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Abstract. Given a graph with edges colored RED and BLUE, we wish
to sample and approximately count the number of perfect matchings
with exactly k¥ RED edges. We study a Markov chain on the space of all
matchings of a graph that favors matchings with & RED edges. We show
that it is rapidly mixing using non-traditional canonical paths that can
backtrack, based on an algorithm for a simple combinatorial problem.
We show that this chain can be used to sample dimer configurations on
a 2-dimensional toroidal region with £ RED edges.

1 Introduction

Counting the number of matchings in a graph is a well-studied problem in com-
binatorics and computer science. Counting the number of perfect matchings in
a bipartite graph is equivalent to computing the permanent of a matrix with
0,1 entries. This problem is also of interest in statistical physics in the context
of understanding the thermodynamic properties of a dimer system [3,4]. Moti-
vated by this application, Kastelyn showed that for planar graphs the number
of perfect matchings can be computed exactly [9]. Recently Jerrum, Sinclair
and Vigoda [6] gave an fpras (fully polynomial approximation scheme) approxi-
mating the number of perfect matchings in any bipartite graph, which is based
on an fpaus (fully polynomial almost uniform sampler) for generating random
perfect matchings.

A natural generalization of the matching problem is when the edges of the
graph are colored RED or BLUE:

V]

Problem: Given a graph G(V,E), a partition E = RU B, and k < 5, count
the number of perfect matchings in G with ezxactly k edges in R.

The decision version of this problem is to find a matching with exactly k¥ RED
edges. These problems have been studied in combinatorial optimization [12] as
well as statistical physics [2]. There are several open questions regarding both
the decision and the counting versions of this problem. For the decision version
of this problem, known as ezxact matchings, Mulmuley, Vazirani and Vazirani
[11] give a randomized algorithm for general graphs. A deterministic algorithm
is known only when the graph is complete or complete bipartite [8, 14].
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A special case of the counting problem, of interest in statistical physics, is
where G is the \/n x y/n 2-dimensional lattice and the horizontal edges are
RED, while the vertical edges are BLUE. We wish to count the number of dimer
coverings with exactly k& horizontal edges, as well as solve the sampling problem.
Fisher [2] gave a closed form solution for the limiting distribution (as the size
of the lattice tends to infinity) of configurations in terms of the activities A and
p of horizontal and vertical dimers, where the weight of a configuration with &
horizontal edges and k' vertical edges is given by A* ,uk'. To our knowledge, ours
is the first work to address the sampling/counting problem for general graphs.

We make progress on this problem for general graphs and solve the problem
in some natural special cases. Our results for general graphs are best viewed in
terms of the partition function for matchings. Throughout, let M denote the set
of all matchings of an input graph G, and P denote the set of perfect matchings.
The standard partition function on matchings

Z(A) = Y AM
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can be approximated for all A by the algorithm of Jerrum and Sinclair [5]. We
show that we can approximate a modified partition function which puts most
weight on (k, £)-matchings, i.e. matchings of size £ with exactly k¥ RED edges.

Theorem 1. For any G(V, E) with a partition of the edges E = RUB, activities
A<, any £ <|V|/2 and k < £, there is an fpras for estimating the following
partition function over weighted matchings:

ZeaOhp) = 3 NIMORI=R] Mt (1)
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An n-vertex graph is dense if it has minimum degree d;,,;, > n/2. A bipartite
graph with each partition of size n is dense if it has dp;n > n/4.

Theorem 2. For any dense graph G(V, E), activity A < 1, and k < |V'|/2, there
is an fpras for estimating the following partition function:

Zr(N) = Yo A PORIHL (2)
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We approximate the partition functions within a factor (1+¢) w.p. > 1—4. The
running time in each case is polynomial in 1/A,1/u,1/e,1og(1/6) and the size of
the graph.

We demonstrate the significance of these results on the 2-dimensional torus
Zipy X L, for even my,my, taking the horizontal edges to be RED and the
vertical edges to be BLUE. In particular, we present a polynomial time algorithm
for approximately sampling and counting the set of perfect matchings (or dimer
coverings) with exactly & RED edges. We note that there are algorithms to
exactly count the number of perfect matchings on the 2-d torus [9] which can
be extended to bichromatic matchings. However, our proof can be extended to
the monomer-dimer model in which we approximately sample and count (k, £)-
matchings of the 2-d torus, giving the first solution to this problem.



