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Abstract

Staircase walks are lattice paths from
���������

to�
	��
�����
which take diagonal steps and which never fall

below the � -axis. A path hitting the � -axis � times is
assigned a weight of ��� � where ��� � . A simple local
Markov chain which connects the state space and con-
verges to the Gibbs measure (which normalizes these
weights) is known to be rapidly mixing when ����� ,
and can easily be shown to be rapidly mixing when����� . We give the first proof that this Markov chain
is also mixing in the more interesting case of ����� ,
known in the statistical physics community as adsorb-
ing staircase walks. The main new ingredient is a de-
composition technique which allows us to analyze the
Markov chain in pieces, applying different arguments
to analyze each piece.

1. Introduction

1.1. The model
Staircase walks (also called Dyck paths) are walks in

Z�! from
�"�������

to
�#�
���$�

which stay above the diago-
nal �%�'& . Rotating by (�)+* , they correspond to walks
from

���������
to
�
	��
�����

which take diagonal steps by
adding

� � � � � or
� � �-, � � at each step and which never

fall below the � -axis (see figure 1). The number of
staircase walks is exactly . �#�$� , the

�
th Catalan num-

ber, which can be calculated exactly so sampling can
be done recursively without a Markov chain. How-
ever, there is also a simple Markov chain on the set
of staircase walks which has been very useful for sam-

/
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pling other combinatorial objects including triangula-
tions [8] and planar matchings [5, 14]. The Markov
chain consists of “mountain/valley” flips by choosing02143 	���5

and if the
0
th step of the walk is a local op-

timum (a mountain), inverting it so that it is a local
minimum (a valley), or vice-versa.
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Figure 1: A staircase walk (

� �;: )

A natural generalization, studied in the statistical
physics community, is to weight the set of staircase
walks according to the number of times they hit the � -
axis. We assign a weight � � to a walk which hits the� -axis � times. The Gibbs measure normalizes this so
that the probability of a walk < is = � < � � >@?BAC�D > ?

D
,

where the sum is taken over all walks E and �GF is the
number of times E hits the � -axis. When ����� this
is just the uniform probability where = � < � ���@H+. �#�$� .
Taking �I�J� favors walks which stay away from the� -axis, and taking �K�J� , called adsorbing walks, fa-
vors walks which hit the � -axis many times. It was
shown by van Rensburg [10] that there is a phase transi-
tion at �L� 	

: when �K� 	
, the walks wander O

�NM �$�
away from the � -axis, whereas when �K� 	

the walks
never wander more than o

�BM �$�
away.

Adsorbing staircase walks are closely related to “re-
turning” walks on an infinite O -ary tree which start and
end at the root. We label the edges of the complete O -
ary tree as a Cayley graph so that each vertex is adja-
cent to one edge with each of O labels. A returning
walk of length

	P�
, starting at the root, has

�
edges



leading away from the root and
�

returning. Whenever
we are at the root we have O choices of labeled edges;
whenever we are away from the root we have O , �
edges which moves us farther away and a unique edge
which will bring us closer to the root. Hence, there
are OG� � O , � ����� � walks of length

	��
that hit the root� times (including the initial time, but not the final).

Using adsorbing staircase walks, sampling is easy: (1)
Select a staircase walk of length

	��
according to the

Gibbs measure with ��� �� ��� . A staircase walk hit-
ting the � -axis � times appears with probability pro-

portional to
� �� ��� � ��� � ? � � ���
	���
�� ? �� � ���
	 
 . The up edges

in this walk correspond to steps in the tree that move
away from the root, and the down edges are those that
move back towards the root. (2) Assign labels to the
up edges uniformly at random (from the set of O labels
for edges starting from the � -axis, and from a suitable
set of O , � labels for edges above the � -axis), assign-
ing labels to the down edges that equal the label of the
most recent unpaired up edge preceding it. This gives
a sequence of labeled edges corresponding to a labeled
walk of length

	��
in the O -ary tree.

The mountain/valley Markov chain can be modified
to incorporate the Gibbs weights. It is straightforward
to show that it is rapidly mixing when ��� � . Wil-
son [14] gives a tight bound of � �#����������� ��������� � � �
when � � � � which provides an upper bound in the
case �I�9� .

When � ��� a simple coupling argument is insuf-
ficient. Informally, for coupling to succeed we need to
construct a coupled Markov chain so that close con-
figurations tend to come closer together. However,
in the adsorbing case, pairs of walks that differ near
the � -axis will tend to diverge initially. We note that
there are alternative, recursive methods for sampling
adsorbing staircase walks based on generating func-
tions, but our goal in this paper is to understand how
these new weightings affect the mixing time of the
mountain/valley Markov chain.

A natural approach in trying to circumvent this dif-
ficulty is to introduce a new Markov chain based on
a heat bath algorithm. A heat bath works by eras-
ing a larger piece of the current configuration (larger
than the mountain/valley walk which erases only two
edges of the walk) and moving to a new configuration,
consistent with the current (remaining) boundary in-
formation, according to the conditional probability. As
with many such algorithms, this more elaborate Mar-
kov chain appears to be too difficult to analyze.

