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Abstract

A “dyadic rectangle” is a set of the form R = [a2−s, (a+1)2−s]×[b2−t, (b+1)2−t],
where s and t are non-negative integers. A dyadic tiling is a tiling of the unit
square with dyadic rectangles. In this paper we study n-tilings, which consist of 2n

nonoverlapping dyadic rectangles, each of area 2−n, whose union is the unit square.
We discuss some of the underlying combinatorial structures, provide some efficient
methods for uniformly sampling from the set of n-tilings, and study some limiting
properties of random tilings.

1 Introduction

We shall examine tilings of the unit square of a special type. By a dyadic rectangle we
mean a set of the form

R = [a2−s, (a+ 1)2−s] × [b2−t, (b+ 1)2−t]

where s, t are nonnegative integers and a, b are integers with 0 ≤ a < 2s and 0 ≤ b < 2t.
An n-tiling of the unit square is a set of 2n dyadic rectangles, each of area 2−n, whose
union is the unit square [0, 1]× [0, 1]. (Overlap at the edges does not concern us.) Figure
1 gives examples of such n-tilings. We shall often just speak of tilings when the value n
is understood. Let Tn be the set of all n-tilings.

a. b. c.

Figure 1: Examples of dyadic tilings

Definition. A tiling has a vertical cut if the line x = 1
2 cuts through none of its

rectangles. It has a horizontal cut if the line y = 1
2 cuts through none of its rectangles.

We note that Figure 1a has a vertical cut, Figure 1b has a horizontal cut, and Figure
1c has both a vertical and a horizontal cut. We emphasize that cuts, as opposed to the
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struts of Section 6.2, must cut the square precisely in half. Cuts play a critical role in
the analysis of tilings due to the following result.

Theorem 1.1. Every tiling has either a vertical cut or a horizontal cut. (It may have
both.)

Proof. If x = 1
2 cuts through a rectangle then that rectangle must be of the form

R = [0, 1]× I. If also y = 1
2 cuts through a rectangle then that rectangle must be of the

form S = J × [0, 1]. But then S, T overlap in I × J .

Let An denote the number of n-tilings. The square itself provides the unique 0-tiling
so that A0 = 1. A1 = 2 since the square may be split into left and right halves or top
and bottom halves. Some effort yields A2 = 7, and by the following recursion [10] we
obtain A3 = 82, A4 = 11047, A5 = 198860242, A6 = 64197955389505447, . . . . (For
convenience we let A−1 = 0.)

Theorem 1.2. For n ≥ 1,
An = 2A2

n−1 −A4
n−2. (1.1)

Proof [10]. Consider n-tilings with a vertical cut. These consist of n-tilings of [0, 1
2 ] ×

[0, 1] and [ 12 , 1]×[0, 1]. Dilating x→ 2x, n-tilings of [0, 1
2 ]×[0, 1] are equivalent to (n−1)-

tilings of the unit square. Dilating x→ 2x−1, n-tilings of [ 1
2 , 1]× [0, 1] are equivalent to

(n−1)-tilings of the unit square. Hence there are A2
n−1 such tilings. Similarly there are

A2
n−1 n-tilings with a horizontal cut. This gives, by Theorem 1.1, all n-tilings but we

have overcounted by those n-tilings with both horizontal and vertical cuts. Such tilings
consist of n-tilings of each of the four subsquares [0, 1

2 ]×[0, 1
2 ], [12 , 1]×[0, 1

2 ], [0, 1
2 ]×[12 , 1],

[12 , 1]×[12 , 1]. Dilating (x, y) → (2x, 2y), n-tilings of [0, 1
2 ]×[0, 1

2 ] are equivalent to (n−2)-
tilings of the unit square, and similarly for the other three subsquares. Hence there are
A4

n−2 n-tilings with both horizontal and vertical cuts.

The recursion of Theorem 1.2 is believed not to admit a closed solution. The asymp-
totics of An have been carefully studied in [10]; here we note only that

An ∼ φ−1ω2n

(1.2)

where ω = 1.84454757 . . . (ω does not appear to have a nice form) and φ is the golden
ratio φ = (1 +

√
5)/2 = 1.6180 . . ..

Dyadic rectangles were used previously to analyze the packing of random axis-
parallel rectangles of arbitrary size [7]. The more constrained dyadic tilings proved
to have a fascinating structure, which motivated our current efforts. Much remains to
be studied however, and several open problems are given below.

We give some deterministic results on the set of all n-tilings in Section 2. In Section 3
we define two representations as labeled binary trees, which will play an important role
later on.

By a random tiling we mean a uniformly sampled tiling in Tn, for some given n;
in other words, each tiling is chosen with the same probability 1/An. In Section 4, we
present a method to randomly sample tilings with this uniform distribution. The method
is both practically useful if one wants to generate random tilings, and theoretically useful
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in some of our later proofs. In Section 5 we discuss an alternative method to generate
random tilings by running a Markov process; we show that two natural Markov processes
are rapidly mixing. In Section 6 we study the asymptotic behavior as n → ∞ of some
properties of random tilings.

Problem 1.3. More generally, one may naturally define dyadic boxes in d dimensions
and from that, n-tilings. For d ≥ 3, however, Theorem 1.1 fails, as n-tilings do not
necessarily have any cuts. The structure of the family of n-tilings and the asymptotics
of the number An,d of such tilings remain completely open. In particular, we do not
know whether, for d ≥ 3 fixed, the 2n-th root of An,d approaches infinity.

2 The lattice of tilings

There is a useful height function which lends insight into the set of dyadic tilings. Define
the height h(t) of a dyadic 2−k × 2−l rectangle t with area 2−n to be k (equivalently,
n − l), and define the total height H(T ) of a tiling T to be the sum of the heights of
all rectangles in it. Note that since the height of a single rectangle of area 2−n is one of
the numbers {0, . . . , n},

0 ≤ H(T ) ≤ n2n, for all T ∈ Tn. (2.1)

If T is a tiling and p ∈ [0, 1]2, we let T (p) be the dyadic rectangle in T containing
p. (If there are two or more such rectangles in T , which happens only if p lies on their
boundaries, we choose for definiteness the one containing points north-east of p. This
is not important, and we could avoid this complication completely by considering only
irrational p ∈ [0, 1]2.) A tiling T ∈ Tn then is completely described by its height function
h(T ) : [0, 1]2 → {0, 1, . . . , n} defined by h(T )(p) := h(T (p)). Note that

H(T ) = 2n

∫

[0,1]2
h(T )(p) dp. (2.2)

The height function allows us to define a partial order on the set of n-tilings. Given
two tilings T1, T2 ∈ Tn, we say T1 � T2 if h(T1) ≤ h(T2), i.e., if h(T1(p)) ≤ h(T2(p)) for
all p ∈ [0, 1]2. With these definitions, we find the following.

Theorem 2.1. The partial order on Tn defines a distributive lattice.

Proof. First, there are unique highest and lowest elements in Tn. Namely, the highest
tiling is the all vertical tiling, consisting of only 2−n × 1 rectangles (which has height
function constant n), and the lowest is the all horizontal tiling, consisting of 1 × 2−n

rectangles (which has height function constant 0).
Let T1 and T2 be any two tilings in Tn. We define the join

T1 ∨ T2 = {max(T1(p), T2(p)) : p ∈ [0, 1]2},
where max(T1(p), T2(p)) is the tile with larger height. Note that this is well-defined
since every irrational point p ∈ [0, 1]2 lies on exactly one dyadic tile of each height.
Similarly, define the meet

T1 ∧ T2 = {min(T1(p), T2(p)) : p ∈ [0, 1]2},
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where min(T1(p), T2(p)) is the tile with smaller height.
We need to argue that the meet and join always yield valid tilings. Consider first

T1 ∨T2. Clearly every point in [0, 1]2 is covered at least once. Suppose that there exists
a point p1 which is covered by (the interior of) two tiles t and t′ in T1 ∨ T2. Clearly t
and t′ have different heights, and further they must come from different tilings. We can
assume without loss of generality that t ∈ T1, t

′ ∈ T2 and that h(t) > h(t′). Recalling
that t′ ∈ {max(T1(p), T2(p))}, there must exist an irrational point p2 ∈ t′ such that
T2(p2) = t′ and h(t′) ≥ h(t′′), where t′′ = T1(p2). Let t = I × J , t′ = I ′ × J ′ and
t′′ = I ′′ × J ′′. Since p1 ∈ t ∩ t′ and h(t) > h(t′), and all intervals are dyadic, we have
I ⊂ I ′ and J ⊃ J ′. Since p2 ∈ t′ ∩ t′′ and h(t′) ≥ h(t′′), we have I ′ ⊆ I ′′ and J ′ ⊇ J ′′.
Consequently, t 6= t′′ but t∩ t′′ = I×J ′′ 6= ∅, which contradicts the fact that t and t′′ are
different tiles in T1. Hence tiles in T1 ∨ T2 can never intersect. An analogous argument
shows that T1 ∧ T2 is a proper tiling.