Theorem 3. Given any torus Zp, X Ly, with m1 and mo even, any non-
negative integer k < mimso/2 and any £ > k, there is an fpaus for generating a
random (k,£)-matching of the torus and an fpras for estimating the number of
such matchings that run in time polynomial in my and mo.

Theorem 1 uses a Markov chain defined on the set of all matchings of the
graph which puts most weight on (k, £)-matchings. We use the canonical paths
technique to bound the convergence rate of the Markov chain. Here, these paths
are non-trivial to define, in contrast to the usual matching problem where the
analysis of the path congestion was the harder task.

The combinatorial fact that enables us to define our paths is as follows.
Consider a graph with edges colored RED and BLUE. For any ¥ and for all perfect
matchings P, P’ with exactly k¥ RED edges, there is a polynomial length path
between P and P’ along almost perfect matchings, with successive matchings
differing by only a few edges, such that each contains close to ¥ RED edges. We
can reduce the problem of finding such a path to a combinatorial problem about
moving two points along a two-dimensional landscape in a co-ordinated manner
so that the sum of their heights stays constant. The canonical path from P to
P’ defined in [5] starts at the matching P and alternately deletes an edge of
P’ and adds an edge of P’ along an alternating cycle. An interesting aspect of
our canonical paths is that they may backtrack along portions of the alternating
cycle, for instance we might delete edges of P’ that were previously added.

Our second technical contribution is proving combinatorial inequalities that
allow us to approximate the number of (k,£)-matchings on the torus. Kenyon,
Randall and Sinclair [10] showed that the number of near perfect matchings in
the d-dimensional torus is polynomially related to the number of perfect match-
ings, thereby yielding polynomial time algorithms for approximately counting
and uniformly sampling perfect matchings. In this paper, we generalize their re-
sult to show that, on the 2-d torus, this relationship holds even when we restrict
to sets of matchings with exactly k& RED edges. Our result builds on ideas of
Temperley [13] and Burton and Pemantle [1] for constructing augmenting paths
where every horizontal and vertical segment has even length.

2 Approximately Counting Bichromatic Matchings

We outline the proof of Theorem 1 in this section; similar ideas are used to
prove Theorem 2. By a standard reduction, approximating the partition function
Zy¢(A, p) can be reduced to approximate sampling [7], so we concentrate on the
sampling problem and defer the details of the fpras to the full version.

To solve the sampling problem we define a Markov chain on the set of match-
ings M which puts most weight on (k,£)-matchings. The same chain was used
by Jerrum and Sinclair [5], with the transition probabilities defined so that the
stationary distribution was uniform over all matchings.

The Markov Chain 7: The state space is M, the set of all matchings of G.
Let £ < |V|/2,0 <k </¢and 0 < A u < 1. Define the weight of a matching M,
as w(M) = Nk-IMOEIl [6=IM|[ The transitions My — My, of T are defined as
follows.



From a matching M;, choose a random edge e = (u,v) € E.
1) If e € My set M' = M\ {e}.
2) If M € N(u,v), (i.e. u,v are unmatched), set M' = M; U {e}.
3) If for z # v, My € N(u,z) and (w,v) € My, set M' = (MU {e}) \ (w,v). Set
My = M’ with probability § min(1, w(M')/w(M)), else set My = M.

It is straightforward to verify that the Markov chain is connected, aperiodic
and reversible and has stationary distribution proportional to w(M).

Intuition for the Canonical Paths

In the canonical path method for bounding the mixing time of a Markov chain,
for each pair of matchings I, F'; we define a path from I to F' along transitions
of the chain. We need to bound the congestion of these paths through every
transition to show that the Markov chain converges quickly.