1.2. Our results
In this paper, we show that the mountain/valley Mar-

kov chain is rapidly mixing even in the case �4� �
(and hence all values of � ). The main new ingre-
dient is a general decomposition technique which we
believe has many other applications. This new tech-
nique is similar to a decomposition theorem of Madras
and Randall [6,7], but is much more natural and much
simpler to apply. Suppose the state space can be natu-
rally partitioned into sets !#"%$'& (subject to certain con-
straints, outlined in section 4.2). Further, suppose that
the Markov chain is rapidly mixing when restricted to
any of the "($ . Finally, suppose that a projection (also
defined later) of these sets is rapidly mixing, suggest-
ing that it is easy to travel from any of the ")$ to any
other "+* . Then we can conclude that the original Mar-
kov chain is rapidly mixing as well. This is quite simi-
lar in spirit to the Madras/Randall result, however their
decomposition theorem requires that the !#" $ & form a
cover and must in fact have considerable overlaps. We
have found that the new theorem is far more natural for
several applications.

Given this new decomposition technique, we can
state our strategy for analyzing the mountain/valley
chain. We first decompose the state space , into-/. � , where

. � is the set of staircase walks which hit
the � -axis exactly � times. First we show that 0 . � 0 is
log-concave in � . This immediately implies that our
first projection (according to the decomposition the-
orem) is mixing in polynomial time, so it suffices to
show that the Markov chain restricted to

. � , 132 ?
�

is
rapidly mixing for each � .

To show that 1 2 ? is rapidly mixing, we apply the
decomposition theorem a second time. This time we
partition the state space (i.e., the set of staircase walks
which hit the � -axis exactly � times) into 4 ������

5
sets

according to which � points on the � -axis the paths
hit. Showing that 1 is rapidly mixing when restricted
to any of these sets is straightforward and follows the
unbiased case when � � � � which has been previously
analyzed.

The projection arising from the second decomposi-
tion can be viewed as an interesting particle process:
we want to sample from the 4 ������

5
ways to place �

particles on the � -axis between
�

and
�

so that each
configuration occurs with probability 6 $ . � � $ � � where� $ is the length of the gap between the

0
th and

0 � � st
particles, and . �"�$� is the

�
th Catalan number. The

Markov chain arising from this projection is quite nat-



ural: choose
� 0 � O � 1 3 � 5�� ! � ��� & and move the

0
th

particle in the left or right direction according to O , if
possible.

This particle process isolates the difficulty in the
original mountain/valley Markov chain on weighted
staircase walks; indeed a simple path coupling argu-
ment fails for an analogous reason. The final step of
our analysis is noticing that a heat bath algorithm is
easy to define for this particle system which does have
the desirable properties. Namely, it converges to the
correct stationary distribution and, moreover, we can
show it mixes in polynomial time. By a standard com-
parison argument we can show that the mixing rate of
the heat bath algorithm is close to the mixing rate of
the original particle process. Hence, we can apply the
decomposition theorem for a second time, thereby es-
tablishing the polynomial-time mixing rate of the orig-
inal mountain/valley chain on the entire state space of
staircase walks, as desired.

2. A Markov chain on
�

We define a natural Markov chain 1 on
.

, the set
of staircase walks with

	P�
edges, for a fixed

��� � .
This mountain/valley Markov chain has previously ap-
peared in [5, 8, 14]. The transitions of the chain are
inversions which replace local maxima with local min-
ima, or vice-versa, by interchanging two edges along
the walk. If the � th point on the path is E
	 � � ��	 � &�	 � ,
we call it a mountain if &
	 ��� � &�	 , � �J&�	�
 � and
inverting it consists of setting &��	 �;&�	 , 	 . Likewise,
inverting a valley where & 	 ��� � & 	 � � �;& 	�
 � con-
sists of setting &��	 � & 	 ��	 . The Markov chain 1
iterates the following steps.

One step of Markov chain 1 :

1. Pick � uniformly at random from ! 	 ������� ��	P� , 	 & ,
and let E denote the point on the path whose � -
coordinate is � .

2. � If E is the bottom of a valley lying on the � -axis,
with probability

�
 � � 
 > 	 set ��� 
 � equal to ��� in-

verted at E . Otherwise, set � � 
 � ��� � .
� If E is the top of a mountain, and inverting it will

put it on the � -axis, with probability > � � 
 > 	 set� � 
 � equal to � � inverted at E .

� If E is the bottom of a valley not lying on the � -
axis, or if E is the top of a mountain and inverting

at E does not put it on the � -axis, with probability�� set ��� 
 � equal to ��� inverted at E .

� In all other cases, set � � 
 � ��� � .
Note that this Markov chain is aperiodic, reversible,

and the stationary distribution is the Gibbs distribution,
namely = ��� � � > ?� , where � is the number of times
the walk

�
touches the � -axis. We show in the next

section that the mixing time for this chain is polynomi-
ally bounded when � �9� using path coupling.

3. Mixing machinery
In what follows, we assume that 1 is an er-

godic (i.e. irreducible and aperiodic), reversible Mar-
kov chain with finite state space , , transition proba-
bility matrix � , and stationary distribution = .

The time a Markov chain takes to converge to its sta-
tionary distribution, the mixing time of the chain, is
measured in terms of the distance between the distri-
bution at time  and the stationary distribution. Letting� � � � � & � denote the  -step probability of going from �
to & , the total variation distance at time  is

! � � � = ! � F ��"$#&%'&(*) �	,+-.(*) 0 � �
� � � & � , = � & � 0 �

For / � � , the mixing time 0 � / � is

0 � / � �1"�243 !� 65 ! � �87 � = ! � F ��/ �:9  � �  & �
We say a Markov chain is rapidly mixing if the mix-

ing time is bounded above by a polynomial in
�

and����� � , where
�

is the size of each configuration in the
state space.

