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Abstract

We present an extension of domino tilings of planar lattice
regions to three dimensions. The tilings consist of filling
“Aztec” octahedral and tetrahedral regions with triangular
prisms. The set of tilings corresponds bijectively to a set of
ordered domino tilings of planar regions, where the domino
tilings are forced to respect a partial order based on a height
function representation. We define a natural Markov chain
on the set of tilings and prove that it is rapidly mixing.
This is the first nontrivial proof of rapid mixing for a Markov
chain on configurations which correspond to a 4-dimensional
height function. Simulations based on this Markov chain
have shown that a class of octahedral and tetrahedral regions
will have frozen regions akin to the arctic circle theorem,
which states that the nonfrozen regions of random tilings of
the Aztec diamond converge to a circle. Next, we show that
for a second class of tilings, the octahedral and tetrahedral
tilings will have equal entropy. This is surprising because
they correspond to ordered tilings of square and Asztec
diamond regions, respectively, which are known to have
different entropy in two dimensions.

1 Introduction.

Domino tilings of regions in Z? have provided an
amusing playground for combinatorialists, computer
scientists and physicists for many years. The problem
of counting tilings of square regions was first proposed
by Fowler and Rushbrooke in 1937 [6] in the context of
analyzing the thermodynamics of a 2-dimensional dimer
system. This counting question was resolved in the early
1960’s by Kasteleyn, Fisher and Temperley [9, 16] using
an elegant algorithm based on evaluating Pfaffians. For
a survey of the dimer model, see [7]. In the early 1990’s
a new flurry of activity started with a paper of Thurston
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[17], who defined a “height function” representation for
tilings, and a paper of Elkies, Kuperberg, Larson and
Propp [5], who introduced the Aztec diamond and found
new methods for generating and counting tilings of these
regions. (The Aztec diamond is defined as a region
in Z* with {2,4,.n — 2,n,n,n — 2,...,2} squares on
successive rows, each centered around the y axis.) It
was later found that random tilings of Aztec diamonds
have “frozen regions” that are predictably tiled, and
that the unfrozen parts of the tilings converge to a
circular shape, the so-called “arctic circle theorem”
[8]. In contrast, the square region is known to be of
maximum entropy, so no such phenomena would appear
in its random tilings. Efficient methods have since
been developed to produce random tilings of any simply
connected region in Z* based on a height function
representation of the set of tilings [13, 14].

Given this explosion of activity, it is quite natural to
consider 3-dimensional tilings. The story here has been
less satisfying. There has been progress in enumerative
combinatorics for bounding the number of tilings of
cubic regions with 2 x 1 x 1 “bricks” (see, e.g., [2]),
and there is a method for algorithmically approximately
counting and sampling such tilings [10]. Unfortunately,
however, many of the underlying properties that have
attracted combinatorialists have failed to generalize. In
particular, there no longer seems to be a height function
representation of these tilings, and proposed Markov
chains based on local moves no longer connect the state
space. Properties also fail to generalize to tilings with
2 x 2 x 1 “slabs,” which has also been proposed.

In this paper, we abandon the original physical
motivation of modeling dimer systems and succeed in
defining a natural 3-dimensional generalization of the
domino tiling problem that does inherit the algebraic
and combinatorial properties that have attracted so
much attention. The tilings have a height function that
maps each tiling to a surface in Z*. There is a bijection
between the set of 3-dimensional tilings with “domino
chaing” 71 < Ty <X ... X T, where < refers to the
partial order on domino tilings defined by the original
height function. In addition, there is a simple Markov
chain based on local moves that is ergodic and connects



the state space. This has allowed us to examine typical
tilings, and we have found surprising “arctic-circle-like”
phenomena demonstrating frozen regions.