The approach of Jerrum and Sinclair [5] to obtain this bound is to focus on
a specific transition 7. For each pair (I, F') whose path uses the transition T', we
define an “encoding” E, which is also a matching; T' and E let us recover (I, F),
so E can be viewed as an injective map. Then the number of (I, F') pairs whose
path uses T' is at most the number of matchings, which is |£2|. This is sufficient
to bound the congestion for unweighted matchings. For weighted matchings, we
also need to show that w(l)w(F) < w(T)w(E)poly(n). The encoding is defined
as E=(TUF)\(MUM') where T = M — M', so E can be viewed as the
complementary matching of T' with respect to (I, F).

Suppose that £ = |V|/2 so that we favor perfect matchings. If I and F are
perfect matchings with k& RED edges, they have maximum weight. The weight
of transitions and encodings along the canonical path from I to F' must be
comparable to the weight of I and F. Hence, both T and E need to contain
close to k RED edges, and simultaneously be close to a perfect matching (i.e.,
have only a constant number of unmatched vertices or “holes”).

Consider the perfect matchings I, F, and suppose I & F (the symmetric
difference of I and F') consists of a single alternating cycle. The transitions of
the chain allow us to easily “unwind” this alternating cycle: remove one of the
edges of I on the cycle, then perform a series of shifts (moves of type 3), and
then add the final edge of the cycle of F.
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Fig.1. An alternating cyclein I & F Fig. 2. Landscape for cycle

To see the difficulty, suppose, as in Figure 1, this cycle alternates RED on
I and BLUE on F on one half of the cycle, and BLUE on I and RED on F' on
the other. Then, no matter where we start the unwinding there will be some
intermediate matching with far more (or far less) RED edges than the intended



k. Notice that in this example there are two vertices vy, wg so that if we unwind
from these two points simultaneously then we can ensure that the number of
RED edges differs from k by at most a constant. It turns out that we can always
choose two such positions to begin the unwinding of the cycle. To define the
unwinding, it is helpful to look at the alternating cycle together with a function
representing the number of RED edges gained along the cycle.

However, the protocol for unwinding is not straightforward and we may need
need to backtrack (switch edges back from F' to I') from one position to continue
unwinding at the other. Hence, it is not obvious whether our paths can always
make progress. Additionally, the picture is more complicated when I@® F' consists
of multiple cycles and paths with varying lengths and numbers of RED edges.
We focus on formalizing the problem of unwinding a single alternating cycle and
defer the general case to the full version.

Paired Mountain Climbing

Consider the case that I @& F' is a single alternating cycle and I and F' both
contain exactly k¥ RED edges. We would like to transform the cycle from I to F’
so that all the intermediate matchings have close to k¥ RED edges.

For every other vertex v on the alternating cycle, assign —1,0 or +1 to denote
the change in the number of RED edges. Thus, for e = (u,v) € I,e' = (v,w) € F,
f() = leer — leer, where 1 is the indicator function. Fix a start vertex on
the cycle, say vg, and a direction for unwinding the cycle. For every vertex vap41
on the cycle, let G(vapq1) = Zf:o f(v2i41), where vog — v1 — --- — v is the
alternating path from vy to v,. The function G defines a “landscape”, as shown
in Figure 2.

It can be shown that if [I N R| = |F N R| = k, then there always exists a
vertex vg so that G(vg) = 0, G(vg) > 0 for all £, and 0 again at the last vertex.
We choose a companion start vertex for vy which is a (global) maximum, denote
this vertex as wg. Let S = G(vg) + G(wo). We break the alternating cycle into a
pair of alternating paths, P = {vg,v1,...,v,} and @ = {wo, ..., wn}, where v,
is the vertex before wg and w,, is the vertex before vy.

We now start unwinding the cycle at the vertices vp and wg. If unwinding
from one of the positions adds a RED edge, then from the other position we need
to remove a RED edge by moving forward or backwards as necessary. Thus, if
at some intermediate step we are at vertices v; and w;, we need that (G(v;) —
G(v)) + (G(w;) — G(wg)) =0, i.e. G(v;) + G(w;) = S. The mountain climbing
problem is to determine a (short) trajectory from (vg,wq) to (vn,w.,) so that
at each intermediate step (v;, w;) we have G(v;) + G(w;) = S. We may need to
move backwards on one path in order to move forward on the other path, and
this corresponds to rewinding the cycle.

