markov chain with conductance�
and eigenvalue gapGap(P ) ,

�2

2
� Gap(P ) � 2�:

1It suffices to minimize over�(S) � 1=p(n) , for any polynomialp ;
this decreases the conductance by at most a polynomial factor (see [16]).

Thus, to lower bound the mixing time it is sufficient to show
that the conductance is small.

If a chain converges rapidly to its stationary distribution
it must have large conductance, indicating the absence of
“bad cut,” i.e., a set of edges of small capacity separating
S � 
 from S = 
 n S . The cut we will use to bound
the conductance in the context of the Potts model comes
from thefirst-order phase transition. This characterizes the
following phenomenon. At high temperature (low� ) we
are in adisorderedstate and see roughly equal numbers of
each color in a typical coloring, while at low temperature
(high � ) we are in anorderedstate, where one color clearly
dominates. The crucial concept is how we go from the
disordered to the ordered state as we slowly lower the
temperature. Rather than seeing a gradual change in the size
of the largest color class, the change isdiscontinuousand
we see an abrupt change around some critical value�c . To
show slow mixing of the tempering chain, we show that this
discontinuity translates to a bad cut, even when we take the
union of Metropolis chains at many temperatures.

3.1 Slow mixing. Let n = jV j be the size of the
vertex set of the underlying graph being colored. Let

 = 3n be the set of (not necessarily proper) colorings
of the graph. Consider a partition of
 into sets 
�

so that � = (�1; �2; �3) and �1 + �2 + �3 = n with
�1; �2; �3 2 f0; � � � ; ng . Since there are exactly

�
n

�1;�2;�3

�
colorings in
� , we have

�i(
�) =

�
n

�1; �2; �3

�
e�i(�

2

1
+�2

2
+�2

3
)

Z(�i)
:

Let 
n=3 denote the set of configurations
� , where� =

(n
3
; n
3
; n
3
) ; 
2n=3 , configurations where� = ( 2n

3
; n
6
; n
6
) ;

and 
n=2 , configurations where� = (n
2
; n
4
; n
4
) . The

following lemmas will demonstrate that there is a critical
temperature at which
n=3 and 
2n=3 have very large
weight although there is a region around
n=2 that has very
small weight. This will allow us to bound the conductance.
(For convenience, we assume throughout thatn = 12k; for
some integerk .)

LEMMA 3.1. There exists0 < �c < 1 such that

(i) ��c(
n=3) = ��c(
2n=3) + o(1):

(ii) ��c(
n=3) is exponentially larger than��c(
n=2):

Proof. (i) First we determine�c using Stirling’s equation.
Let ��i(
n=3) = ��i(
2n=3) . Then,

�
n

2n
3
; n
6
; n
6

�
e�i(

4n2

9
+
n2

18
)

Z(�i)
=

�
n

n
3
; n
3
; n
3

�
e�i(n

2=3)

Z(�i)
:



This implies

e�in
2
(1=6) =

�
2n
3
!
� �

n
6
!
� �

n
6
!
�

�
n
3
!
� �

n
3
!
� �

n
3
!
�

=

�
2

3

� 2n
3

�
1

6

�n
3�

1

3

�n
�

1p
2

��
1 +O(n�1)

�

=
2
n
3p
2

�
1 +O(n�1)

�
;

which occurs when

�i =
2 ln(2)

n
+

2p
2n2

ln
�
1 +O(n�1)

�
:

Setting�c to 2 ln(2)

n
gives the desired result.

(ii) Let �c =
2 ln(2)

n
. Then we have

��c(
n=2)

��c(
n=3)
=

�
n

n
2
; n
4
; n
4

�
e�c(3n

2=8)

�
n

n
3
; n
3
; n
3

�
e�c(n

2=3)

=

�
n
3
!
�3

�
n
2
!
� �

n
4
!
�2 e�cn2=24

=

r
27

32

�
8

9

�n
2

eln(2)n=12
�
1 +O(n�1)

�

=

r
27

32
e
� n

12
ln

�
3
12

213

� �
1 +O(n�1)

�
:

The first part of the lemma verifies that at the critical
temperature there are 3 ordered modes (one for each color,
by symmetry) and 1 disordered mode. In the next lemmas,
we show that the disordered mode is separated from the
ordered modes by a region of exponentially low density.
To do this, we use the second part Lemma 3.1 and show
that �i(
n=2) bounds the density of the separating region
at each�i .