Note that the height function satisfies

h(T1 ∨ T2) = max(h(T1), h(T2)), (2.3)

h(T1 ∧ T2) = min(h(T1), h(T2)). (2.4)

It follows that the height function defines an order-preserving bijection of Tn onto a
sublattice of the distributive lattice of all functions [0, 1]2 → {0, 1, . . . , n}. Therefore Tn

also forms a distributive lattice.

Let T̃k denote the special tiling with 2−k × 2k−n rectangles, k = 0, . . . , n; thus T̃k

has height function constant k. As noted above, T̃0 is the lowest tiling and T̃n is the
highest. Other of these special tilings also have useful properties.

Theorem 2.2. An n-tiling T has a horizontal cut if and only if T � T̃n−1. It has a
vertical cut if and only if T � T̃1.

Proof. T has a horizontal cut if and only if it contains no 2−n × 1 rectangle, i.e., if and
only if h(T )(p) ≤ n− 1 for every p ∈ [0, 1]2. The second part is similar.

Theorem 2.3. Suppose that T1, T2 are n-tilings with n ≥ 2. If T1 � T2, T1 has a
horizontal cut, and T2 has a vertical cut, then there exists a tiling T3 with both vertical
and horizontal cuts such that T1 � T3 � T2.

Proof. Define T3 = T1∨T̃1. By Theorem 2.2, T̃1 � T2, so T1 � T3 � T2. By Theorem 2.2
again, T1 � T̃n−1, and trivially T̃1 � T̃n−1, so T̃1 � T3 � T̃n−1, which by a final
application of Theorem 2.2 completes the proof.

If T is a tiling and R is a dyadic rectangle such that R is a union of tiles in T , we
can obtain new tilings by rotating the part of the tiling inside R by a multiple of 90◦.
(By “rotating” a non-square region, we really mean a rotation followed by appropriate
dilations in the coordinate directions to make the result fit in the same region again.)
Rotations will be important later. Here we are only concerned with the simplest non-
trivial case.

We make Tn into a directed graph by defining an edge T1 → T2 if T1 and T2 can be
obtained from each other by rotating a dyadic rectangle of area 2−n+1, with T1 ≺ T2.
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In particular, T1 → T2 if there is a dyadic rectangle R of area 2−n+1 such that T1 and
T2 coincide outside R, T1 contains the two horizontal halves of R, while T2 contains the
two vertical halves of R. It follows that if T1 → T2, then H(T2) = H(T1) + 2.

The following theorem yields a natural connection between this graph structure and
the partial order on Tn. Namely, we include an edge T1 → T2 if and only if T2 is a
minimal successor of T1. It further follows from the theorem that T1 → T2 if and only
if T1 � T2 and H(T2) = H(T1) + 2, thus yielding yet another characterization.

Theorem 2.4. Let T1, T2 ∈ Tn. Then T1 � T2 if and only if there exists an oriented path
from T1 to T2 in the directed graph Tn. Every such path has length 1

2H(T2) − 1
2H(T1).

Proof. The existence of such a path whenever T1 � T2 is clear for n ≤ 1. For larger n
we use induction in n. If T1 has a vertical cut, then T2 also has (by Theorem 2.2), and
the existence of an oriented path follows from the induction hypothesis by considering
the left and right halves of the tilings separately. If both T1 and T2 have horizontal cuts,
we consider similarly the upper and lower halves separately. By Theorem 1.1, the only
remaining case is when T1 has a horizontal cut and T2 a vertical cut. In this case we
use Theorem 2.3 and find a tiling T3 such that, by the previous cases, there exist paths
from T1 to T3 and from T3 to T2; we combine these paths into one. This completes the
proof of existence of an oriented path from T1 to T2 whenever T1 � T2. The converse is
immediate.

The final assertion follows because H(T2) = H(T1) + 2 when T1 → T2.

Corollary 2.5. The total height H(T ) is twice the common length of the oriented paths
from the lowest tiling T̃0 to T .

Theorem 2.6. Ignoring orientations, Tn is a connected graph. The distance d(T1, T2)
between two tilings T1 and T2 in this graph equals

2n−1

∫

[0,1]2
|h(T1)(p) − h(T2)(p)| dp = 2n−1‖h(T1) − h(T2)‖L1([0,1]2).

Proof. Combining the oriented paths given by Theorem 2.4 from T1 and T2 to T1 ∨ T2,
and reversing the latter, we obtain a path from T1 to T2 whose length, by (2.2) and
(2.3), is

1
2H(T1 ∨ T2) − 1

2H(T1) + 1
2H(T1 ∨ T2) − 1

2H(T2)

= 2n−1

∫

[0,1]2

(
2h(T1 ∨ T2)(p) − h(T1)(p) − h(T2)(p)

)
dp

= 2n−1

∫

[0,1]2
|h(T1)(p) − h(T2)(p)| dp.

Conversely, if the distance d(T1, T2) = 1, then T1 → T2 or T2 → T1, and ‖h(T1) −
h(T2)‖L1([0,1]2) = 2−n|H(T1) − H(T2)| = 21−n. By the triangle inequality for the L1

metric, we have in general ‖h(T1) − h(T2)‖L1([0,1]2) ≤ 21−nd(T1, T2).

Corollary 2.7. The diameter of the undirected graph Tn is n2n−1. This distance is
attained by the lowest and highest tilings T̃0 and T̃n.
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It is easily seen that the distance between any other pair of tilings is strictly smaller.

Problem 2.8. Study further properties of Tn as a lattice or graph. For example, what
is the distribution of the vertex degrees?

3 Tree representations

The existence of cuts promotes a useful representation of dyadic tilings in terms of
labeled binary trees. Trees are natural in this context because of the hierarchical rela-
tionship of the cuts. The first cut divides the unit square into two halves, each of which
can be interpreted as a dyadic tiling in Tn−1 through dilation. These in turn have cuts,
and so forth. The labels on a tree capture whether corresponding cuts are horizontal or
vertical.

We will use two different versions of this idea: one (HV -trees) where the labels
specify the absolute orientations of the cuts and one (AD-trees) where the labels specify
the relative orientations.

Recall that a binary tree either is empty or consists of a root and two (binary)
subtrees attached to the root. We find it convenient to say that the root of a binary
tree has height 1. Thus a complete binary tree of height n has 2n − 1 nodes: 2k−1 with
height k, for k = 1, . . . , n. We also say that the nodes with height k lie on level k. The
empty tree has height 0.

3.1 HV -trees

A complete binary tree of height n whose 2n − 1 nodes are labeled H or V defines an
n-tiling by the following procedure:

1. If the tree is empty (n = 0) then Exit.

2. If the root is labeled H, make a horizontal cut. If the root is labeled V , make a
vertical cut.

3. Continue recursively with the two halves separately, using the left subtree of the
root for one half (for definiteness, the lower or left half, say) and the right subtree
for the other half.

Conversely, Theorem 1.1 implies that every n-tiling is produced in this way by some
labeled complete binary tree. However, the tree is in general not unique, since the unit
square (or a subrectangle) may have both a vertical and a horizontal cut; indeed, there
are 22n−1 complete binary trees of height n whose nodes are labeled H or V , which is
far greater than the number of tilings in Tn.