We defer the details of the canonical paths for general I, F' to the full version
and focus instead on the algorithm for the mountain climbing problem which
has all the ideas necessary to solve the problem in general.



The Algorithm for Mountain Climbing

A landscape is a function P : [n] = Z>q such that for 1 <i <n -1, |P(i +
1) — P(i)| =1 (see Figure 3). For n,m > 1, given landscapes P : [n] = Z>o and
Q =:[m] = Z>o, we say P and @ are S-matched if there is an integer S s.t.

i) P(1)+Q(m) =P(n) +Q(1) =S
ii) P(1) = min;{P(i)}, P(n) = max;{P(i)}, Q(1) = max;{Q(5)}, Q(m) =
min; {Q(j)}-

A traversal of S-matched landscapes P, () is a sequence (i1, 51),- -+ , (i¢, je), S-t-

i) i1:1,j1:1,ig:n,jg:m
ii) For 1 <k <£€—1, [igp1 —ix| = 1, [jr1 — jk| = 1 and P(ix) + Q(jr) = S.

Lemma 1. Let P and Q be S-matched landscapes on [n] and [m] respectively.
Then, there exists a traversal of P and Q of length at most O(nm) and it can
be found in time O(nm).

Proof. The proof is by induction on n + m. Let S = min + max, where f; =
gm = min and f, = g1 = max. Assume that the min < maz, otherwise, the
problem is trivial. Also, we use “(1,m,1,m)” as shorthand for the problem of
determining a traversal for P, Q. We start by showing the inductive step and
conclude with the base cases.

Case I: P has a maximum or minimum at ¢ where 1 < i < n.

Fig. 3. Case Ia.

Case Ia.: Suppose that the first such point 7 is a maximum (Figure 3).
Let h be the lowest value taken by P from i to m. Let j be the first point
between ¢ and n such that P(j) = h. Since both 7 and n are maxima of P,
i < j < n.Let j' be the first point going from m to 1 (the direction here is
important) such that Q(j') = S — P(j). Note that it may be that j' = 1, but
since m is a minimum of @, j' < m. To find a traversal of P, (@, it is enough
to concatenate the traversals for the following subproblems, in the given order:
(1,i,1,m), (¢,45,m,j"), (j,n,j',m). The functions on the shorter intervals take
their values from P and . It can be verified that in each case, we obtain a
problem of finding a traversal for smaller S-matched landscapes.

Case Ib.: The first such point ¢ is a minimum (Figure 4). Let h be the
maximum value taken by P from 1 to ¢. Let j be the first point between 1 and
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Fig. 4. Case Ib.

i such that P(j) = h. Since both 1 and ¢ are minima of P, 1 < j < 4. Let j'
be the first point after 1 where Q(j') = S — h. Since j is not a minimum of P,
j' > 1. In this case, concatenate the traversals for the following subproblems in
the given order to obtain a traversal of P,Q: (1,4,1,5"), (j,4,5',1), (i,n,1,m).
Case II: () has a maximum or minimum at ¢ where 1 < ¢ < m. This case follows
by symmetry from Case I.

Case III: The last case is when there is a unique maximum and minimum
on P and Q). We concatenate the traversals for the subproblems (1,2,1,2) and
(2,7n,2,m), both of which are smaller problems than (1,n,1,m). It can be verified
that in both cases we are reduced to the problem of finding a traversal for S-
matched landscapes. Note that to show this, it is crucial to use the fact that P
and ) have a unique minimum and maximum.

For the base case, let n = 2. Then, m = 2 since we may assume the paths
have unique maximum and minimum, otherwise we go by induction. Since the
paths are S-matched, the only possibility (upto a reversal of direction) is that
P is a landscape going 'up’, and @ is a landscape going ’down’. The traversal is
the obvious one.