Let �i(x) =
�
n
2
; xn; n

2
� xn

�
, for x 2 [0; 1

2
] ,

be the continuous extension of the discrete function
�i
�
n
2
; xn; n

2
� xn

�
.

LEMMA 3.2. For n sufficiently large, the real function
�i(x) is unimodal for0 < x < 1

2
and attains its maximum

at x = 1

4
for all i such that�i � �c .

Proof. Examining�i on this line, we find

�i(x) =

�
n

n
2
; xn; n

2
�xn

�
e
�in

2

�
( 1
2
)
2

+x2+( 1
2
�x)

2
�

Z(�i)
:

Neglecting factors not dependent onx and simplifying using
Stirling’s formula, we need to check for the stationary points
of the function

f(x)

g(x)
=

e�in(x
2
+(

1

2
�x)2)

(x( 1
2
� x))

1

2nxx( 1
2
� x)(

1

2
�x)

:

To test the sign of the derivative
�
f(x)

g(x)

�0
, we compare the

quantitiesf
0

f
and g0

g
, where f 0

f
= �in(4x � 1) and g0

g
=

ln( x
1

2
�x

) + 1

2n
1�4x
1�2x

. At x = 1

4
we have f 0

f
= 0 = g0

g
,

andg 6= 0 , giving a stationary point. Let�c = 2 ln(2)=n ,
and thus�in � 2 ln(2) . For n � 100;

�cn(4x� 1) >
g0

g
; x 2

�
0;

1

4

�
;

�cn(4x� 1) <
g0

g
; x 2

�
1

4
;
1

2

�
:

As �i is decreased, the slope of the linef
0

f
decreases from

the (positive) slope of the line�cn(4x � 1) . Thus, it is
sufficient that the above inequalities hold at�c to prove the
lemma for�i < �c since g0

g
is independent of�i .

LEMMA 3.3. For every inverse temperature�i � �c ,
�i(
n=2) is exponentially smaller than�i(
n=3) .

Proof. Note that only the exponential term in
�i(
n=2)

�i(
n=3)

varies with�i . Thus, for some functionh(n) , we have

�i(
n=2)

�i(
n=3)
= h(n)�in

2
(H(

1

2
; 1
4
; 1
4
)�H(

1

3
; 1
3
; 1
3
))

= h(n)e�in
2
(1=24)

� h(n)e�cn
2
(1=24) =

��c(
n=2)

��c(
n=3)
:

The claim follows by the second part of Lemma 3.1.

We use these facts to bound the conductance of the tempering
chain at the critical temperature�c . Let A � 
 be the
region bounded by and including the lines�1 = �2 = �3 =
n
2

. Let S = f(x; i) j x 2 A; �0 � �i � �cg . Let
B = fx 2 S j 9 x0 2 �S; pxx0 6= 0g be the boundary of
S . The setS defines a bad cut in the state space of the
tempering chain.

THEOREM 3.3. For n sufficiently large, there exists
0 < � < 1 such that�S � e��n+o(n) .

Proof. Using the definition of conductance, we have

�S =
FS

CS
=

X
�

X
x2B

��(x)
X
x02A

P (x; x0)

X
�

X
x2A

��(x)



=

X
�

X
x2B

��(x)

X
�

X
x2A

��(x)

� ��0(
n=2) + � �+��c(
n=2)

��0(
n=3) + � �+��c(
n=3)
O(n)

���c(
n=2)

��c(
n=3)
O(n):

The first inequality follows from Lemma 3.2, and the second
from Lemma 3.3. By Stirling’s formula, we find

�S = e
�cn

2

24
+
n
2
ln( 8

9
)+ln(O(n)) = e��n+o(n);

where�� = �cn
24

+ 1

2
ln
�
8

9

�
at �c = 2 ln(2)

n
.