It is well known that the mixing rate is related to the
spectral gap of the transition matrix. For the transi-
tion matrix � , we let ;=<?> � � � � �A@ , 0 � � 0 denote its
spectral gap, where �A@ � � � ������� � �CB ) B ��� are the eigen-
values of � and � �;�A@ � 0 � � 0 � 0 � $ 0 for all

0 � 	
.

The following result relates the spectral gap with the
mixing time of the chain (see, e.g., [12]):

Theorem 3.1 Let =ED ��"�2F3 '*(*) = � � � . For all / � �
we have

1. 0 � / � � �GIHKJ �FL 	 � � � � �MON  �
2. 0 � / �P� B >OQ BGIHKJ �FL 	 � � � � �  

�
.



Remark. For simplicity, we may add self-loops with
probability

�
 to each point in the state space to ensure

that � � � �
, also ensuring aperiodicity of the Markov

chain.

We give a brief review of some of the techniques that
are used to bound the mixing time (or spectral gap) of
a Markov chain, before introducing our new method in
section 4.2.

3.1. Path coupling
A coupling is a Markov chain on , � , with the fol-

lowing properties: Instead up updating the pair of con-
figurations independently, the coupling updates them
so that the two processes will tend to correlate, or
“move together” under some measure of distance, but
each process, viewed in isolation, is just performing
transitions of the original Markov chain. Also, once
the pair of configurations agree at some time, the cou-
pling guarantees they agree from that time forward.
The mixing time can be bounded by the expected time
for configurations to coalesce under any valid coupling.

More simply, path coupling lets us bound the mixing
time by analyzing a subset of , � , . The method of
path coupling is described in the next theorem, adapted
from [3]:

Theorem 3.2 [3] Let O be an integer valued metric de-
fined on , � , taking values in ! ��������� ��� & . Let � be
a subset of , � , such that for all

� � � � & � � 1 , � ,
there exists a path � � ���?@ � � � ������� � ��� � & � between � �
and & � such that

� � $ � � $4
 � � 1 � for
� � 0 � �

and

� ���+ $�� @ O
� � $ � � $F
 � � � O � ��� � &*� � �

Define a coupling
� � � � & � �
	 � � � 
 � � & � 
 � � of 1 on

all pairs
� � � � & � � 1 � . If � �
� O � � � � & � ��� � �

for
all

� � � � & � � 1 � , and there exists �J� �
such that� � 3 O � ��� 
 � � &*� 
 � ���� O � ��� � &*� �B5 � � for all  , then the

mixing time satisfies

0 � / � �����
�  
�
� � � � � � �/ �����

3.2. Staircase walks with �����
We demonstrate the method of path coupling to

show that the mountain/valley chain on staircase walks
is rapidly mixing when ���9� .

We define our distance measure � to be one-half of
the area between the configurations, i.e., drawing the
configurations on the same set of axis bounds rectan-
gular regions between the pair of walks. The distance
between the two walks is one-half of the sum of the ar-
eas of these rectangular regions. For the coupling, we
take the point � in step 1 of 1 , and attempt to perform
the same transition in each walk. To use path coupling,
we must examine a pair of walks that differ solely by a
single transition of the chain (a single square).

6 687 7 7 796 6
6 697 7� � � �

� � � � � � 7 796 697 786 697 7 7 7
� � � �
� � � � � �

�
E

<
� E <

�
� 
 

� �   

! "
Figure 2: Typical situations for path coupling

Lemma 3.3 Let � ��# 1 .
with � � � ��# � � � . After

one step of 1 we have � �
� � � � ��# ��� � �
, provided� �9� .

Proof. Consider the configurations in figure 2, which
show pieces of walks that agree everywhere except at a
single square, and let

#
denote the “upper” walk. If the

square is adjacent to the � -axis as in figure 2.A, then
there are two transitions that decrease the distance by
one, inverting E in one of the walks so they now agree
everywhere. Inverting � or < in

#
increases the dis-

tance by one. Every other transition not involving � ,E , or < does not change the distance between � and#
. Therefore, in this case we find � �$� � � � �%# � � ��

 �
� �� � �� , �

 � � 
 > 	
, > � � 
 > 	

� � ���
(This is an in-

equality since one or both of the moves which increase
the distance might not be valid moves.) The second
case is if the differences between the two walks occur
a unit distance from the � -axis, as in figure 2.B. There
are also two good inversions at E , each with proba-
bility

�� , and those at � and < increase the distance
between � and

#
by one; all other moves preserve

the distance between the pair. In this case, we have
� �
� � � � ��# ��� � �

 �
� > � � 
 > 	

� > � � 
 > 	
, �� , �� � .

This last expression is non-positive if � � � . Other
situations where � and

#
differ by a square that is

far away from the � -axis are neutral; two good moves
decrease the distance by one, and (at most) two bad
moves increase the distance by one. Each of these
moves occurs with equal probability, so in these cases,
we also have � �
� � � � �%# � � � �

.



An application of theorem 3.2 gives a polynomial
bound on the mixing rate. These details are left to
the reader. We note that in the case demonstrated in
figure 2.B, the distance will increase in expectation if�K�8� �
3.3. The decomposition method

The Madras/Randall decomposition method [7] of-
fers a different approach for bounding the mixing time
of a Markov chain and will be the main motivation be-
hind our analysis in this paper. The intuition behind
this method is that we look at subsets of the state space
and show that the Markov chain restricted to each sub-
set is mixing. Then, if the sets overlap enough (and
cover all of , ), we can deduce a bound on the mixing
rate of the original chain on the entire state space.