Finally, we show by induction that there is a traversal of P, @ of length at
most O(nm) and it can be found in time O(nm). If n = 2, the traversal is
obvious and is of length O(m). If n,m > 2, in each of the three cases above, the
traversal restricted to P is obtained by traversing edge-disjoint ’sublandscapes’.
Hence, the length of the traversal is at most O(nm) by induction. The proof
above gives an O(nm) algorithm. O

Our solution to the mountain climbing problem allows us to define the canon-
ical paths for matchings I, F'. The canonical paths are defined so that every pair
of successive matchings along the path is a transition of the Markov chain and
the size of an intermediate matching lies between the sizes of I and F' and con-
sists of [Ig — 5, Fr + 1] RED edges, where I = |[I N R|,Fg = |F N R| and
Ip < Fg. Essentially, we think of the concatenation of all the paths and cycles
of I@& F as one long landscape, and apply Lemma 1 without ever unwinding more
than constantly many cycles or paths at any time. By the previous argument,
the paths are at most of polynomial length. With standard machinery it is now
straightforward to show that the Markov chain mixes in polynomial time. The
details can be found in the full version. This completes the outline of the proof
of Theorem 1.



3 Bichromatic Matchings on the Torus

Let G,y m, be the torus Zq,, X Zy,, with horizontal edges colored RED and ver-
tical edges BLUE. It is known that the total number of near perfect matchings
is polynomially related to the number of perfect matchings [10]. We first gener-
alize this result to relate near-perfect matchings restricted to k¥ RED edges and
perfect matchings on close to k¥ RED edges. Our goal will be to show that the
number of matchings with k red edges does not vary much as we change the size
of the matching. We will show this by defining maps from one set of matchings
to the other that are invertible with a small amount of additional information.
This will allow us to define an fpras for counting the number of (k, £)-matchings
of the torus. Let N} be the set of (k,mim2/2 — i)-matchings of Gpy, m,. Let
Pr, = N}. Let N (u,v) be the set of (k,m1ms2/2 — 1) matchings with holes at u
and v.
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Fig. 5. The sublattice Vo Fig. 6. Alternating paths L}, L%

Let m1,m2 be even. Let Vy (white vertices) and V; (black vertices) be the
even and odd sublattices of G, ,m,. Further refining these sets, let Vpo be the
set of vertices both of whose co-ordinates are even: the sets V1, V19 and V3, are
defined analogously (Figure 5) . Note that if u, v are the holes of any near-perfect
matching of G, ,m,, then one of them is white while the other is black. Also, if
mi,my are even, the number of RED edges in any perfect matching of G,y m,
is even.

Theorem 4. Let mi,my € Z be even and N = mima/2. For 0 <i < N -1
and 1 < k < N — 1 —i, there is a map fi : NiT' — N} UN{,, such that no
matching of Nt UN} ,, is mapped to by more than O(N®) matchings of N

Proof. We first prove the theorem for 4 = 0. Let N € N, (u,v) and assume wlog
that u = (uy,us) is in Voo. Define an alternating path L¥ in N as follows: start at
20 = u, and follow the unmatched RED edge to the vertex z; = (uy,us+1). Now,
iteratively, if at an odd vertex zs;_1, follow the unique matched edge to z2; (see
figure 6). ;From each even vertex zs; along the path, take the unmatched edge
in the same direction as the edge (22;—1, 22;), so each segment (in the horizontal
or vertical direction) of the path after the first step has even length. Continue in
this way until reaching v or revisiting a vertex, thus forming a cycle. The vertex
set is finite, so one of these will occur. Define an alternating path LY similarly,



except, start with the edge from u to (u1,us — 1). Note that every black vertex
on these paths is in Vj;, while the white vertices along the horizontal segments
are in Vo, and those on the vertical segments are in V1;. Finally, define the paths
Ki', KY¥ similarly, so that the first edges are to the vertices (u1+1,uz). In this
case, the black vertices on the path are in Vjg, the white vertices on the vertical
segments are in Vpo and those on the horizontal segments are in V7;.