The innovation comes from tiling regions with tri-
angular prisms, each having two 30°,30°,120° trian-
gles and a square face connecting the long edges of the
triangles. The tile was derived from a Levitov block,
which consists of two of these prisms glued together
along their square faces (although specifying the an-
gles as we do here was not important) [11]. Levitov
blocks have been a useful tool for demonstrating the
height function representation of 2-dimensional tilings.
We define four interesting families of regions to be tiled,
On, Tn, (’) and Tn, where regions O,, and (’) are octa-
hedral in shape and are defined from the height function
of the 2-dimensional square region of order n, and 7,
and 7, are tetrahedral in shape and are derived from
the 2-dimensional Aztec diamond of order n/2.

The first result is that the natural Markov chain
on the state space of tilings is rapidly mixing. The
proof relies on path coupling and an intermediate step
whereby we first analyze a Markov chain enhanced with
“tower moves.” This is the first proof of rapid mixing for
a model represented by a 4-dimensional height function.

Simulating this Markov chain has allowed us to
make several conjectures about emerging regions which
are analogous to the 2-dimensional arctic circle theorem.
We believe that regions O, and 7, have frozen regions
with predictable tilings when n is large.

The second result identifies a surprising connection
between the Aztec diamond and the square region and
allows us to prove that the entropy of tilings of Oy is
equal to the entropy of tilings of 7,. (The entropy is
defined as limlog(# Ry)/Vol(R,), where R, is a family
of regions and #R, is the number of tilings.) In two
dimensions, tilings of the square and the Aztec diamond
are known to have different entropy. The proof relies on
a cute combinatorial identity that decomposes squares
and Aztec diamonds into exact packings of smaller
squares and diamonds.

The paper is organized as follows. We provide
a very brief introduction into the theory of height
functions in section 2. In section 3 we introduce the
new tilings model. In section 4 we review the analysis
of a Markov chain for sampling domino tilings. Then
we define a Markov chain on the state space of 3-
dimensional prism tilings and show that this is rapidly
mixing. Finally, in section 5 we study random tilings
of these regions. In particular, we prove that the
octahedral and tetrahedral pyramids @ and T have
the same entropy. In addition, we show simulations that
suggest there will be frozen regions that emerge almost
surely in some random tilings.

2 Domino tilings and height functions.

A domino tiling is a covering of a finite, simply con-
nected region of the Cartesian lattice with unmarked
dominoes, where each domino covers two adjacent
squares of the region. Domino tilings represent con-
figurations of dimer systems on this lattice.

The tilings of any region can be represented by a
height function. The height function arises from an
underlying tiling group and can be summarized using a
rule based on the bipartition underlying the dual lattice,
i.e., the black and white squares of the chessboard.
To define the height function hp associated with a
tiling 7', start with some point v on the boundary and
set hp(v) = 0. Now, walking along edges bounding
the tiles, if the square to the left of an edge is black
(respectively, white), increase (respectively, decrease)
the height by one. An example is illustrated in figure 1.
It is easy to see that the height of a point on any tiling
of a region is always fixed mod 4. Altering a tiling
by “rotating” two adjacent horizontal tiles so that they
are vertical (or vice-versa) alters the height function by
changing the height of the center point by +4.
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Figure 1: Domino tilings and height functions

This height function defines a partial order on
tilings. We say that 77 < Ty if, for each point p
in the region, hp,(p) < hp,(p). Every finite, simply
connected region has a unique highest and lowest tiling.
The highest and lowest tilings of the square and Aztec
diamond are shown in figure 2; to see the associated
height functions, see figure 5.
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Figure 2: The highest and lowest tilings of the square
and Aztec diamond

We derive a new height function hp that will be
useful in the description of Levitov blocks [11, 12].
Adjust the height of any point in the center of the
long edge of a domino so that it agrees with the height
of its two neighbors along the edge of the domino.



This adjustment forces some points to have two heights
simultaneously. If we fit a surface to this new height
function so that each domino is covered by a piecewise
linear surface, we can add wertical triangles to connect
the dominoes and account for the multiple heights;
these triangles are degenerate in our overhead view
and appear as slivers. A Levitov block is made from
two triangular prisms with square faces that are glued
together so that the square faces are misaligned (viewed
from the top one sees two horizontal domino tiles,
whereas viewed from below one sees two vertical domino
tiles, or vice-versa.); see figure 3. If we start with the
surface corresponding to the lowest tiling of a region
R, iNLTL(R), and start placing Levitov blocks on the
surface, the upper envelope will correspond to other
domino tilings. If 77 < 75, then we can get from the
surface defined by hp, (R) to the surface hp,(R) by
adding Levitov blocks.