In order to obtain a unique representation by labeled binary trees, we decide to use
the label V whenever we have a choice of proceeding with either H or V . We make the
following definition.

Definition. A complete binary tree whose nodes are labeled H or V is an HV -tree if
there is no node labeled H that has two children labeled V .
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Let T HV
n be the set of HV -trees of height n.

Lemma 3.1. An HV -tree with root labeled H defines a tiling without vertical cut.

Proof. This is trivial for height 0 or 1. For larger trees we use induction. The root
has, by the definition of HV -trees, at least one subtree whose root is labeled H, so by
induction the lower or upper half of the tiling does not have a vertical cut.

Theorem 3.2. The construction above yields a bijection between T HV
n and Tn.

Proof. Given a tiling, we create a correspondingHV -tree as follows. If there is a vertical
cut in the tiling, then label the root V and continue recursively with the left and right
halves. If there is no vertical cut, there is by Theorem 1.1 a horizontal cut; we then
label the root H and continue recursively with the lower and upper halves.

Note that if the root is labeled H, there is no vertical cut and thus at least one
of the two halves produced by the first cut has no vertical cut; consequently, the two
children of the root cannot both be labeled V . The same applies to all later stages of
the construction, which shows that we have constructed an HV -tree.

Clearly, the tree defines the given tiling. Moreover, it follows from Lemma 3.1 that
any two HV -trees defining the same tiling have to have the same root label, and by
recursion they have to be identical. Hence each tiling corresponds to a unique HV -
tree.

3.2 AD-trees

In the second representation, we use complete binary trees with the labels A (agree)
or D (disagree) to indicate whether the cut is parallel or orthogonal to its parent (i.e.,
the preceding cut). We arbitrarily define the (absent) parent of the first cut to have
vertical orientation. We formalize the construction of a tiling given a complete binary
tree labeled with A and D as follows.

1. Initialize by defining the parent cut to be the left edge of the unit square.

2. If the tree is empty (n = 0) then Exit.

3. If the root is labeled A, make a cut parallel to the parent cut. If the root is labeled
D, make a cut orthogonal to the parent cut.

4. Continue recursively (from Step 2) with the two halves separately, using the two
subtrees of the root and in both cases setting the parent cut equal to the cut just
made. More precisely, if the root is labeled A, use the left subtree for the half
nearest the parent cut, and if the root is labeled D, use the left subtree for the
left half, viewed from the parent cut.

The specification in Step 4 of the order of the subtrees is chosen such that changing
a single label in the tree corresponds to rotating the corresponding subtiling ±90◦

(clockwise if changing an A to a D and counterclockwise if changing a D to an A). This
labeling is illustrated in Figure 3.2.
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Figure 2: The correspondence between dyadic tilings and AD-trees.

Just as for HV -trees, every tiling is defined by some labeled complete binary tree,
but the correspondence between labeled trees and tilings is not bijective. More precisely,
whenever a node is labeled A and its two children are labeled D, we would get the same
tiling if we were to label all three nodes D, followed by appropriate relabelings at the
descendants of these nodes. We resolve this by only allowing the labeling where all three
such nodes are labeled D. We say that any tree with an invalid labeling (i.e., a node
labeled A which has two children labeled D) has a badly labeled subtree. This motivates
the following definition.

Definition. A complete binary tree whose nodes are labeled A or D is an AD-tree if
there is no node labeled A that has two children labeled D.

Let T AD
n be the set of AD-trees of height n.

Theorem 3.3. The construction above yields a bijection between T AD
n and Tn.

Proof. This is very similar to the proof of 3.2. Given a tiling, we can create a unique
AD-tree recursively, beginning at the root, by always choosing D when we have a choice.
We omit the details.

4 Recursive algorithms for sampling

The recursive formula for the number of tilings of each size suggests a natural method
for sampling tilings, or equivalently HV -trees or AD-trees, uniformly. Starting with the
unit square, we calculate the probability that there is a horizontal or vertical cut, and
then recursively determine probabilities of each cut in the two halves that are formed.
Analogously, we can use these probabilities to determine the label of the root of the
tree. Each subtree is then labeled so as to avoid introducing badly labeled subtrees. We
formalize how to do this in what follows. It turns out to be convenient to use the tree
representations.

4.1 Probabilities at the root

We start by introducing some notation which will be useful for determining the relevant
probabilities. Let

pn = P(a random tiling in Tn has a vertical cut) =
A2

n−1

An
, n ≥ 0. (4.1)
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By symmetry, the probability of a horizontal cut is the same. We have p0 = 0, p1 = 1/2,
p2 = 4/7, . . . . Theorem 1.2 yields, by dividing by A2

n−1, the recursion

pn =
1

2 − p2
n−1

, n ≥ 1. (4.2)

It follows easily from (4.2) that pn increases to the smallest positive root of x = 1/(2 −
x2), i.e.,

pn → φ−1 = φ− 1 = (
√

5 − 1)/2, as n→ ∞.

Moreover, using d
dx(2− x2)−1 = 2x(2 − x2)−2 ≤ 2φ−3 for 0 ≤ x ≤ φ−1, it follows by the

mean value theorem and induction that

pn = φ− 1 +O((φ3/2)−n). (4.3)

4.2 The recursive construction

We will construct a random HV -tree in T HV
n with a uniform distribution recursively,

beginning by choosing the label of the root. Since there is an obvious bijection between
HV -trees and AD-trees, given by relabeling H ↔ A and V ↔ D, the same method can
be used to construct uniformly distributed random AD-trees. Any of the bijections in
Section 3 then yields a uniform random n-tiling. (AnHV -tree and the AD-tree obtained
by relabeling correspond to different tilings, so the tilings produced by a particular sim-
ulation will depend on whether we use HV -trees and AD-trees, but both constructions
yield the same uniform distribution. Similarly, note that the algorithm below is highly
asymmetric with respect to H and V , although we know that the resulting distribution
of tilings is invariant under rotation.)

If the root is labeled V , its two subtrees can be any trees in T HV
n−1 , and we may

continue recursively. If the root is labeledH, however, and n ≥ 2, we have the constraint
that its two children must not both be labeled V ; this introduces a dependency between
the subtrees that makes a straight-forward recursion impossible. In order to overcome
this difficulty we look ahead, which we formalize as follows.

Definition. The type of a node in a HV -tree is one of the four symbols V , HHH , HHV ,
HV H , chosen according to the following rules:

1. If the node is labeled V , its type is V .

2. If the node is labeled H and it is not a leaf, its type is Hxy, where x and y are the
labels of its children.

3. If the node is labeled H and it is a leaf, its type is HHH .

Note that the type of a node determines the label, but not conversely; however, the
labeling of the whole tree determines the types, and conversely.

We define the type type(T ) of a non-empty HV -tree T to be the type of its root,
and define type(∅) = HHH .
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Consequently, an HV -tree T ∈ T HV
n , n ≥ 1, is described by its type and two trees

T1, T2 ∈ T HV
n−1 , with the constraints that

type(T ) = HHH =⇒ type(T1), type(T2) ∈ {HHH ,HHV ,HV H};
type(T ) = HHV =⇒ type(T1) ∈ {HHH ,HHV ,HV H}, type(T2) = V ;

type(T ) = HV H =⇒ type(T1) = V, type(T2) ∈ {HHH ,HHV ,HV H}.
(4.4)

Apart from these constraints, T1 and T2 may be any HV -trees in T HV
n−1 . This allows, in

principle, a recursive generation of all trees in T HV
n . (This quickly becomes practically

impossible, since |T HV
n | grows very quickly. We will turn this recursive generation into

a practical procedure for random generation of HV -trees.)
For trees of type V , there are no constraints on T1 and T2, so the number of such

trees is A2
n−1; hence the number of trees of other types is An − A2

n−1. It follows from
the rules above that the number of trees in T HV

n (n ≥ 1) of the four types are

V : A2
n−1 = pnAn

HHH : (An−1 −A2
n−2)

2 = pn(1 − pn−1)
2An

HHV : A2
n−2(An−1 −A2

n−2) = pnpn−1(1 − pn−1)An

HV H : A2
n−2(An−1 −A2

n−2) = pnpn−1(1 − pn−1)An

(4.5)

(Together, these numbers add up, as they should, to 2A2
n−1 −A4

n−2 = An.