Let v = (v1,v2) € Vp1. We use these four paths to define an alternating
path from u to v where the number of RED unmatched edges on the path is one
more than the number of RED matched edges. Inverting along this path gives
a perfect matching in Pry1. Given a perfect matching obtained in this way, we
will be able to recover the near perfect matching with polynomial amount of
information. We define the alternating path from u to v, by considering these
cases.

o ulef e}
° °
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Fig. 7. L} meets v Fig. 8. The path K7 meets C1

1. If one of the paths L} or LY reaches the vertex v before it cycles (Figure 7),
then this is the alternating path. Say the path L} reaches v. By construction,
the number of unmatched RED edges along L} is exactly one more than the
number of matched RED edges, hence inverting along the path gives P € Pg41.
To invert the map, given P € Pyy1, start at v, if v is matched by a BLUE (RED)
edge to the vertex x, the next unmatched edge along the path is taken to be the
other BLUE (RED) edge incident with z. Continue in this way until u is reached.

2. If both paths L}, L¥ cycle without reaching v, we consider the following cases
based on whether these cycles are contractible.

(a) At least one of the paths, say LY , ends with a contractible cycle Cy on the
surface of the torus. It is easy to show that the interior of C; contains an odd
number of vertices, and the number of black vertices exceeds the white vertices
by 1. Hence, the interior of C; must contain an odd number of unmatched
vertices and the unmatched vertex in the interior cannot be white: in particular,
it cannot be wu itself. So, v must lie in the interior of C;. Consider the path
K7 (see Figure 8). Since K7 cannot cycle in the interior of C; or end at an
unmatched vertex, it must meet C;. By construction, the white vertices of K7
are in V71, hence the path meets the cycle on a vertical segment, say at the
vertex w. The alternating path from u to v is defined by taking the subpath of
LY from u to w, and the subpath of K} from v to w. The number of unmatched
RED edges in the alternating path is one more than the number of matched RED
edges, and so inverting along the path gives P € Pjy1 as required. Moreover,



given P, and the edge incident to w in the original matching, the alternating
path can be reconstructed.

(b) Both paths LY, LY end in non-contractible cycles on the surface of the torus.
There are two possibilities, and we give a sketch of the arguments.

i) The cycles C; and C; are disjoint. This implies that the paths L¥ and L¥
are disjoint except at u. When a torus is cut along an incontractible simple
cycle, we are left with a cylinder. If we cut along the cycles C; and Cs, we
are left with 2 cylinders, one of which contains v and the paths L}, Ly. The
other cylinder can be shown to have an even number of vertices. Since the
union of the two paths L¥, LY is odd, the cylinder containing the paths has
an odd number of vertices, and hence contains the vertex v. As before, K¢
must hit one of the paths L} or L} since it cannot cycle on the cylinder.

ii) The cycles C1,C> are not disjoint. In this case it can be shown that there
exists a contractible cycle on the surface of the torus which can be cut out by
starting at u along LY, and ending at u along LY (some edges may be used
twice, once from above and once from below). As before, the interior contains
an odd number of vertices which must be matched with each other, and
hence must contain the vertex v. Since the cycle containing v is contractible,
the path K7 must hit one of L}, LY.

In each case K7 hits the path from w on a vertical segment at a white vertex
in V11 Given a matching in Pyy1,u,v and the vertex at which the paths from u
and v meet, we can invert the map as described before.

In the case that v € Vj9, the same arguments can be made, except that we
consider the paths K{*, K¥, L}, L} instead of LY, LY, K7, K3 respectively. The
difference is that the alternating paths constructed have one unmatched BLUE
edge more than the number of matched BLUE edges along the path, so inverting
edges with non-edges along the alternating path from u to v gives a matching
in Py,. This completes the proof for ¢ = 0.

In the case that i # 0, suppose that N € ,ﬁ+1. Let u be the lexicographically
first unmatched white vertex of NV, and assume that u € Vyg. If one of LY, LY
meets a black unmatched vertex v, then switching edges along the path from u
to v gives a matching in N} +1- If not, then both LY, L3 cycle.

Suppose L} ends in a contractible cycle C. The interior of C; contains an odd
number of vertices, including the vertices possibly on a segment of L} starting
at u. Hence, the interior contains an odd number of unmatched vertices. Since
black vertices outnumber white vertices by one, the number of black unmatched
vertices outnumber white unmatched vertices by one. In particular, the interior
contains at least one black unmatched vertex, call it v.