1 P 1 1 1 1

1 2 1 0 0 0

1 5 1 1 1 1
Top View Bottom View

Figure 3: A Levitov tile

3 The model.

The new model consists of filling several families of
regions, called Aztec octahedra and tetrahedra, with
prism tiles. We start by defining these tiles and the
3-dimensional regions in section 3.1. The regions are
crafted so that the new tilings inherit a height function
from the 2-dimensional domino tilings; we define the
height function in section 3.2.

3.1 Prism tiles and three-dimensional regions.
The 3-dimensional tiling model consists of a set of iden-
tical, prism-shaped tiles and families of 3-dimensional
regions, or containers, which are to be perfectly packed
with the tiles. Each tile is a triangular prism with
30° x 30° x 120° triangles and one square face (see fig-
ure 4).

We require that in any tiling, square faces of tiles
must line up*. When two tiles are misaligned (so
that the triangular faces do not form a parallelogram),
they look like Levitov blocks. These tiles will always
be oriented so that the square base is parallel to the
ground, and the projection to the plane below will be
two parallel dominoes. When the tiles are aligned, they

*This combinatorial restriction actually is forced by the geom-
etry of the regions being tiled.
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Figure 4: Prism tiles, the possible pairings and their
projections

form parallelepipeds. These will always be oriented
vertically (so that they have four faces with normalsin a
plane parallel to the ground) and they project to a single
domino (where in the projection the vertical faces are
degenerate and align with the boundary of the domino).
Figure 4 demonstrates these allowed orientations.

The containers, or regions that we tile, are derived
from the 3-dimensional surfaces corresponding to 2-
dimensional domino tilings. Given a finite, simply con-
nected region R C Z?, let V(R) C R? be the region
formed by gluing together the surfaces corresponding
to the highest and lowest tilings of B. As with Levitov
blocks, V(R) is uniquely tileable with prism tiles that
must occur in their misaligned orientation. By modi-
fying V(R) we can form more interesting regions with
nontrivial tilings. The first region Vg (R, h) is an elon-
gated volume formed by translating the surface corre-
sponding to the highest tiling in the vertical direction
and adding a vertical wall of height h wunits joining the
two surfaces. A vertical unit is defined to be \/3/3. As
we will see, when h = 1 the set of prism tiles forms a bi-
jection with the set of domino tilings of R; when h > 1,
the set of tilings forms a bijection with domino chains
Ty <715 < ... < Ty, where domino tilings respect the
partial order.

The second region Vg(R,h) is a serrated volume
that adds vertical wall of h units in height at every
level, where levels are horizontal slices distance \/3/3



Figure 5: The highest and lowest surfaces arising from
the square and Aztec diamond

apart; the horizontal edges on the boundary of V(R)
all fall on these slices!.

If R is the n x n square, then V(R) is octahedral in
shape when n is large. Hence, we call O, = Vg(R,n)
and @n = Vs(R, 1) the Aztec octahedra. When R is
the Aztec diamond of order n/2, V(R) is tetrahedral in
shape, and we call 7, = Vg(R,n) and T, = Vs(R, 1)
the Aztec tetrahedra. These regions are shown in
figure 6.

More precisely, when R is the n x n square, level
i of V(R) is bounded by a 2[%] X 2[’5J rectangle
if 1 <i<nanda 2[22=] x 2|22+ | rectangle if
n < ¢t < 2n — 1. From this, we find that level ¢ of @n
is bounded by a Q[HTﬂ X QLHTQJ fl1<i:<2n-1
and 242221 ) | 4n=tl | if 9n — 1 < i < 4n — 5.