4.3 Recursive generation of random tilings

Let τ (n) denote a random type τ ∈ {V,HHH ,HHV ,HV H} with the distribution given
by P(τ (n) = V ) = pn, P(τ (n) = HHH) = pn(1 − pn−1)

2, P(τ (n) = HHV ) = P(τ (n) =

HV H) = pnpn−1(1 − pn−1). Let further τ
(n)
H denote τ (n) conditioned on τ (n) 6= V ;

thus P(τ
(n)
H = HHH) = (1 − pn−1)/(1 + pn−1), P(τ

(n)
H = HHV ) = P(τ

(n)
H = HV H) =

pn−1/(1 + pn−1).
It follows from (4.5) that τ (n) has the same distribution as the type of a randomly

chosen tree in T HV
n , and thus τ

(n)
H has the same distribution as the type of a random

tree in T HV
n with the root labeled H. The discussion in the preceding section now shows

that the following algorithm generates a uniformly distributed random element of T HV
n ,

for any given n ≥ 1.

Algorithm 4.1.

1. Select randomly a type for the root with the distribution τ (n).

2. Recursively assign types to all other nodes such that if a node of height k, 1 ≤ k <
n, is assigned a type τ , then its left and right children get types τ1 and τ2 selected
as follows.

τ = V : Choose τ1 and τ2, independently, both with the distribution of τ (n−k).

τ = HHH : Choose τ1 and τ2, independently, both with the distribution of τ
(n−k)
H .

10



τ = HHV : Choose τ1 with the distribution of τ
(n−k)
H and let τ2 = V .

τ = HV H : Let τ1 = V and choose τ2 with the distribution of τ
(n−k)
H .

3. All vertices with type V are labeled V ; the others are labeled H.

Next observe that since pn → φ−1 as n → ∞, it follows that τ (n) d→ τ (∞) and

τ
(n)
H

d→ τ
(∞)
H , with (using φ2 = φ+ 1 repeatedly)

P(τ (∞) = V ) = φ−1 = φ− 1, P(τ
(∞)
H = V ) = 0,

P(τ (∞) = HHH) = φ−5 = 5φ− 8, P(τ
(∞)
H = HHH) = φ−3 = 2φ− 3,

P(τ (∞) = HHV ) = φ−4 = 5 − 3φ, P(τ
(∞)
H = HHV ) = φ−2 = 2 − φ,

P(τ (∞) = HV H) = φ−4 = 5 − 3φ, P(τ
(∞)
H = HV H) = φ−2 = 2 − φ.

We can use these asymptotic distributions to construct an asymptotic version of Algo-
rithm 4.1.

Algorithm 4.2. This is the same as Algorithm 4.1, but using the distributions τ (∞)

and τ
(∞)
H in Steps 1 and 2.

Consequently, for fixed N and n→ ∞, the labels of the top N levels of a (uniform)
random tree in T HV

n converges (in distribution) to the outcome of Algorithm 4.2 (with
n = N).

Remark 4.3. In Algorithms 4.1 and 4.2, we may process the nodes in any order such
that a node is visited before its children. One natural choice, easily expressed as a
recursive algorithm, is to travel depth-first, beginning with the left child, its left child,
and so on.

Another choice is breadth-first, where we assign the types level by level, in order
of the heights of the nodes. This version is useful for the arguments in Section 6.
Moreover, it means that Algorithm 4.2 not only generates a random HV -tree of any
given height; we can also regard Algorithm 4.2 as generating a random infinite HV -tree.
The remarks above show that this random infinite tree is the limit in distribution of a
(uniform) random tree in T HV

n , as n → ∞, in the sense that the distribution of labels
on any fixed finite part converges.

Remark 4.4. We have shown that Algorithm 4.1 generates uniformly distributed ran-
dom HV -trees and thus uniformly distributed random tilings in Tn. Evidently, one can
also produce random tilings in Tn by the following simpler algorithm: Make a vertical
or horizontal cut, with probability 1/2 each, and continue recursively in each half for
n − 1 iterations (with all choices independent). This method, however, does not give
a uniformly distributed tiling when n ≥ 2. For example, the probability of obtaining
the all horizontal tiling T̃0 is 2−(2n−1) � A−1

n . Moreover, a branching process argument
similar to the one in Section 6.2, shows that for the random tiling generated by this
procedure, P(there is a vertical cut) → 1 as n → ∞, in contrast to (4.1). This simpler
method is equivalent to choosing a random labeling of the complete binary tree with H
and V (or A and D) uniformly among all 22n−1 possibilities without any restrictions,
and constructing the corresponding tiling as in Section 3.
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5 Dynamic sampling algorithms

An alternative method for sampling AD-trees and dyadic tilings is by simulating suitable
Markov chains. A simple Markov chain on the state space Tn starts from any tiling T0.
At each step it chooses a random dyadic rectangle R of any size larger than 2−n and
checks whether R has a nontrivial intersection with any of the tiles in the current tiling.
If not, then it rotates the part of the tiling that falls within R by 90◦ in one of the two
directions; otherwise it does nothing. When R has area 2−n+1, this rotation changes
exactly two tiles and is very similar to a Markov chain previously studied in the context
of domino tilings of the chessboard [12, 11, 13].

It will be useful to interpret tilings in terms of AD-trees. We first define a second,
very simple Markov chain on AD-trees and show this is rapidly mixing. Of course this
immediately defines a Markov chain on the set of dyadic tilings, but this chain is less
natural in this context. Hence, we conclude this section by comparing the mixing rates
of the two Markov chains on tilings to show that they both define efficient sampling
algorithms.

5.1 A Markov chain on AD-trees

The Markov chain on AD-trees T AD
n successively changes the labeling at a single node

of the tree, while avoiding badly labeled subtrees. If x ∈ T AD
n is a labeled tree, then let

x(v) be the label which x assigns to vertex v.

The Markov chain M̃n starts at a fixed starting point x0, say the tree such that
x0(v) = D for all nodes v. Given that M̃n is at state xt at time t, it moves to state xt+1

as follows: Let Vn be the set of the 2n − 1 vertices of the tree. Pick (v, b) ∈ Vn ×{A,D}
uniformly. For all w 6= v, xt+1(w) = xt(w). Next, set xt+1(v) = b if it leads to a valid
configuration (i.e., if it does not create a badly labelled tree). If changing the label at
v creates a badly labeled subtree, then we reject the move and remain at the current
configuration, so xt+1(w) = xt(w) for all w. The transition probabilities P̃ (·, ·) of M̃n

are

P̃n(x, y) =





1
2|Vn|

if there is a unique node v such that

x(v) 6= y(v);

1 − ∑
y′ 6=x P̃n(x, y′) if x = y;

0 otherwise.

Theorem 2.6 shows that the state space is connected. We prove a stronger lemma
which will be useful later. Given any two configurations x, y ∈ T AD

n , let us define the
distance Φ(x, y) to be the Hamming distance between them. That is, Φ(x, y) is the
number of vertices which are assigned different labels.

Lemma 5.1. Let x, y ∈ T AD
n be any two configurations. Then there is a sequence

of states z0, z1, . . . , zd such that z0 = x, zd = y, d = Φ(x, y) and for all 0 ≤ i < d,
Φ(zi, zi+1) = 1.

Proof. We consider two cases. First, suppose that there exists at least one vertex that
is labeled D in x and A in y. Let w be any such vertex which is as far from the root as
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possible. Define z1 by changing the label of x at w, i.e., z1(w) = A and z1(v) = x(v),
for all v 6= w. To see that z1 is a valid labeling, notice that if the children of w in z1

are both labeled D, then they must also be labeled D in x, and hence, by our choice of
w, they are labeled D in y. This contradicts our assumption that y is a valid AD-tree.
Consequently, Φ(x, z1) = 1 and Φ(z1, y) = d − 1, and the result follows by induction
on d.