It can be verified thatCS and CS are within a linear
factor of each other. By Theorem 3.2 the upper bound on
�S bounds the spectral gap of the tempering chain at the
inverse temperature�c . Applying Theorem 3.1, we find the
tempering chain for the 3-state Potts model mixes slowly. As
a consequence of Zheng’s demonstrating that rapid mixing
of the swapping chain implies fast mixing of the tempering
chain [17], we also have established the slow mixing of the
swapping chain for the mean-field Pott model.

4 Modifying the Swapping Algorithm for Rapid Mixing

We now reexamine the swapping chain on two classes of
distributions: one is an asymmetric exponential distribution
(generalizing a symmetric distribution studied by Madras
and Zheng [10]), and the other a class of the mean-field
models. First, we show that swapping and tempering are fast
on the exponential distribution. The proofs suggest that a key
idea behind designing fast sampling algorithms for models
with first-order phase transitions is to define a new set of
interpolants that do not preserve the bad cut. We start with
a careful examination of the exponential distribution since
the proofs easily generalize to the new swapping algorithm
applied to bimodal mean-field models.

Example I: Let C > 1 be a real constant. LetN andN 0

be positive integers. The bimodal exponential distribution is
defined as

�(x) = �C(x) =
Cjxj

Z
; x 2 [�N;N 0];

whereZ is the normalizing constant. Define the interpolat-
ing distributions for the swapping chain as

�i(x) =
C

i
M
jxj

Zi
; 0 � i � M; x 2 [�N;N 0]

whereZi is a normalizing constant.

THEOREM 4.1. The swapping chain with inverse tempera-
tures �0; � � � ; �M , where �i = �� � i

M
is rapidly mixing

on the bimodal exponential distribution defined on[�N;N 0]
whereM = max(N;N 0) .

We briefly state the comparison and decomposition the-
orems, which will be the main tools used to prove the results
in this section.

Comparison: The comparison theorem of Diaconis
and Saloff-Coste is useful in bounding the mixing time of
a Markov chain when the mixing time of a related chain on
the same state space is known.

Let M and fM be two Markov chains on
 . Let
P and � be the transition matrix and stationary distri-
butions of M and let eP and e� be those of fM . Let
E(P ) = f(x; y) : P (x; y) > 0g and E( eP ) = f(x; y) :eP (x; y) > 0g be sets of directed edges. Forx; y 2 


such that eP (x; y) > 0 , define apath 
xy , a sequence of
statesx = x0; � � � ; xk = y such thatP (xi; xi+1) > 0 .

Let �(z; w) =
n
(x; y) 2 E( eP ) : (z; w) 2 
xy

o
denote

the set of endpoints of paths that use the edge(z; w) .

THEOREM 4.2. (Diaconis and Saloff-Coste [3])

Gap(P ) � 1

A
�Gap( eP );

where

A = max
(z;w)2E(P )

8<
:

1

�(z)P (z; w)

X
�(z;w)

j
xyje�(x) eP (x; y)

9=
; :

Decomposition: Decomposition theorems are useful
for breaking a complicated Markov chain into smaller pieces
that are easier to analyze [9, 12]. Let
1; � � � ;
m be a
disjoint partition of
 . For eachi 2 [m] , define the Markov
chainMi on 
i whose transition matrixPi = P [
i] , the
restrictionof P to 
i is defined as

� Pi(x; y) = P (x; y); if x 6= y andx; y 2 
i ;

� Pi(x; x) = 1�
X

y2
i;y 6=x

Pi(x; y); 8x 2 
i .

The stationary distribution ofMi is �i(A) =
�(A\
i)

�(
i)
.

Define theprojection P to be the transition matrix on the
state space[m]

P (i; j) =
1

�(
i)

X
x2
i;y2
j

�(x)P (x; y):

THEOREM 4.3. (Martin and Randall [12])

Gap(P ) � 1

2
Gap(P )

�
min
i2[m]

Gap(Pi)

�
:



4.1 Swapping on the exponential distribution.
We are now prepared to prove Theorem 4.1. The state
space for the swapping chain applied to Example I isb
 = f�N;N 0gM+1 .