When R is the Aztec diamond, level i of V(R)
is bounded by a 2["_2;+2J X 2[%J rectangle, for 1 <
t < n+ 1. Similarly, level ¢ of ﬁ is bounded by a
QLWJ X QLH'TZJ rectangle, for 1 < i < 2n.

g4

@)
Figure 6: The Aztec octahedra and tetrahedra

n

3.2 Domino chains and height functions.

For each of the regions defined, the set of prism tilings
correspond bijectively to a domino chain, a set of
h domino tilings 77 < Ty < ... < T} that respect
the partial order. The vertical walls defined in the
construction of the regions are the key to this bijection.
We defer rigorous definitions and proofs until the full

tIn the definition of the height function, units in the z
direction are taken to be \/5/3 to be consistent with the tiles.

version of the paper and instead supply intuition behind
these correspondences.

The geometry of the shapes forces vertical faces
of “aligned” pairs of prisms to be packed along the
interior walls of the containers; the transitive closure of
the aligned pairs of prisms sharing vertical faces forms
a “layer” of vertical tiles. This layer corresponds to
one of the domino tilings in the domino chain. We
can decompose any prism tiling into a domino chain as
follows: Given a tiling of Vg (R, h), we start at the top
and remove any misaligned (horizontal) tiles (which are
in pairs). The upper envelope of the remaining tiling
will consist of aligned (vertical) tiles, which project
down to a domino tiling 7, of R. Removing this
vertical layer and again removing any horizontal tiles
from the top, we reach a second domino tiling 7p_1
such that 7p_1; < 7} . Continuing in this manner, we
find A tilings 77 < 15 <X ... < 1} . In fact this map
can be shown to be a bijection between 3-dimensional
prism tilings of Vg(R, h) and ordered domino tilings.

A bijection holds for tilings of Vg(R, h), but de-
scribing this is more complicated because the layers of
the 3-dimensional tilings consist of tilings of differently
sized subregions of R. To compensate for this, tilings of
smaller regions are enhanced with the tiles as they oc-
cur in the highest or lowest tiling (depending on whether
the layer falls above or below the median layer) to form
a complete tiling of R. There is a bijection between
prism tilings and sets of domino tilings that satisfy the
partial order when they are enhanced in this manner.

These bijections between 3-dimensional prism
tilings and domino chains allow us to define a new
height function H. Given a prism tiling P cor-
responding to domino tilings 77 < ... < T, , let
Hp(z,y,i) = hr,(x,y), where z,y € Z* is on the
ith level. The set of points nyyyi (z,y,1, Hp(z,y,1))
describes a surface in R*. This height function defines
a partial order on prism tilings, where P, < P if
Hp, (z,y,1) < Hp,(z,y,7) for all z,y,i in the region
being tiled.

4 Sampling tilings.

To study properties of typical tilings, it is useful to
design a Markov chain that connects the state space.
In this section we define a Markov chain, where steps
consist of rearranging a set of six prism tiles that are
packed together. The bijection between prism tilings
and domino chains greatly simplifies the description
of our Markov chain. Each transition consists of
performing a rotation on one of the domino tilings in
the domino chain, where moves are only allowed if they
continue to respect the partial order. A rotation consists
of retiling a 2 x 2 square on one of the tilings so that



two parallel dominoes are rotated 90° *.

We will prove that this Markov chain is rapidly
mixing. Our analysis follows the approach taken by
Luby, Randall and Sinclair for analyzing a related chain
on domino tilings (and other planar configurations) [13].

We first enhance the Markov chain with some non-
local moves called “towers” and show that this new
Markov chain is rapidly mixing. In the 3-dimensional
case the definition of towers is quite sensitive, and it
is crucial that we only allow towers within individual
domino tilings (and not the z direction) for the argu-
ment to work. Showing that the 3-dimensional tower-
chain converges quickly requires a careful analysis for
which it is useful to reformulate the Luby et. al. proof
in terms of path coupling. We do this in section 4.1. In
section 4.2 we present the details of the 3-dimensional
Markov chain.