Following [7], let " � �������-� "�� be subsets of , such
that

� $�"($ � , . We are interested in two classes of
induced Markov chains. The first is a set of restricted
Markov chains, obtained by restricting 1 to each sub-
set "($ , i.e., any move of 1 that would take us from
an element � 1 " $ to some & �1 " $ , � �� 0

, is re-
jected. In particular, the restriction to " $ is a Mar-
kov chain, 1 $ , where the transition matrix ����� is
defined as follows: If � �� & and � � & 1 " $ then����� � � � & � � � � � � & � ; if � 1 " $ then ����� � � � � � �� , C -O( � �
	 -��� ' � � � � � � & � .

The second Markov chain is the projection 1�

of the cover ! " � �������-� "�� & , defined on the set

3 � 5
,

where each point
0

is associated with the set "%$ . Let� � "�#&% '*(*) 0 ! 0 5 � 1 " $
&�0 . The transition ma-
trix ��
 for Markov chain 1�
 is defined by let-
ting ��
 � 0 � � � � M � � ��� ��� 	� M � ��� 	 for

0 ���� , and ��
 � 0 � 0 � �
� , C * ���$ ��
 � 0 � � � . The limiting distribution � of

this chain is given by � � 0 � � = � " $ � H��� , where �� �C $ C '&( � � = � � � � �
. From [7] we have

Theorem 3.4 [7] In the preceding framework,

;=<?> � � � � ��  ;=<?>
� ��
 � "�243$�� � 	�������	 � ;=<?> � � � � � �

4. A new decomposition result
Our goal is to give a method, analogous to that in

section 3.3, but using a partition of , into disjoint
pieces. We relate the spectral gap of the original chain
to the spectral gap of the restriction to each set in the
partition, and that of a new projection of this partition.

We first briefly introduce the framework that Caracci-
olo, Pelisetto, and Sokal (CPS) use in the context of
simulated tempering (see [7] for further details).

4.1. The CPS tempering method
Let � denote a transition matrix of a Markov chain

on the finite state space , that is reversible with re-
spect to the probability distribution = . Suppose that
the state space is partitioned into

�
disjoint pieces

, � �������-� ,�� . For each
0 � � ������� � � , define � ) � , the

restriction of � to , $ , by rejecting jumps that leave
,+$ (as in section 3.3). Let = $ be the normalized re-
striction of = to , $ , i.e., = $ � " � � M � � � ) � 	� � where $ ��= � ,+$ � . Let ! be another transition matrix that
is also reversible with respect to = . Define ! to be
the following aggregated transition matrix on the state
space !�� ������� � � & :

! � 0 � � � � � $ +'*(*) � 	-.(*) �
= � � � ! � � � & � �

We note that  $ ! � 0 � � � �  * ! � � � 0 �
so ! is reversible with respect to the probability mea-
sure

 � �  � ������� �  � � on !�� ������� � � & .

Theorem 4.1 ([7], Thm A.1) Assume ! is positive semi-
definite. Let ! �#"  denote the nonnegative square root
of ! . Then

;=<?> � ! �$"  �%! �$"  � � ;=<�> � ! � "�2F3$ � � 	������ 	 � ;=<?> � � ) � � �

4.2. Disjoint decomposition
We use theorem 4.1 to derive a bound on the spectral

gap of � .

Theorem 4.2 Let � ) � be as above, and let � be de-
fined as above with � in place of ! . Then

;=<?> � � � � �	 ;=<�> � � � "�243$�� � 	������ 	 � ;=<?> � � ) � � �

Proof. Take ! � � in theorem 4.1 above, and use
that the eigenvalues of �  are the squares of the eigen-
values of � , so that ;=<?> � � � ��� ,'& � , ;=<?> � �  � ��
 ;=<?>

� �  � . (The inequality follows from the Taylor
series of � , M � , � .)



We also derive a useful corollary. Suppose we re-
place the matrix � with a transition matrix ��� on
the set !�� ������� � � & , with Metropolis transitions, i.e.,��� � 0 � � � � "�243�!�� � M � ) � 	M � ) � 	 & . Let

� $ � , * � � ! & 1
, * 5��G� 1 ,+$ with � � � � & � � � & . First we state a
useful lemma that follows immediately from the “func-
tional definition” of the spectral gap (see [7, Eq. (7)]):

Lemma 4.3 Suppose � and � are Markov chains on
the same state space, each reversible with respect to
the distribution = . Suppose there are constants � � and�  such that � � � � � � & � ��� � � � & � � �  � � � � & � for all� ��;& . Then � � ;=<?> � � � � ;=<?> � � � � �  ;=<?> � � � .
Corollary 4.4 With �	� as above, suppose there exists
� � �

and 
 � � such that

1. � � � � & � � � for all ���'& in � ;

2. = � � $ � , * ���,� 
$= � , * � for all pairs
0 � � in the

Markov chain defined by � .

Then

;=<?> � � � � �	 �

6;=<?> � � � � "�243$�� � 	�������	 � ;=<?> � � ) � � �

Proof. Note that

+'&(*) � 	-.(*) �
= � � � � � � � & � � +'*(�� � � ) � 	 	-.(�� � � ) � 	

= � � � � � � � & �

� +'*(�� � � ) � 	 	-.(�� � � ) � 	
= � & � � � & � � �

� +-.(�� � � ) � 	 =
� & � �

� �

 = � , * � �
where the second equality follows from reversibility
and the inequalities follow from conditions 1 and 2.
Multiplying by

�M � ) � 	 , we see � � 0 � � � � �

C� � � 0 � � � ,
so ;=<�> � � �P� ��
 ;=<?> � � � � by lemma 4.3.