DEFINITION 4.1. Let x = (x0; :::; xM ) 2 b
 . The trace
Tr(x) = t = (t0; :::; tM ) 2 f0; 1gM+1 where ti = 0 if
xi < 0 and ti = 1 if xi � 0 , i = 0; � � � ;M .

The 2M+1 possible values of the trace characterize the
partition we use. Lettingb
t be the set of configurations with
tracet , we have the decomposition

b
 =
[

t2f0;1gM+1

b
t:

This partition of
 into sets of fixed trace sets the stage
for the decomposition theorem. The restrictionsbPt simulate
the swapping Markov chainP on regions of fixed trace.
The projectionP is the M + 1-dimensional hypercube,
representing the set of allowable tracest . The analysis of
the restrictions follows precisely from [10], the symmetric
case. Analyzing the projection, however, becomes more
difficult, since in this case the stationary distribution over the
hypercube is highly non-uniform. This reflects the fact that
at “low temperatures,” one side of the bimodal distribution
becomes exponentially more favorable. We resolve this by
appealing to the comparison theorem.

Bounding the mixing rate of the restricted chains:

If we temporarily ignore swap moves on the restrictions,
the restricted chains move independently according to the
Metropolis probabilities on each of theM + 1 distributions.
The following lemma reduces the analysis of the restricted
chains to analyzing the moves ofbPt at each fixed tempera-
ture.

LEMMA 4.1. (Diaconis and Saloff-Coste [3])For i =
1; : : : ;m , let Pi be a reversible Markov chain on a finite
state space
i . Consider the product Markov chainP on
the product space
0 � � � � �
M , defined by

P =
1

M + 1

MX
i=0

I 
 � � � 
 I| {z }
i


Pi 
 I 
 � � � 
 I| {z }
M�i

:

ThenGap(P ) = 1

M+1
min

0�i�M
fGap(Pi)g :

Now b
t restricted to each of theM + 1 distributions is
unimodal, suggesting thatbPt should be rapidly mixing at
each temperature. Madras and Zheng formalize this in [10]
and show that the Metropolis chain restricted to the positive
or negative parts of
i mixes quickly. Thus, from Lemma
4.1 and following the arguments in [10], we can conclude
that each of the restricted Markov chainsbPt is rapidly
mixing.

Bounding the mixing rate of the projection:

The graph underlying the Markov chain for the projection
P is an M + 1 dimensional hypercube. The stationary
probabilities of the projection chain are given by

� (t) =
X

x2b
 : Tr(x)=t

b�(x):

Intuitively, we can think about a simpler random walk
RW1 on the weighted hypercube as follows. Start at some
M + 1 bit vector, say0; 0; :::; 0 . At each step we are
allowed to transpose two neighboring bits, or we can flip
just the lowest bit. Each of these moves is performed with
the appropriate Metropolis probability. We will show that
this chain is rapidly mixing for the weights that arise in
the projectionP . This captures the idea that for the true
projection chain, swap moves (transpositions) always have
constant probability, and at the highest temperature there
is high probability of changing sign. Of course there is a
chance of flipping the bit at each higher temperature, but we
will see that this is not even necessary for rapid mixing.

To analyze RW1, we can compare it to an even simpler
walk, RW2, that choosesanybit at random and updates it to
0 or 1 with the correct stationary probabilities. It is easy to
argue that RW2 converges very quickly and we use this to
infer the fast mixing of RW1.

More precisely, leteP be a new chain on the hypercube
for the purpose of the comparison. At each step it picks
i 2u f0; :::;Mg and updates theith componentti by
choosingt0i exactly according to the appropriate stationary
distribution at �i . In other words, theith component is
at stationarity as soon as it is chosen. Using the coupon
collector’s theorem, we have

LEMMA 4.2. The chain eP on f0; 1gM+1 mixes in time
O
�
M log(M + "�1)

�
andGap( eP )�1 = O(M logM) .