4.1 The two-dimensional Markov chain.

We start by reviewing the tower-chain defined and
analyzed in [13] for sampling domino tilings in two
dimensions. The analysis in [13] is based on a bijection
between tilings and routings, or sets of nonintersecting
lattice paths. It will be useful for us to present an
alternative description of the Markov chain in terms
of height functions. In addition, the analysis here will
use path coupling [1], which leads to a somewhat less
intuitive proof of the mixing rate, but it will more useful
for our generalization to three dimensions in section 4.2.

Elementary domino rotations can be described as
follows: pick a point p €, R, and a sign s €, {+,—}.
If p is the center of a 2 x 2 square filled by two parallel
dominoes, and a rotation adjusts the height of p in
the direction defined by s, then rotate the dominoes.
Otherwise keep the configuration fixed. The tower move
enhances this Markov chain with moves involving more
dominoes in a “herringbone” arrangement in the NW or
SE direction. (See [13] for a more detailed description.)
Pick a point p €, R, a bit s €, {+,—} and a bit
d €, {NW,SE}. If there is a herringbone pattern (or
a “tower”) starting at p in the d direction such that
“rotating” the herringbone adjusts the height of p in
the direction defined by s, then (p, s, d) defines a tower
of height h, where h + 1 is the number of dominoes in
the herringbone (see figure 7). We choose (p, s,d) with
probability ﬁ, where N is the number of points in
the region. Conditioned on choosing these points, the
tower is rotated with probability % The effect of this

In terms of the original prism tiling, this move retiles a small
region consisting of two pairs of vertical (aligned) tiles and one
misaligned pair so that the misaligned pair is moves from above
the other tiles to below (or vice-versa).
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Figure 7: Regions that define domino towers

move is to increase (or decrease) the height of h points
along the “spine” of the tower by £4, where the spine
is always a zigzag arrangement of points whose heights
form an arithmetic progression of difference +1. Note
that an elementary rotation is now a tower of height 1
in both the NW and SE directions.

The transition probabilities M (-,-) of Mgom are

1/4Nh, if Ty, T5 differ by a
tower of height h

M(T,Ts) = T = T

1= > M(Th,T),
TZT,

The Markov chain M 4,,, is ergodic and converges
to the uniform distribution on tilings. The analysis
of the convergence rate relies on a path coupling ar-
gument. There is a complete coupling of the state
space whereby every configuration is updated simul-
taneously according to the choice of (p,s,d). We de-
fine the distance between two tilings 77 and 7% to
be ®(T1,Ts) = 3, ¢ (hr,(r) — hay(r)), Where Ay, is
the height function corresponding to 7; (and the factor
of % accounts for the fact that each domino rotation
changes the height of a point by +4). This coupling
is monotonic so that the partial order on tilings is pre-
served during coupled updates. The key observation in
[13] is that the expected change to ® in a single move
is always at most 0.

LEMMA 4.1. Let 17 and 15 be two domino tilings such
that T1 j TQ. Then E[A@|T1,T2] S 0.

Proof. Using path coupling [1] and the fact that we have
a complete coupling of the state space, it suffices to show
that the lemma holds when 7} and 75 differ by a single
domino rotation, say at the point p. Let 7., 4 be the
tower starting at r in the direction d if a rotation can be
performed in the direction indicated by the sign s. Let
drs,a = E[A®|(T1,Ty,7,s,d)] be the expected change
to the distance between T} and 7% given the choice of

(r,s,d). Then
EADITL,T5] = > 6rsa = Z(Zéd)
r.s,d s,d r

Let us assume, without loss of generality, that s = +
and d = NW . Let ¢ be the neighbor of p to the West



or North such that hr,(q) =
have that

D aNw =
.