We illustrate the use of this new decomposition the-
orem on the problem of sampling from the set of
weighted staircase walks. Our goal is not to find an
optimal bound on the mixing time, but rather to demon-
strate the applicability of this new method.

5. Decomposition of
�

Noticing that path coupling fails to show rapid mix-
ing of 1 when � ��� , it is natural to try to sample
from a subset of

.
, say

. � , the set of staircase walks
that hit the � -axis exactly � times between the end-
points. We further break this down by decomposing. � into sets

. � 	 � , based on the location of the � -axis
hits, where sampling from these subsets is easy. In the
final two sections we show how to formalize this ap-
proach using the decomposition method of section 4.2.

The mountain/valley Markov chain 1 is insuffi-
cient for sampling from

. � since we will never be able
to alter the places that a path hits the � -axis. For this
reason, we need to introduce a slight variant �1 on

.
for the purposes of the analysis; the rapid mixing of the
simpler chain 1 follows from the rapid mixing of �1
by a very simple application of the comparison method
(see [2, 9]).

In this new Markov chain �1 there are two basic
types of moves. The first type of moves are inver-
sions. The second type of move consists of chang-
ing one “propeller-like” structure into its mirror im-
age. Letting

�
denote a “down” edge and � an “up”

edge, if there is a sequence of four edges
� � � � , we

can change it to the sequence � �
� � , or vice-versa.
These moves are only allowed when one point of the
propeller touches the boundary. See figure 3 for a pic-
torial depiction of this move. We call such a change a
propeller move (centered) at E .

7 7 6 6 6 697 7 6 697 7 7 7 6 6��E E
Figure 3: The propeller move

More formally, �1 iterates these steps.

One step of Markov chain �1 :

1. Pick � uniformly at random from ! 	�������� ��	P� , 	 & ,
and let E denote the point on the path whose � -
coordinate is � .

2. � If � � 	
and E is the bottom of a valley on the� -axis, with probability

�
 � � 
 > 	 set ��� 
 � equal

to � � inverted at E .

� If �2� 	
and E is the top of a peak and inverting it

will put it on the � -axis, with probability > � � 
 > 	set ��� 
 � equal to �$� inverted at E .



� If � 1 !�� � ( ������� ��	P� , 	 & , and E is the bottom of
a valley not lying on the � -axis, or if E is the top
of a peak and inverting at E does not put it onto
the � -axis, with probability

�� set ��� 
 � equal to��� inverted at E .

� If E is the central vertex of a propeller structure
where the lowest point lies on the � -axis, with
probability

�� set ��� 
 � equal to �$� after per-
forming a propeller move at E .

� In all other cases, set � � 
 � ��� � .
First note that �1 is aperiodic ( �$� 
 � � ��� with

probability at least
�
 ). Second, the only time a tran-

sition is possible from a path hitting the boundary �
times to one hitting the boundary � � � (respectively� , � ) times is when there is a peak (respectively val-
ley) at the beginning of the walk, and we select that
vertex in step 1 of the chain. All other moves of �1
preserve the weight of the walk.

Having described the Markov chain, we use it to de-
fine a metric O on

.
. For any pair of states � �%# 1 .

,
if � � � �%# � � � (so � and

#
are nearest neighbors),

we define O � � ��# � to equal one-half of the area of the
symmetric difference of the two staircase walks. If� � � �%# � � �

(i.e., moving from � to
#

requires
more than one move), first consider a path of states� � � @ � � � ������� � � �2� #

between � and
#

, where� � � $ � � $F
 � � � �
for each

0 � ���������:� , � ; then
define O � � �%# � � "�243 C � ���$�� @ O � � $ � � $F
 � � where the
minimum is taken over all paths joining � and

#
. We

call O the transition metric.
We apply the decomposition method of section 4.2

to show rapid mixing of �1 on
.

. To do so we need
to examine the projection of the partition ! . � & and
bound the spectral gap for the restriction to each of the
subsets

. � . We do this is the next sections following a
brief combinatorial excursion.

5.1. A combinatorial look at �
For this subsection, we let � � denote the set of

staircase walks with
	��

edges and let
.+�
� denote

the subset of � � containing those walks with � in-
ternal � -axis hits. The cardinalities of

. �
� can be

shown to be log-concave, i.e., the sequence of num-
bers 0 . �@ 0 � 0 . �� 0 � 0 . � 0 ������� � 0 . ������ 0 is a log-concave se-
quence. This follows from two simple lemmas.

Lemma 5.1 For
� � � and � � � � � , 	

, 0 .+�� 0$�0 . ������ ��� 0
� 0 . �� 
 � 0 .

Lemma 5.2 For
� � � and � �'� � � , 	

,

0 . �� 0 � 0 . ������ ��� 0
� 0 . ������ 0 ������� � 0 . � ������  0

�
Also, for

� � 	
,

0 . �@ 0 � 0 . ����� 0 � 0 . �����@ 0 ������� � 0 . ��������  0
�

Proof. For the first part, we use lemma 5.1 iteratively,
so

0 . �� 0 � 0 . ������ ��� 0
� 0 . �� 
 � 0� 0 . ������ ��� 0
� 0 . ������ 0 � 0 . �� 
  0 � �����

For the second, there is a bijection between
. �@ and. �����

by taking
� 1 . �@ , deleting the initial and ter-

minal edges of the walk, and shifting the walk down
and to the left by one to obtain a staircase walk joining���������

to
��	�� , 	 �����

.