We are now in a position to prove the following theorem.

THEOREM 4.4. The projectionP of the swapping Markov
chain is rapidly mixing onf0; 1gM+1

To apply the comparison theorem, we translate transi-
tions in the chaineP , (whose mixing time we know) into a
canonical path consisting of moves in the chainP . Let (t; t0)
be a single transition ineP from t = (t0; :::; ti; :::; tM ) to
t0 = (t0; :::; 1� ti; :::; tM ) that flips theith bit.

The canonical path fromt to t0 is the concatenation of
three pathsp1 Æ p2 Æ p3 . In terms of tempering,p1 is a
heating phase andp3 is a cooling phase.

� p1 consists of i swap moves from t to
(ti; t0; :::; ti�1; ti+1; :::; tM ) ;

� p2 consists of one step that flips the bit corre-
sponding to the highest temperature to move to
(1� ti; t0; :::; tM ) ;



� p3 consists ofi swaps until we reacht0 = (t0; :::; 1�
ti; :::; tM ) .

To boundA in Theorem 4.2, we will establish that

�(z) P (z; z0) � �(t) eP (t; t0);(4.1)

for any transition(z; z0) in the canonical path. Second, we
need to ensure that the number of paths using the transition
(z; z0) , �z;z0 , is at most a polynomial. These two conditions
are sufficient to give a polynomial bound on the parameter
A in the comparison theorem. For any(z; z0) we have
j�(z; z0)j � M2 , so it remains to establish the condition in
Equation 4.1.

Case 1:(Transitions alongp1 )
Let z = (t0; :::; tj�1; ti; tj ; :::; ti�1; ti+1; :::; tM ) and

z0 = (t0; :::; ti; tj�1; :::; ti�1; ti+1; :::; tM ) .

�(z)P (z; z0) =
�(z)

2(M + 1)
min

�
1;
�(z0)

�(z)

�

=
1

2(M + 1)
min (�(z); �(z0)) :

(4.2)

First we consider�(z) .

�(z) =

MY
`=0

X
Tr(x)` = z`

�`(x) ,

MY
`=0

�`(z`):

Let us assume, without loss of generality, thatN � N 0:

Then we have

�(t) eP (t; t0) =
�(t)

2(M + 1)
min

�
1;
�(t0)

�(t)

�

=
1

2(M + 1)
min (�(t); �(t0))

=
�(t�)

2(M + 1)
;

wheret� = (t0; :::; ti�1; 0; ti+1; :::; tM ) . We want to show
that �(t�) � �(z): It is useful to partitiont� into blocks
of bits t` that equal 1, separated by one or more zeros. Let
k < i be the largest value such thattk = 0 . Then it is easy
to verify that

iY
`=k+1

�`(z`) �
iY

`=k+1

�`(t
�
` ):

Similarly, considering the next block oft� (i.e., the next set
of bits such thatt` = 1) until the first indexk0 such that
tk0 = 0 ,

kY
`=k0+1

�`(z`) �
kY

`=k0+1

�`(t
�
` ):

Continuing in this way we find

iY
`=j

�`(z`) �
iY

`=j

�`(t
�
` );

and thus
�(z) � �(t�):

Likewise, by taking one more term, we find that
�(z0) � �(t�): Together with equation 4.2 this implies

�(z) P (z; z0) � �(t) eP (t; t0):

Case 2: (The transition alongp2 ) Consider the tran-
sition from z = (ti; t0; :::; ti�1; ti+1; :::; tM ) to
z0 = (1 � ti; t0; :::; tM ) that flips the first bit of z .
Repeating the argument from Case 1, it follows that

min (�(z); �(z0)) � �(t�):

Therefore, again we find equation 4.1 is satisfied.

Case 3:(Transitions alongp3 ) This is similar to Case 1.