If all of the vertices which have different labels in x and y are labeled A in x, we
interchange the roles of x and y in the argument.

Corollary 5.2. The Markov chain M̃n is ergodic and converges to the uniform distri-
bution on T AD

n .

5.2 Bounding the mixing rate of M̃n

To bound the mixing rate, or convergence time, of our Markov chain, we will use a
simple path coupling argument.

Starting in any given initial state x, we measure the deviation of the distribution
P t(x, ·) at time t from the uniform distribution π by the variation distance:

∆x(t) =
1

2

∑

y∈Ω

|P t(x, y) − π(y)|.

The mixing time of the Markov chain is defined as

τ(ε) = max
x

min{t : ∆x(t′) ≤ ε for all t′ ≥ t}.

If τ(ε) is polylogarithmic in the size of Ω, for fixed ε, then we say that the Markov chain
is rapidly mixing. Recall that our state space has size which is doubly exponential in n
(see equation (1.2)), so this means that τ(ε) is exponential in n. All of our algorithms
must have mixing time which is at least 2n, the time it takes to write down a single
configuration.

One strategy for bounding τ(ε) is to construct a coupling for the Markov chain, i.e.,
a stochastic process (xt, yt)

∞
t=0 on Ω × Ω such that each of the processes xt and yt is

a faithful copy of M (given initial states x0 = x and y0 = y), and if xt = yt, then
xt+1 = yt+1.

The expected time taken for the processes to meet provides a good bound on the
mixing time of M. To state this formally, for initial states x, y set

Tx,y = min{t : xt = yt | x0 = x, y0 = y},

and define the coupling time to be T = maxx,y ETx,y. The following result relates the
mixing time to the coupling time (see, e.g., [1]):

Theorem 5.3. τ(ε) ≤ Tedln ε−1e.
The method of path coupling simplifies our goal by letting us bound the mixing rate

of a Markov chain by considering only a small subset of Ω×Ω. (See [6, 9].) We use the
following theorem, obtained by combining Theorems 2.1 and 2.2 in Dyer and Greenhill
[9].
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Theorem 5.4. Let Φ be an integer valued metric defined on Ω × Ω which takes values
in {0, . . . , B}. Let U be a subset of Ω×Ω such that for all (x, y) ∈ Ω×Ω there exists a
path x = z0, z1, . . . , zr = y between x and y such that (zi, zi+1) ∈ U for 0 ≤ i < r and

r−1∑

i=0

Φ(zi, zi+1) = Φ(x, y).

Let M be a Markov chain on Ω with transition matrix P . Consider any random function
f : Ω → Ω such that P[f(x) = y] = P (x, y) for all x, y ∈ Ω, and define a coupling of the
Markov chain by (xt, yt) → (xt+1, yt+1) = (ft(xt), ft(yt)), where (ft)

∞
t=0 are independent

copies of f . Let ∆Φ(xt, yt) = Φ(xt+1, yt+1) − Φ(xt, yt). Suppose that, conditioned on
any pair of states xt and yt,

(i). E(∆Φ(xt, yt)) ≤ 0 when (xt, yt) ∈ U ,

(ii). P[Φ(xt+1, yt+1) 6= Φ(xt, yt)] ≥ α when xt 6= yt, for some constant α > 0.

Then the mixing time of M satisfies

τ(ε) ≤
⌈
eB2

α

⌉
dln ε−1e.

The random function f thus updates all states of the Markov chain simultaneously.
This is known as a complete coupling.

To apply this machinery to analyze the Markov chain M̃n, we first need to define the
random function f that defines the coupling. We do this by choosing (v, b) ∈ Vn×{D,A}
uniformly and independently and then for any configuration x defining f(x) by changing
x(v) to b, if possible. This defines a simultaneous update of all states, and thus a
complete coupling with the correct marginal distributions.

Let U be the pairs of configurations (x, y) such that the Hamming distance Φ(x, y) =
1. The following lemma establishes that the expected distance between such a pair is
never increasing.

Lemma 5.5. Let xt, yt ∈ T AD
n be two configurations such that Φ(xt, yt) = 1. Then

the expected change in distance E[∆Φ(xt, yt)] ≤ 0 after one step of the coupled Markov
chain.

Proof. Let xt, yt ∈ T AD
n such that Φ(xt, yt) = 1 and let w be the vertex where they are

labeled differently. Assume without loss of generality that w is labeled D in xt. Suppose
we choose (v, b) ∈ Vn × {A,D} for our next move. We consider the set of moves that
can change the distance between the configurations. Let p(w) be the parent of w, s(w)
be the sibling of w, and l(w) and r(w) be the left and right children of w.

1. If v = w, then xt+1 = yt+1 for any choice of b.

2. If v = p(w), then there is exactly one way that the distance can increase. Namely,
xt(p(w)) = D, xt(s(w)) = D and b = A. (This move would increase the dis-
tance between configurations because the label on xt+1(p(w)) = xt(p(w)) but
yt+1(p(w)) 6= yt(p(w)).)
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3. If v = s(w), then again there is exactly one way for the distance to increase. This
can only occur if xt(p(w)) = A, xt(s(w)) = A and b = D.

4. If v = l(w) is the left child of w, then we can increase the distance between
configurations only if xt(l(w)) = A, xt(r(w)) = D and b = D, where r(w) is the
right child of w.

5. Likewise, if v = r(w), the distance can increase only if xt(l(w)) = D, xt(r(w)) = A
and b = D.

Initially it looks as though there are many more possibilities for increasing the distance
than decreasing it. However, we are quite fortunate in that not all of these potentially
bad events can be present simultaneously. In particular, the bad events described in the
second and third cases cannot occur simultaneously, nor can the last two cases. Hence,
there are at most two choices of (v, b) which will increase the distance to 2 and exactly
two choices of (v, b) which will decrease the distance to 0. All other moves are neutral.
Summarizing this discussion, we find that

E[∆Φ(xt, yt)] ≤ 0,

since all of these moves are equally likely.

This lemma provides the crucial ingredient towards our path coupling argument for
bounding the mixing rate of M̃n. Finally, notice that for any two tilings at distance 1
there are always two possible moves which decrease the distance. Hence we can take
α = (2n − 1)−1.

Referring to Theorem 5.4 and Lemma 5.1, we find

Corollary 5.6. The mixing time of the Markov chain M̃n on labeled trees T AD
n satisfies

τ(ε) ≤ 23nedln ε−1e.

5.3 A natural Markov chain on tilings

The Markov chain M̃n defined on AD-trees can be reinterpreted in terms of tilings; at
each step one of 2n − 1 possible dyadic rectangles is identified, and if certain conditions
are met, the subtiling can be rotated. Our definition of AD-trees restricts both the set
of possible rectangles as well as the direction of rotation. For example, if the tiling has
both horizontal and vertical cuts (of the unit square), then we may allow the top or
bottom half to be rotated in this fashion, but we would not allow the left or right halves
to be rotated, nor the whole square.

We rectify this asymmetry by introducing a new Markov chain Mn, referred to at
the beginning of this section. Two tilings are connected by a single step of the Markov
chain if one can be transformed into the other by rotating the part of the tiling contained
in some dyadic rectangle in the square.

Let bn be the number of dyadic rectangles (regions) in a unit square with area at
least 2−n+1. Since there are (k + 1)2k dyadic rectangles with area exactly 2−k (since
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there are k+1 choices for the shape and each shape can appear in exactly 2k positions),
we find

bn =

n−1∑

k=0

(k + 1)2k = (n− 1)2n + 1.

This gives the transition probabilities Pn(·, ·) of our Markov chain Mn:

Pn(T1, T2) =





1
4bn

if T1 and T2 differ by rotating the subtiling

in a dyadic subrectangle by ±90◦ or 180◦;

1 − ∑
T ′ 6=T1

Pn(T1, T
′) if T1 = T2;

0 otherwise.

It is not hard to see that this Markov chain connects the state space; starting with
any tiling, we can always rotate subtilings starting with large dyadic rectangles and con-
tinuing with smaller ones until all the cuts are vertical. (Theorem 2.6 shows a stronger
statement.) In addition, all transitions (besides self-loops) have equal probability, so
detailed balance implies that the Markov chain converges to the uniform distribution.
Summarizing this, we find:

Theorem 5.7. The Markov chain Mn is ergodic and converges to the uniform distri-
bution over dyadic tilings Tn.