Theorem 5.3 For a fixed
� � � , 0 . �� 0 is log-concave.

In particular, for � � � � � , 	
,

0 . �� ��� 0
� 0 . �� 
 � 0 � 0 . �� 0  

�
(1)

Proof. We use induction on
�

. For notational simplic-
ity we suppress the cardinality symbols.

For
� ��� , by a simple enumeration of the possibil-

ities, we find that
. �@ � . �� � 	

and
. �
 � � , so that. �@ � . � � � . �� �  .

Now assume that for some
� , � that

. � ���
� is log-

concave. Also, assume first that � �J	
. We want to

show that (1) holds. To do this, it suffices to show the
inequality. �����

� �  
3 . �����
�

�/. �����
� 
 � ������� � . � ������  

5 �. �����
� ���

3 . �����
� ���

� . � ���
�

������� �/. ��������  
5
�

(2)

since lemma 5.2 implies that (2) is equivalent to. �����
� �  

� . �
� 
 � � . �����

� ���
� . �
�
�

(3)

By adding
. �
�
��. �
� 
 � to both sides of (3), factoring,

and applying lemma 5.1, we get (1).
To show (2), it suffices to show the set of inequalities. � ���

� �  
� . �����
� ��� 
�$ � . �����

� ���
� . � ���
� �  
 $

for all
0 1J3 � , � , � 5 . These inequalities all hold

by our induction hypothesis that
. �����
� is log-concave.

Adding them, and the extra term
. � ���
� ���

� . � ������  to the
right hand side, gives us (2).

All that remains is the case
.+�@ � . � � � . �� �  (when� � � ). We use that

. �@ � . �� and, from lemma 5.1,
we see

. �
 � . �� . Therefore,

. �@ � . � � . �� �#. � �. �� � . �� .



5.2. Projection 1: ��� �� ���
We bound the mixing rate of the projection by ap-

pealing to theorem 5.3. The (disjoint) projection � �
of the partition

. ���� ������ � @ . � is a random walk on

! ��������� ���K, ��& with stationary probabilities > ? B 2 ? B� ,
where

� � C �����
� �E@ � � 0 . � 0 , and Metropolis transition

probabilities. Path coupling yields the following theo-
rem.

Lemma 5.4 The mixing time of � � satisfies

0 L	� � / � ��
 �#�  � � � �%� � � � �/ � � �

5.3. Restriction 1: Mixing on ���
By the disjoint decomposition theorem, it suffices to

show that the restricted Markov chains ( �1 restricted
to � � ) are rapidly mixing in order to conclude that �1
is mixing on the whole state space

.
. We show this in

the next section.

6. Decomposition of 
 �
In this section we show that �1�� ? , the Markov chain

restricted to
. � , is rapidly mixing. To do this we ap-

ply the decomposition method a second time. First we
partition

. � and show that �1 � ? is mixing when re-
stricted to each of set of this partition. Following that,
we show the projection is mixing using heat bath dy-
namics and the comparison theorem, setting the stage
for corollary 4.4.

Let � denote a subset of
. � where each walk

touches the � -axis in the same � locations. For ex-
ample, (in the case that

�1���
) we can consider the

set of walk that hit the � -axis at the points with � -
coordinates

	������
and � � in the interior between the

two endpoints. There are 4 ������
5

ways to specify the
location of � internal hits, as the � -coordinate of each
hit must be an even number. We write

. � ���� � � � 	 � ,
where this union is over all 4 ������

5
ways of specifying

the hits on the � -axis.

6.1. Restriction 2: Mixing of ���	� �
Let �1�� ?�� � denote the restriction of �1�� ? to the

set � . We have the following result, whose proof is a
simple application of path coupling:

Lemma 6.1 Let � be a subset of
. � as above, and

let � �%# 1 � with O � � �%# � � � . After one step

of the Markov chain, �1�� ? 	 � , on the set � , we have
� �
� O � � �%#2� � � �

.

Proof. This proof is similar to lemma 3.3, except that
we need only consider the situation when the paths dif-
fer by a square that is at least distance one from the� -axis as in figure 4. There are two good inversions
at E that decrease the distance by one, and at most
two inversions increasing the distance by one. Each
of these inversions happens with equal probability, so
� �
� O � � �%#2� � �

.

6 6 7 7 6 6 7 7� � � �
� � � � � � ��
E

<  �
 

Figure 4: Possible transitions inside
. � 	 �

Lemma 6.1 gives the first piece for the path cou-
pling theorem. If O � � ��# � � �

, the probability of
the distance changing in one step of �1�� ? 	 � is at least�� � ��� � 	 , since when we select a vertex on the walk
we may avoid choosing one that lies on the � -axis,
and its immediate neighbor to the right, as these ver-
tices will never move. For pairs of walks in

. � , we
have

� �'O � � �%# � � �"� , � , � �  ,��#� , � , � � . For� �%# 1 . � 	 � there is a sequence of O � � ��# � inver-
sions that will transform one walk into the other.