In all three cases, we find that if(z; z0) is one step on
the canonical path fromt to t0 , equation 4.1 is satisfied.
Therefore, it follows that

A = max
(z;z0)2E(P )

8>>><
>>>:

X
�(z;z0)

j
t;t0 j�(t) eP (t; t0)

�(z)P (z; z0)

9>>>=
>>>;

� M2:

By the comparison theorem we find thatGap(P ) � M�1:

We have now established all the results necessary to apply
the decomposition theorem 4.3 and show Theorem 4.1.

4.2 Bimodal mean-field spin models. We now look
more closely at mean-field models to see how to modify the
swapping algorithm. Consider the following very general
class of mean-field models.

Example II: Bimodal mean-field spin models: Fix con-
stants� > 0; A1; A2; :::; Ak; and letn be a large integer.
The state space of the mean-field model consists of all
spin configurations on the complete graphKn , namely

 = f1; :::; qgn: The probability distribution over these
configurations is determined by� , inverse temperature,
and fAkg , the k -wise interactions between particles. The
Hamiltonian is given by

H(x) =
X
k

X
fi1;:::;ikg�[n]

Ak Æ(xi1 ;:::;xik );

whereÆ is the Kronecker-Æ function that takes the value 1
if all of the arguments are equal and is 0 otherwise (when



k = 1 we setÆxi =1 iff xi = 1). The Gibbs distribution is

�(x) = �(�;A1;:::;Ak)
(x) =

e�H(x)

Z
; for x 2 
;

whereZ =
X
y2


e�H(y) is the normalizing constant.

For any partition ofn , � = (�1; :::; �q) ,
P

q �q = n ,
define 
� as the set of configurations with�i vertices
assigned colori . Let us consider thetotal spins distribution:

S� = �(
�) =
X
x2
�

�(x):

We consider here the cases whenS� is a bimodal function
in Zq�1 (i.e., when there are exactly two local optima).

An important special case of Example II is the mean-
field Ising model in the presence of an external field. This
model is defined by parametersq = 2 , � > 0 , the inverse
temperature, andJ > 0 , the external magnetic field. The
Gibbs distribution over configurationsx 2 
 is

�(x) = �(�;J)(x) =
e�(

P
i;j Æxi=xj+J

P
i Æxi=1)

Z(�; J)
;

whereZ(�; J) is the normalizing constant. This can be de-
scribed by the model in Example II by takingk = 2; A1 =
J andA2 = 2 . It can be shown that this distribution is bi-
modal for all values of� andJ .

A second important special case included in Example II
is theq -state Potts model where we restrict to the part of the
state space
ord � 
 such that�1 � �2 � ::: � �q . Note
that �(
ord) = �(
)=n! . Consequently, sampling from

ord is sufficient since we can randomly permute the colors
once we obtain a sample and get a random configuration of
the Potts model on the nonrestricted state space
 . Here
we take k = 2 , A1 = 0 and A2 = J; and the Gibbs
distribution becomes

�(x) = �(�;J)(x) =
e
�J

P
i;j Æ(xi;xj )

Z(�; J)
:

Restricting to
ord provides a bimodal distribution, which
is required for the arguments that follow.

Our results from the previous section indicate that swap-
ping is not always fast on models defined in Example II; it is
easy to see that the arguments directly apply to Potts model
restricted to
ord . In contrast, the new swapping algorithm
we define next is can be shown to be rapidly mixing for the
entire class of models defined in Example II.

4.3 A new swapping algorithm. In the traditional swap-
ping algorithm, the interpolating distributions are defined as

�i(x) = �(�i;A1;:::;Ak)
(x) =

e�iH(x)

Zi
; 0 � i � M;

where�i = �M
i
M

andZi normalizes the distribution. Our
new algorithm stems from the observation that this is a poor
choice of interpolants because they preserve the first-order
phase transition. We can do much better by exploring a wider
class of interpolating distributions.

To see the flexibility we have in defining the set of
distributions, define

�i(x) =
�i(x)fi(x)

Z 0
i

;

whereZ 0
i =

P
x2
 �i(x)fi(x) is another normalizing con-

stant. Whenfi(x) is taken to be the constant function, then
we obtain the distributions of the usual swapping algorithm.