5.4 Showing that Mn is rapidly mixing

We conclude by showing that Mn is rapidly mixing by comparing its mixing rate to
that of M̃n, using the comparison method of Diaconis and Saloff-Coste [8]. Here we
describe a special case of the comparison theorem which is sufficient for our application.

Let P and P̃ be transition matrices of two reversible Markov chains on state space Ω
which have the same stationary distribution π. We would like to express the mixing rate
of a Markov chain (P, π,Ω) (for example, Mn, the Markov chain on tilings) in terms

of the mixing rate of (P̃ , π,Ω) (for example, M̃n, the rapidly mixing Markov chain on
AD-trees).

To apply the comparison method it is necessary to map each transition of P̃ to a
path described by some number of transitions in P . In our application this is trivial
since P̃ (x, y) 6= 0 implies that P (x, y) 6= 0 for every x, y ∈ Ω. Hence we can use the
identity map and all of our paths have length 1. Using the formulation of the comparison
method as given in [13, Proposition 4] (slightly modified here), we have the following
theorem.

Theorem 5.8. Let (P, π,Ω) and (P̃ , π,Ω) be two reversible Markov chains such that
P̃ (x, y) 6= 0 implies P (x, y) 6= 0 for all x, y ∈ Ω. Let π∗ = minx∈Ω π(x). Then, for
0 < ε < 1/2,

τ(ε) ≤ 4 ln(1/(επ∗))Amax
( τ̃(ε)

ln(1/(2ε))
, 1

)
, (5.1)

where

A = max
x6=y,P̃ (x,y)>0

P̃ (x, y)

P (x, y)
.
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To apply this to our Markov chains Mn and M̃n, consider any pair of distinct states
x, y ∈ Ω such that P̃ (x, y) > 0. We find

P̃ (x, y)

P (x, y)
≤ (2|Vn|)−1

(4bn)−1

=
4
(
(n− 1) 2n + 1

)

2(2n − 1)

≤ 2n.

In addition, the stationary probability π is uniform over dyadic tilings, so π−1
∗ ≤ 22n

.
Applying these bounds, Theorem 5.8 gives

τ(ε) ≤ c(ε)n 2n τ̃(ε),

for some constant c(ε). Hence, by Corollary 5.6,

Corollary 5.9. The Markov chain Mn on dyadic tilings Tn is rapidly mixing.

Problem 5.10. It is also natural to consider the analogous Markov chain where we
only rotate rectangles of area 2−n+1. This is the same as a random walk on Tn regarded
as an undirected graph as in Section 2. Is this Markov chain also rapidly mixing?

6 Random dyadic tilings

We now turn our attention to limiting properties of random tilings such as the expected
height of a tiling and the likelihood of long, thin rectangles. As in Section 4.2, we shall
make use of the partition of tilings into types according to whether there are vertical or
horizontal cuts. We also use the recursive random construction from Section 4.3.

6.1 Total height

Recall the definition of the total height of a tiling from Section 2. We will here study
the normalized height function defined by

H̃(T ) = 2−nH(T ) − n/2, T ∈ Tn. (6.1)

This, combined with equation (2.1), tells us that −n/2 ≤ H̃(T ) ≤ n/2. We let Hn and
H̃n denote the random variables H(T ) and H̃(T ) obtained by choosing a random tiling
T ∈ Tn.

By symmetry (a 90◦ rotation transforms H̃(T ) to −H̃(T )), H̃n is a symmetric ran-
dom variable. In particular, E H̃n = 0.

Theorem 6.1. There exists a symmetric random variable H̃∞ such that

(i). As n→ ∞, H̃n
d→ H̃∞, with convergence of all moments.

(ii). For any real t,
E exp(tH̃n) ≤ exp( 1

4φ
4t2), 1 ≤ n ≤ ∞.

17



(iii). For any a ≥ 0,

P(H̃n ≥ a) ≤ exp(−φ−4a2), 1 ≤ n ≤ ∞.

(iv). The moment generating function ψ(z) = E ezH̃∞ is an entire function satisfying
the functional equation

ψ(z) = (
√

5 − 1) cosh(z/2)
(
ψ(z/2)

)2 − (
√

5 − 2)
(
ψ(z/4)

)4
. (6.2)

(v). Var H̃∞ = E H̃2
∞ = (6φ− 2)/11 = (3

√
5 + 1)/11 = 0.7007458 · · · .

Remark 6.2. Higher moments of H̃∞ may be found recursively by differentiation of
(6.2). In particular, E H̃4

∞ = (71230+7902
√

5)/80465 = 1.10482 · · · . (All odd moments
vanish by symmetry.)

Remark 6.3. This theorem justifies the definition of the normalization H̃n, which at
first might appear odd. There are 2n rectangles, each with height in {0, . . . , n}, so that if
the heights were independent the variance would be at most n22n. Theorem 6.1 shows,
in contrast, that VarHn = 22n Var H̃n ∼ c22n, with c = Var H̃∞ = (3

√
5 + 1)/11,

which indicates a very high correlation. Roughly speaking, if an early cut creates long
thin rectangles then all of its subrectangles will tend also to be long and thin.

Proof. We use the bijection with HV -trees, and define H(T ) for an HV -tree T ∈ T HV
n

to be the total height of the corresponding tiling. It is easily seen (by induction) that
each of the 2n−1 paths in the tree from the root to a leaf corresponds to two congruent
tiles in the tiling, whose height equals the number of labels V in the path. Let vk(T )
denote the number of nodes at level k in the tree T that are labeled V . Since each node
at level k lies on the path to 2n−k leaves, we obtain by summing over all paths

H(T ) = 2
∑

x leaf

(number of V on the path to x) = 2

n∑

k=1

2n−kvk(T ) (6.3)

and thus

H̃(T ) =

n∑

k=1

(21−kvk(T ) − 1
2 ). (6.4)

We label the HV -tree T by types as in Section 4.2 and define the k-type typek(T ) to
be the subtree of nodes up to height k, labeled with their types in T (for k = 1, . . . , n).
Thus type1(T ) is the root and its type, or equivalently just the type of the root, which
we already have called the type of the tree, i.e., type1(T ) = type(T ).

For each n we define a martingale X
(n)
0 , X

(n)
1 , . . . , X

(n)
n = H̃n by setting X

(n)
0 =

E H̃n = 0 and X
(n)
k = E(H̃n | typek) for k ≥ 1. In other words, X

(n)
k (T ) is defined as

the average of H̃n(T ′) over all HV -trees T ′ having the same k-type as T .

Let us first consider X
(n)
1 = E(H̃n | type). If T ∈ T HV

n is of type V , and the two
subtrees of the root are T1, T2 ∈ T HV

n−1 , then H(T ) = H(T1) + H(T2) + 2n by (6.3), or
directly by considering the corresponding tilings. Hence

H̃(T ) = 1
2

(
H̃(T1) + H̃(T2)

)
+ 1

2 , if type(T ) = V. (6.5)
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Similarly, if T has type HHH , HHV or HV H , then H(T ) = H(T1) +H(T2) and

H̃(T ) = 1
2

(
H̃(T1) + H̃(T2)

)
− 1

2 , if type(T ) 6= V. (6.6)

As discussed in Section 4.2, for trees with type(T ) = V , T1 and T2 may be any trees in
T HV

n−1 , and thus

E(H̃n | type = V ) = 1
2 E H̃n−1 + 1

2 E H̃n−1 + 1
2 = 1

2 , n ≥ 1. (6.7)

Combining this with

E(H̃n | type = V )P(type = V ) + E(H̃n | type 6= V )P(type 6= V ) = E H̃n = 0

and P(type = V ) = pn by (4.1), we find

E(H̃n | type 6= V ) = − pn

2(1 − pn)
. (6.8)

Similarly, it follows from (6.6) and the constraints (4.4), using (6.7) and (6.8), that

E(H̃n | type = HHH) = E(H̃n−1 | type 6= V ) − 1
2

= − pn−1

2(1 − pn−1)
− 1

2
= − 1

2(1 − pn−1)
.