By a straightforward application of theorem 3.2, we
have

Lemma 6.2 The mixing time of �1 � ? 	 � satisfies

0�����
? � �
� / � ��� �

���#� , � , � �-�#� , � , 	�� �  �� � ��� � 	
� � � � �/ ���

� � �#� � ������� �/ � � �
6.2. Projection 2: �!� �� � ���	� �

The projection of
. � 	 � can be viewed as a particle

process on
3 ��5

. The particles represent the places that
a path hits the � -axis. The projection of the Markov
chain can be viewed as single-site dynamics on the set
of particles which moves one particle to the left or right
in each step. Interestingly, analyzing the mixing rate
of this particle process cannot be done using a simple
path coupling argument, which seems to isolate the dif-
ficulty with using path coupling on the original moun-
tain/valley chain. However, the particle process is suf-
ficiently simple that we can analyze it indirectly. We
formalize this approach in this subsection.



� Particle process with single-site dynamics

Consider a set of
�L, � sites in a linear arrange-

ment, � of which contain particles, and let � � denote
the set of all 4 ������

5
such configurations. An element� 1 � � will correspond to the set,

. � 	 � ��� 	 , of all stair-
case walks in

. � that have � -axis hits at the locations
determined by the particles. For example, if ��� �
and

�
is the configuration with particles at sites

	
, � ,

and � , then
. � 	 � ��� 	 consists of all walks in

. � that hit
the � -axis at coordinates ( ,

�
, and � � (recalling that

walks only hit the � -axis at even coordinates).
The transitions on this set, commonly referred to

as single-site (or Glauber) dynamics, will consist of
selecting a particle at random and moving it one
space to the left or right (provided the destination
is unoccupied). More formally, if � and � � are
two configurations, each consisting of � particles,
which differ by a single particle (at distance 1), then� � � � � � � � � "P2F3�!�� ��� � � 7 	� � � 	 & . The stationary proba-
bility � � � � of a configuration � is proportional to. � � � � . � �  

� ����� . � � � 
 � � , where � * is the distance
between particles � and � � � in � . A direct coupling
argument on this particle process will fail because un-
der any coupling there will be configurations � and � �
which will tend to move farther apart in expectation.
Instead we consider heat bath dynamics which allows
particles to move greater distances in one move.

� Particle process with heat bath dynamics

We examine the set � � using heat bath dynamics,
with a final goal of deriving a bound on the mixing
time of the single-site dynamics on this set. For con-
venience, we add two particles at sites

�
and

�
(corre-

sponding to the endpoints of the walks in � � ) and con-
sider instead a particle model with

� � � sites (with
coordinates

�
through

�
) and � � 	 particles. Only

particles in sites � ������� ���%, � are allowed to move.
We still refer to this set as � � . We use

�
� � � to denote
the location (coordinate value) of particle � in

�
. So�
� � � � �

and
�
� � �%	+� � � � � for every

� 1 � � .
The Markov chain �� � on � � has heat bath dynam-

ics with transitions as follows: Choose a particle at
random (excluding the two fixed particles). Remove
this particle, and reinsert it in the interval between
its two neighbors with correct conditional probabili-
ties. That is, if

� � �K�  differ solely in the location
of particle � , then �� � ��� � ���  � ��. � � * ��� � . � � * � H � ,
where � * � �

 
� � � � � ,��

 
� � � is the distance be-

tween particles � and � � � . The normalizing constant

� � C � ���� � � . �  � . � � ,  � , where
� �8� * � � � � * .

If
� � and

�
 differ in the position of two or more par-

ticles, then �� � ��� � �K�  � � �
.

Markov chain �� � is reversible with stationary prob-
abilities ��

� � � �I. � � � � . � �  � ����� . � � � 
 � � H �� � , where
�� � � C . � & � � . � &  

� ����� . � & � 
 � � is the normalizing
constant and the sum is over all positive solutions to& � � &  

� �����#� & � 
 � � �
.

Define a distance metric � on the set of particle con-
figurations, with � ��� � ���  � � C �*%� � 0 � � � � � , �

 
� � � 0 ,

the sum of distances between corresponding particles.
Note that

� ��� ��� � ���  � �;� �#� , � , � � . We exam-
ine the heat bath dynamics using path coupling, so we
must consider elements differing by unit distance.
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Figure 5: Typical situation for path coupling

Figure 5 shows parts of two configurations with �
particles, differing only at particle � . In our coupling,
if particle � is chosen in the first step of the move, we
can reinsert it at the same position in each configura-
tion, decreasing the distance by one. Also, choosing
any other particle except � , � or � � � allows us
to reinsert it at the same position in each configura-
tion with identical probabilities, leaving the distance
unchanged. So we need to consider how to couple the
moves if we choose particle � , � or � � � . As the
other case is similar, consider the case when particle
� , � is selected. Figure 6 shows the situation with
particle � , � removed in each configuration, with an
indication of how the moves are coupled.
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Figure 6: The coupling for the particle system

Let
� � � � � � �!, � � � � ,�	+� . For

0 1 3 � , � 5 let $ �9. � 0 � . � � , 0 � H � � be the probability to insert at
position

0
between � , 	 and � in the upper configura-

tion, and for
0 1 3 � 5

, let < $ � . � 0 � . � � , 0 � � � H �  
be the probability to insert the particle in the lower
configuration

�
 , where

� � � C � ���$ � � . � 0 � . � � ,0 �
is the normalizing constant for

� � and
�  �C �$�� � . � 0 � . � � , 0 � � � is the normalizing constant



for
�
 . We have the following surprising combinato-

rial lemmas:

Lemma 6.3 With < $ �  $ as above, these probabilities
satisfy < $ �  $ for

0 � � ������� � � , � .

Proof. First we note that
� � �  � �  � 
  .