The Flat-Swap Algorithm:
For our variant, theFlat-Swapalgorithm, let us consider

fi(x) =

�
n

�1; :::; �q

� i�M
M

:

We shall see that this gradually flattens out the total spins
distributions uniformly, thus eliminating the bad cut that can
occur when we takefi(x) constant. The functionfi(x)
effectively dampens the entropy (multinomial) just as the
change in temperature dampens the energy term coming
from the Hamiltonian. We have the following theorem.

THEOREM 4.5. The Flat-Swap algorithm is rapidly mixing
for any bimodal mean-field model.

To prove Theorem 4.5, we follow the strategy set forth
for Theorem 4.1, using decomposition and comparison in a
similar manner. For simplicity, we concentrate our exposi-
tion here on the Ising model in an external field. The advan-
tage of this special case is that the total spins configurations
form a one-parameter family (i.e., the number of vertices as-
signed +1), much like in Example I. The proofs for the gen-
eral class of models, including the Potts model on
ord , are
analogous. We sketch the proof of Theorem 4.5.

For the Ising model, we have

fi(x) =

�
n

k

� i�M
M

;

wherek vertices are assigned+1 and n � k are assigned
�1 . Again we take�i = �� � i

M
. Note thatfi(x) is easy

to compute givenx . A simple calculation reveals that, for
x 2 
(k;n�k);

�i(
(k;n�k)) =

�
n

k

�
�i(x) =

1

Z 0
i

�
�M (
(k;n�k))

� i
M :

Thus, all the total spins distributions have the same relative
shape, but get flatter asi is decreased. This no longer



preserves the non-analytic nature of the phase transition seen
for the usual swap algorithm. It is this property that makes
this choice of distributions useful.

The total spins distribution for the Ising model is known
to be bimodal, even in the presence of an external field. With
our choice of interpolants, it now follows that allM + 1
distributions are bimodal as well. Moreover, the minima of
the distributions occur at the same location for allM + 1
distributions. Lettmin be the place at which these minima
occur.

In order to show that this swapping chain is rapidly
mixing we use decomposition. Letb
 = 
M+1 be the state
space of the swapping chain on the Ising model, where
 =
f+1;�1gn . Define the trace Tr(x) = t 2 f0; 1gM+1 ,
whereti = 0 if the number of+1s in xi is less thantmin

and letti = 1 if the number of+1s in xi is at leasttmin .
The analysis of the restricted chains given in [10] in the

context of the Ising model without an external field can be
readily adapted to show the restrictionsb
t are also rapidly
mixing. The analysis of the projection is analogous to the
arguments used to bound the mixing rate of the projection
for Example I. Hence, we can conclude that the swapping
algorithm is rapidly mixing for the mean-field Ising model
at any temperature, with any external field. We leave the
details, including the extension to the Potts model, for the
full version of the paper.

5 Conclusions

Swapping, tempering and annealing provide a means, exper-
imentally, for overcoming bottlenecks controlling the slow
convergence of Markov chains. However, our results of-
fer rigorous evidence that heuristics based on these methods
might be incorrect if samples are taken after only a poly-
nomial number of steps. In recent work, we have extended
the arguments presented here to show an even more surpris-
ing result; tempering can actually be slower than the fixed
temperature Metropolis algorithm by an exponential multi-
plicative factor.

Many other future directions present themselves. It
would be worthwhile to continue understanding examples
when the standard (temperature based) interpolants fail to
lead to efficient algorithms, but nonetheless variants of the
swapping algorithm, such as presented in Section 4.3, suc-
ceed. The difficulty in extending our methods to more in-
teresting examples, such as the Ising and Potts models on
lattices, is that it is not clear how to define the interpolants.
We would want a way to slowly modify the the entropy term
in addition to the temperature, as we did in the mean-field
case, to avoid the bad cut arising from the phase transition.
It would be worthwhile to explore whether it is possible to
determine a good set of interpolants algorithmically by boot-
strapping, rather than analytically, as was done here, to de-
fine a more robust family of tempering-like algorithms.
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