(6.9)

and

E(H̃n | type = HHV ) = E(H̃n | type = HV H)

= 1
2 E(H̃n−1 | type = V ) + 1

2 E(H̃n−1 | type 6= V ) − 1
2

= − 1

4(1 − pn−1)
.

(6.10)

Consequently, X
(n)
1 −X(n)

0 = X
(n)
1 is a random variable taking the three values in (6.7),

(6.9) and (6.10) with probabilities P(τ (n) = V ) = pn, P(τ (n) = HHH) = pn(1 − pn−1)
2

and P(τ (n) = HHV ) + P(τ (n) = HV H) = 2pnpn−1(1 − pn−1), respectively, where as in
Section 4.3 τ (n) is the type of a random HV -tree in T HV

n (see (4.5)). In particular,

|X(n)
1 | ≤ 1

2(1 − pn−1)
≤ φ2

2
. (6.11)

For future use we define Y (n) = X
(n)
1 , and let further Y

(n)
H and Y

(n)
V denote the

random variables obtained by conditioning Y (n) on type 6= V and type = V , respectively.

(Thus, by (6.7), Y
(n)
V = 1

2 really is non-random.) Moreover, define Ȳ (n) = Y (n) −
EY (n) = Y (n), Ȳ

(n)
H = Y

(n)
H −EY

(n)
H and Ȳ

(n)
V = Y

(n)
V −EY

(n)
V = 0. By (6.11), a similar

calculation for Ȳ
(n)
H and trivially for Ȳ

(n)
V , we have the common bound

|Ȳ (n)|, |Ȳ (n)
H |, |Ȳ (n)

V | ≤ φ2

2
. (6.12)

19



We proceed to studying the martingale differences X
(n)
k+1 − X

(n)
k for higher k. Let

T ∈ T HV
n and 1 ≤ k < n. There are 2k−1 nodes on level k in T , and each of them

carries two subtrees of height n− k. Denoting these 2k subtrees by T1, . . . , T2k ∈ T HV
n−k ,

we find from (6.4)

H̃(T ) =

k∑

i=1

(21−ivi(T ) − 1
2 ) + 2−k

2k∑

j=1

H̃(Tj). (6.13)

Now consider all trees with a given k-type τ . The k-type determines v1, . . . , vk, and it
specifies some of the labels on level k + 1, i.e., some of the root labels of the trees Tj

(the ones attached to a node on level k labeled H); say that τ specifies mH labels H
and mV labels V on level k + 1, leaving 2k −mH −mV unspecified. By the recursive
construction in Section 4, the trees Tj can be any trees with the right root labels, and
(6.13) yields

E
(
H̃(T ) | typek(T ) = τ

)
=

k∑

i=1

(21−ivi(T ) − 1
2) + 2−k

(
mH E(H̃n−k | type 6= V )

+mV E(H̃n−k | type = V )
)
, (6.14)

where the conditional expectations on the right hand side are given by (6.7), (6.8).
Now suppose that we extend the k-type τ to a (k + 1)-type τ ′ by specifying also

the types at level k + 1. In (6.13), this means that we now have specified the types of
T1, . . . , T2k . If τ ′ specifies type(Tj) = τj, we thus obtain from (6.13) and (6.14), since
the trees Tj otherwise are arbitrary trees in T HV

n−k ,

E(H̃(T ) | typek+1(T ) = τ ′) −E(H̃(T ) | typek(T ) = τ)

= 2−k
( 2k∑

j=1

E(H̃n−k | type = τj) −mH E(H̃n−k | type 6= V ) −mV E(H̃n−k | type = V )
)
.

If we use the recursive construction in Section 4.3, then the types τj are assigned inde-
pendently, given τ , and it follows that conditioned on typek(T ) = τ , we have

X
(n)
k+1(T ) −X

(n)
k (T ) = 2−k

2k∑

j=1

Ȳj , (6.15)

where Ȳ1, . . . , Ȳ2k are independent random variables, and each Ȳj is distributed as one

of Ȳ (n−k), Ȳ
(n−k)
H and Ȳ

(n−k)
V . Since every Ȳj has mean 0 and, by (6.12), variance at

most c = φ4/4, we obtain

E
(
(X

(n)
k+1 −X

(n)
k )2 | typek = τ

)
= 2−2k

2k∑

j=1

E(Ȳj)
2 ≤ c2−k

and thus
E(X

(n)
k+1 −X

(n)
k )2 ≤ c2−k, 0 ≤ k < n. (6.16)
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Since martingale differences are orthogonal, and H̃n = X
(n)
n , this yields

E(H̃n −X
(n)
k )2 =

n−1∑

i=k

E(X
(n)
i+1 −X

(n)
i )2 ≤ 2c2−k, 0 ≤ k < n. (6.17)

Next let k ≥ 0 be fixed, and let n → ∞. Since then pn → φ−1, the conditional
expectations in (6.7)–(6.10) converge to some limits, and the right hand side in (6.14)
converges to some number Xk(τ). Moreover, the k-type of a random tiling T ∈ T HV

n

is given by the first k levels of Algorithm 4.1, and thus its distribution converges to
the distribution of the random k-type τ∞k generated by Algorithm 4.2, see Remark 4.3.

Hence, defining Xk = Xk(τ
∞
k ), we find that X

(n)
k

d→ Xk as n → ∞, for every fixed
k ≥ 0.

Moreover, we may generate all τ∞k , k = 0, 1, . . . together as the k-types of the
random infinite HV -tree constructed in Remark 4.3, and then X0, X1, . . . becomes a
martingale, as is easily seen by construction or by taking the limit of the martingales

{X(n)
k }. Moreover, by letting n→ ∞ in (6.16), we see that

E(Xk+1 −Xk)
2 ≤ c2−k, k ≥ 0,

and hence the martingale {Xk} is L2-bounded, whence it converges in L2; thus there
exists a random variable H̃∞ such that E(H̃∞ − Xk)

2 → 0 as k → ∞. This, the

convergence X
(n)
k

d→ Xk for every fixed k, and the uniform bound (6.17), where the

bound 2c2−k tends to 0 as k → ∞, implies that H̃n
d→ H̃∞ by a standard 3ε argument

[5, Theorem 4.2].
This proves the first claim in (i). Convergence of all moments follows from this when

we have shown the uniform bound (ii).
For (ii), we return to the representation (6.15) for given n, k and τ . Using again

E Ȳj = 0 and |Ȳj | ≤ φ2/2, it follows as in e.g. [2, proof of Theorem A.1.16] that

E exp(tȲj) ≤ cosh( 1
2φ

2t) ≤ exp( 1
8φ

4t2), j = 1, . . . , 2k,

and thus

E
(
exp(t(X

(n)
k+1 −X

(n)
k )) | typek = τ

)

= E exp
(
t2−k

2k∑

j=1

Ȳj

)
=

2k∏

j=1

E exp
(
t2−kȲj

)

≤ exp
(
2k 1

8φ
4(2−kt)2

)
= exp(2−k−3φ4t2).

Consequently, since typek determines X
(n)
k ,

E exp
(
tX

(n)
k+1

)
= E

(
E

(
exp(t(X

(n)
k+1 −X

(n)
k )) | typek

)
exp(tX

(n)
k )

)

≤ exp(2−k−3φ4t2) exp
(
tX

(n)
k

)
,
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and thus, recalling H̃n = X
(n)
n and X

(n)
0 = 0,

E exp(tH̃n) ≤
n−1∏

k=0

exp(2−k−3φ4t2) ≤ exp(2−2φ4t2).

This is (ii) for finite n. The estimate for n = ∞ follows by taking the limit as n → ∞
(or by the same argument).

(iii) follows from (ii) by a standard application of Markov’s inequality. (See, e.g.,
[2, Appendix A].)