Consider the paths K7, K3. If either one reaches a white unmatched vertex in
the interior (including u), then switching edges along that path gives a matching
in V. Otherwise, if either one hits LY, say at a vertex w, then we can switch
edges along LY from u to w, and then along K7 from v to w to obtain a matching
either in N,:H or NV} depending on whether v is in Vo1 or Vjo. If the paths K, K3
do not hit a white unmatched vertex or L}, they must cycle in a contractible cycle
in the interior. Consider one of the paths, say K7. Repeat the same argument as



before, except now we consider white vertices v’ in the interior of the cycle, and
consider the paths L%I,LQ". Depending on whether «' is in Vo or Vi1 and the
sublattice of v, alternating along the paths as before gives a matching either in
Njior Nji, . We can repeat this argument until we obtain an alternating path
between a black and a white vertex, or, the interior of some cycle created by a
vertex contains only one unmatched vertex. Since the single unmatched vertex
cannot be the same as the vertex from which the cycle was created, this case
can be solved in the same manner as the case when i = 0.

The remaining case, when L}, L} end in incontractible cycles, is similar to
Case 2 above. O

Corollary 1. Let mi,ma be even, N = mimso/2. There is an algorithm to
estimate the partition function Zy, given in Equation (2) for every A <1 and k
to within (1 +£¢€) w.p. > 1—§ in time polynomial in N, A\, 1/e and log(1/J).

We can use similar arguments to relate the number of perfect matchings with
k or k + 2 RED edges.

Theorem 5. Let m,n be even, N = mn/2. For every 0 < k < N — 2 even,
[Prt2|/p(N) < |Pr| < p(N)|Pri2|, where p is a polynomial.

Proof. Tt suffices to show the upper bound for all k since the lower bound follows
by switching the colors.

We construct a map from Py to Ppyo as follows. Let P € Pg. Delete any
vertical edge (u,v). Since k < N — 2, there must be such an edge. Consider
the paths L¥ LY in P\ (u,v). By parity, neither can reach v, and hence they
must cycle on the surface of the torus. Since u is adjacent to v on the torus,
neither path can end in a contractible cycle containing v in the interior. Hence
both L}, LY end in incontractible cycles. By the arguments of Case 2 of the
previous theorem, the path L} must hit one of the paths L}, L} at a white vertex
w € V11, i.e., on a vertical segment. Then, switching along the alternating path
from u to v through w as before, we gain two RED edges, giving a matching in
Pr+2- The mapping is invertible given the vertex w and the vertices u, v, hence
Pl < O(N?)|Pral- o

Using this Theorem and the estimator given by Corollary 1, we obtain an
estimator for the set of perfect matchings of the torus with exactly k¥ RED edges.
The proof follows from standard arguments.

Theorem 6. There is an algorithm to estimate |Py| to within 1 £ for every
0 <& < 1 with probability > 1 — 0 in time polynomial in N,1/e and log(1/9).

These results can be generalized to approximating the size of the set of (k, £)-
matchings for any £. By Theorem 1, we can approximate the partition function
Zy, given in Equation (1) for every A, 4 <1 and 0 < k < £ < n. This estimator,
together with the relations among sets of restricted matchings of arbitrary size
(stated below) and the theorem of Kenyon, Randall and Sinclair [10] that the
sizes of the sets N and N1 are polynomially related, gives an approximate
counter for sets of restricted matchings of any size.



Theorem 7. Let my,my be even, N = mymy/2. For every 1 < i
and 0 < k < N — i —1, then for some polynomial p, |N,§'+1|/p(N)

N -1,
Vil <

ININ

P(N)|N1i+1|~

The proof follows by constructing alternating paths as in Theorem 4.

Corollary 2. There is an algorithm to estimate |N}| to within 1 + ¢ for every
0 < & < 1 with probability > 1 — § in time polynomial in N,1/e and log(1/4).

Acknowledgements: Thanks to a referee for suggesting a simplification of the
statement of Lemma 1.
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