� � �
and�  �  �� 
 � . � � � � � , obtained using the defining re-

currence relation for the Catalan numbers (see, e.g.,
[13]). Second, observe that

� � *�
 ��	� � * 	 �  �  *�
 ��	*�
  for
� �J�

, so this ratio increases as � 	��
. We have<�$%�  $ if and only if

. � 0 � . � � , 0 � � ��  � . � 0 � . � � , 0 �
� �� . � � , 0 � � �

. � � , 0 � �
	 � � � �%	+� . � � � � �� � � � � �
	 � , 	+� . � � �

�
This last inequality follows from our second observa-
tion above (i.e.,

� � � � $F
 �
	� � � � $ 	 � � � � 
 �
	� � � 	 ) and from the

fact that  � � � 
  	� � 
 � 	 �  � �  	 �9� . Hence < $%�  $ .
Lemma 6.4 With < $ �  $ as above, for all � 1 3 � , � 5
�
we have �+ $ � � <�$ �

�+ $ � �
 $%� � 
 �+ $�� � < $

�

Proof. Half of these inequalities come directly from
lemma 6.3, i.e. < � �  � and <  �   imply < � �<  �  � �   . Similarly, < � � <  � < � �  � �   

�
 � , etc. Then start with the final inequality of lemma
6.3, which is actually an equality,

 � � �������  � ��� �< � ������� � < � . By the symmetry in the definition
of <�$ and

 $ , we see that < � � $4
 � � <�$ (for
0 �� ������� � � ), and

 � � $ �  $ (for
0 � � ������� � � , � ),

so from lemma 6.3, < � �  � ��� . This implies that � � �����#�  � �  � < � ������� � < � ��� . Since < � ��� � � �  , then
 � ������� �  � � � � < � � ����� � < � �  ,

and so forth to give the remaining inequalities.

Lemmas 6.3 and 6.4 allow us to couple moves in
the “zig-zag” manner shown in figure 6. We reinsert
particle � , � at position � in both

� � and
�
 with

probability < � . We place it at position
	

in
�
 and

at position � in
� � with probability

 � , < � , and so
forth. In general, we place particle � , � at position

0
in both with probability

C $��� � < � ,%C $ ����%� �  � , where-
upon the distance between the configurations remains
unchanged. We place particle � , � at position

0
in
� �

and
0 � � in

�
 with probability

C $�%� �  � , C $��� � < � ,
increasing the distance by one.

Lemma 6.5 Let
� � �K�  1 � � with � � � � �K�  � � � .

After one step of the coupled Markov chain, �� � , we
have � �
� � ��� � ���  � � � �

.

Proof. We have noted that selecting a particle other
than � , � � � , or � � � does not change the distance,
and that by choosing particle � the distance decreases
by one. The bad moves that increase the distance are
those in which we insert � , � (or � � � ) at different
positions in

� � and
�
 . If we select either of these two

particles, say � , � , the expected change in distance is


 �
� ���+ $ � �

� $+
��� �

 � ,
$+
�%� � < ���

� � � , � �  � ��� � , 	��   
�������#�  � ���, � � , � � < � ,K� � , 	+� <  , �����P, < � ��� �

Recalling that
 $ �  � � $ and < $ � < � � $F
 � , we can

also write


 � � � , � �  � ��� ��� � , 	��  � �  
�������#�  �, � � , � � < � ,�� � , 	+� < � ��� , �����+, <  �

Summing these equations and simplifying yields 
 ��
 . By symmetry this also represents the expected
change in distance for particle � � � .

Putting these pieces together to determine the over-
all expected change, we find that � �$� � ��� � ���  ��� ��
�
�N, � � �

 
� �
 
� � �

. (An inequality, as it is possi-
ble, say, that ��� 	

so there is no bad move for the
fixed particle � .)

Whenever � � � � �K�  � � �
, the probability that the

distance changes in one step is at least ��HP� . Using the
path coupling theorem, we have a bound on the mixing
time for the Markov chain �� � on � � :

0��L ? � / � � � �
� � �#� , � , � ���  �

�
����� � �/ � �

� � �#� � ����� � �/ � � �
Recall that � � , the true projection arising from par-

titioning
. � , is also a Markov chain on � � but with

single-site dynamics using Metropolis transitions. Our
analysis of the heat bath algorithm allows us to deduce
that this Markov chain is also rapidly mixing.

Lemma 6.6 The Markov chain � � on � � with single-
site dynamics is mixing in polynomial time.



This theorem follows from the Diaconis/Saloff-Coste
comparison method (see [2, 9]); we leave these details
for the full paper.

We now have shown in lemmas 6.2 and 6.6 that
the restrictions defined by the decomposition

. � ��� � . � 	 � , as well as the projection, are all mixing in
polynomial time. Appealing to corollary 4.4 with
� � �

� � and 
�� �� , we find

Lemma 6.7 The Markov chain �1 on
. � is rapidly

mixing.

6.3. Mixing for � : The final word

A polynomial bound on the mixing time for �1 now
follows from all of our previous work. By lemma 6.7
the restrictions to each set

. � are all rapidly mixing,
and the mixing time of the projection followed from
the log-concavity of the sets

. � (lemma 5.4). Using
corollary 4.4, we can bound the mixing time of the
chain �1 on all of

.
. Note that in this case we have

� � �� � � > 
 ��	 and 
�� �
> � .

Theorem 6.8 The Markov chain �1 on
.

is rapidly
mixing.

Finally, a simple application of the comparison the-
orem establishes a polynomial bound for the mixing
time of the original simpler Markov chain 1 on

.
.

The full analysis of all of these steps will be included
in the final version of this paper.
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