For (iv), we first observe that (ii) implies that E ezH̃∞ exists for every complex z

and defines an entire function, and further that E ezH̃n → E ezH̃∞ as n→ ∞.
In order to show the functional equation (6.2), we return to the argument used

to show (1.1). Consider a random tiling in T HV
n and let V and H denote the events

that there is a vertical or horizontal cut, respectively, and let 1V and 1H denote the
corresponding indicator functions. Then, since there is at least one cut by Theorem 1.1,

E ezH̃n = E(ezH̃n1V) + E(ezH̃n1H) −E(ezH̃n1V∩H)

= E(ezH̃n | V)P(V) + E(ezH̃n | H)P(H) −E(ezH̃n | V ∩ H)P(V ∩H). (6.18)

Moreover, using (6.5),

E(ezH̃n | V) = ez/2 E(e
z

2
H̃n−1)E(e

z

2
H̃n−1)

and similarly, or by symmetry,

E(ezH̃n | H) = e−z/2 E(e
z

2
H̃n−1)E(e

z

2
H̃n−1).

Furthermore, if T ∈ T HV
n is a tiling with both vertical and horizontal cuts, it is composed

of four (arbitrary) tilings T1, T2, T3, T4 ∈ T HV
n−2 , with H̃(T ) = 1

4

∑4
1 H̃(Ti), which leads

to

E(ezH̃n | V ∩ H) =
(
E(e

z

4
H̃n−2)

)4
.

Since P(V) = P(H) = pn → φ − 1 = (
√

5 − 1)/2 and thus P(V ∩ H) = 2pn − 1 →
2φ− 3 =

√
5 − 2, (6.2) now follows by letting n→ ∞ in (6.18).

Finally, differentiating (6.2) twice at z = 0 yields, with σ2 = Var H̃∞ and using
E H̃∞ = 0,

σ2 = 2(φ− 1) 1
4 (1 + 2σ2) − (2φ− 3) 4

16σ
2,

which yields (v) after elementary calculations.

6.2 Spanning rectangles

We call a subrectangle of the unit square is a strut if it spans the unit square vertically.
(Hence a dyadic rectangle of area 2−n is a strut if its height as defined in Section 2 is
n.) We will study the distribution of Sn(T ), the number of struts in a random tiling T
in Tn.
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We begin by observing that T has a horizontal cut if and only if there are no struts,
i.e., if Sn(T ) = 0. Hence, by (4.1),

P(Sn = 0) = pn → φ− 1.

To proceed, we again useHV -trees. As remarked in the proof of Theorem 6.1, a path
from the root to a leaf in an HV -tree defines two congruent tiles in the corresponding
tiling, and these tiles are struts if and only if all nodes on the path are labeled V . Thus
Sn equals two times the number of such paths in a random HV -tree.

Theorem 6.4. Sn/(
√

5 − 1)n d→ Z as n→ ∞, for some random variable Z such that:

(i). P(Z = 0) = limn→∞ P(Sn = 0) = φ− 1.

(ii). EZ = β and VarZ = 2φβ2, where β =
∏∞

n=1(pnφ) = 0.702845 · · · .

(iii). Besides the point mass at 0, Z has an absolutely continuous distribution on (0,∞),
with a continuous and strictly positive density.

Proof. For an HV -tree T ∈ T HV
n and 1 ≤ k ≤ n, let X

(n)
k (T ) be two times the number

of paths from the root of T to a node of height k such that the k nodes on the path all

are labeled V . Thus X
(n)
n = Sn. Further, let X

(n)
0 = 1.

It follows from the recursive construction in Section 4.3 that X
(n)
k+1 has the distribu-

tion of a sum of X
(n)
k independent variables Y

(n−k)
j (for 1 ≤ j ≤ X

(n)
k ), where Y

(m)
j has

the distribution
P(Y

(m)
j = 2) = pm,

P(Y
(m)
j = 0) = 1 − pm.

(6.19)

In other words, the random sequence X
(n)
0 , . . . , X

(n)
n is an inhomogeneous branching

process where the kth generation has the offspring distribution given by Y
(n−k)
j in

(6.19). It follows that

E(X
(n)
k+1 | X(n)

0 , . . . , X
(n)
k ) = (EY

(n−k)
1 )X

(n)
k = 2pn−kX

(n)
k ;

hence, defining m
(n)
k = EX

(n)
k and W

(n)
k = X

(n)
k /m

(n)
k , we see that W

(n)
0 , . . . ,W

(n)
n is a

martingale and that

m
(n)
k = EX

(n)
k =

k−1∏

i=0

2pn−i =
n∏

i=n−k+1

2pi, 0 ≤ k ≤ n. (6.20)

Moreover, again by the branching process,

E
(
(X

(n)
k+1 − 2pn−kX

(n)
k )2 | X(n)

k

)
= Var(Y

(n−k)
1 )X

(n)
k = 4pn−k(1 − pn−k)X

(n)
k

and thus
E(X

(n)
k+1 − 2pn−kX

(n)
k )2 = 4pn−k(1 − pn−k)m

(n)
k .
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and

E(W
(n)
k+1 −W

(n)
k )2 = 4pn−k(1 − pn−k)m

(n)
k /(m

(n)
k+1)

2 =
1 − pn−k

pn−k
(m

(n)
k )−1.

Since p1 = 1/2 and pi ≥ p2 = 4/7 for i ≥ 2, (6.20) implies m
(n)
k ≥ (8/7)k−1, and thus,

for 0 ≤ k ≤ n, since martingale differences are orthogonal and Sn = X
(n)
n ,

E(Sn/m
(n)
n −W

(n)
k )2 =

n−1∑

i=k

E(W
(n)
i+1 −W

(n)
i )2 ≤

n−1∑

i=k

(m
(n)
i )−1

≤
n−1∑

i=k

(7/8)i−1 ≤ 8(7/8)k−1.

(6.21)

The variable Y
(n−k)
j defined by (6.19) evidently converges in distribution, as n→ ∞

with fixed k, to a limit variable Yj with

P(Yj = 2) = φ− 1,

P(Yj = 0) = 2 − φ.
(6.22)

Consider the standard (Galton–Watson) branching process X0, X1, . . . with X0 = 1
and offspring distribution given by (6.22), and the corresponding expectations mk =
(E Y1)

k = (
√

5 − 1)k and martingale Wk = Xk/mk. As is well-known [4, Section 1.6]
(and easy to prove), this martingale converges, and thus Wk → W as k → ∞ for some
W .

Moreover, it is obvious that for every fixed k ≥ 0, as n → ∞, we have X
(n)
k

d→ Xk,

m
(n)
k → mk and thus W

(n)
k

d→Wk. Together with the uniform bound (6.21), this implies

Sn/m
(n)
n

d→ W , using again [5, Theorem 4.2]. Furthermore, as n→ ∞,

m
(n)
n

(
√

5 − 1)n
=

n∏

i=1

2pi

2φ− 2
→

∞∏

i=1

pi

φ− 1
,

where the infinite product converges because of (4.3). Denoting this product by β, we

thus have Sn/(
√

5−1)n d→ βW . The proof is completed by using well-known properties
of the limit W , see e.g. [4, Th. I.6.2, Cor. I.12.1] and [3, Sec. 3.6].

We might also consider horizontal struts, which are the tiles with height 0. By sym-

metry, the same results hold for the number S
(0)
n of them. Note that, by Theorem 1.1, a

tiling in Tn (with n ≥ 1) cannot contain both horizontal and vertical struts, so at least

one of the numbers Sn and S
(0)
n is always 0.

Problem 6.5. We leave for further study the analysis of the number S
(h)
n of rectangles

of a given height h for 0 < h < n. For h fixed, we expect asymptotic distributions
similar in nature to those of Sn. The situation is less clear when h ∼ cn with 0 < c < 1.
In particular, what is the limiting distribution of the number S

(n)
2n of squares?
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Problem 6.6. Let hmin(T ) denote the minimum height of all tiles in the tiling T . Then

P(hmin(T ) = 0) = P(there is a horizontal strut) = 1 − pn → 2 − φ.

Does hmin have an asymptotic distribution (as seems likely)? What is it? In other
words, does P(hmin(T ) = h) have a limit as n → ∞ for every fixed h ≥ 1, and what is
the limit?
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