We start with a few key observations (for which we
refer the reader to figure 8). The first is that p cannot
be in the middle of a spine of a tower in either T} or 15
because the heights of points on a spine must form an
arithmetic progression. Similarly, if ¢ is a neighbor of
p in the lattice, then ¢ can only be the in the middle
of a spine if the tower ends at p. All towers starting
at p must have length 1 since both 77 and 75 have
elementary moves at p. Finally, rotating any tower that
does not include p or a neighbor of p on its spine will not
cause a change to the distance, since it will be accepted
by each configuration in the coupled chain with the same
probability.

hr,(p)+1 (mod 4). We

Z [6r+ NW ]+ g4 Nw + 6p 4 N .
ré{p,q}

DRSS o N
>—3—2 - 3312 =
il 0B r Tt 0BT
Partof T, Partof T,

Figure 8: Moves near p in 77 and 75.

If we have a NW tower starting at » ¢ {p, ¢} that is
not identical in 77 and 7%, it must be that r lies in the
SE direction from p. In one configuration (r,+, NW)
defines a tower of height h ending at a neighbor of
p and in the other configuration it defines a tower of
height h 4+ 1 ending at p. When we couple these
moves, with probability # we will rotate both towers
simultaneously, thus decreasing the distance between
tilings by 1. With the remaining probability % — hl?
we rotate only the smaller tower, thus increasing the
distance by h. The net effect is

1 1 1
57‘3 = —— (-1 7 T 7 1 h) = 3
sd h—i—l( )+<h h+1>() 0

so the expected change to the height function from all
points r ¢ {p,q} is 0. Summarizing this discussion, we
have that

> G s nw = SgpNw + 0y 4w

r

1 1

S+ el =0

where h is the height of the tower defined by
(q,+, NW), if it exists, since it will add distance h to

exactly one tiling. All other choices of s and d are

analogous. Hence, E[A®|T), T3] = 3", ;> . 0rsa < 0.
We now appeal to theorem 5 of [13]:

LEMMA 4.2. Suppose there is a
satisfies E[A@(t)|Xt,Yt] < 0, and whenever
®(t) > 0, E[(A®(1)?|X:,Y:] > V. Then the ez-
pected coupling time from initial states x,y satisfies
ET®Y < @(0)(23 — <I>(O))/V, where B is an upper
bound on ®.

coupling which

Following the arguments in [13], we conclude that
M aom is rapidly mixing:

THEOREM 4.1. Let R be a simply connected region of
Z2. The mixing time of the Markov chain Mgom
on domino tilings of R satisfies 7(¢) < [2eN*Ine~1],
where N 1is the area of R.

4.2 A rapidly mixing Markov chain on three-
dimensional tilings.
The machinery set up in the last section facilitates the
definitions and analysis of a Markov chain for sampling
3-dimensional prism tilings. We are given a region
whose domino chain consists of 2-dimensional tilings
of regions Ry, ..., Rg, where the total area is N. The
Markov chain consists of tower moves that are restricted
to individual tilings in the domino chain.

Each move of Msgiower 1s defined by choosing
a level i €, {1,....k}, p €4 Ri, s €, {+,—} and
d €, {NW,SE}. If the point p defines a tower in the
direction d in level i such that the height of p changes
by 4 according to the sign s, then we choose that tower
with probability ﬁ and the tower is then rotated with
probability % (if the resulting configuration is a valid
prism tiling). As before, it must be that this rotation
leads to a valid domino tiling in the ¢th level. But
now we also have to be careful that levels still respect
the partial order. This final restriction blocks moves on
level i because of the local configurations on levels ¢ — 1
and levels i+ 1.

The transition probabilities M(-,-) of Msgtower
are

1/4Nh, if P, and P differ
by a tower of ht h
in one layer

if Po = Py

M(Py, Py) =

1— > M(Py,P),
PZ£P,

As in the 2-dimensional case, this Markov chain
is ergodic and converges to the uniform distribution
on tilings. We bound the convergence rate by using
a monotone complete coupling of the state space. We
define the distance between two configurations to be the



sum of the distances between corresponding levels (as
defined in section 4.1). Define the distance between two
tilings Py and Py to be ®(Pp, P2) = %Zi,q |Hp,(q,1) —
Hp,(g,i)|. Again, our task is going to be showing
that given two configurations P; and Ps, the expected
change to the distance is at most 0.

LEMMA 4.3. Let Py and P; be two prism tilings such
that P1 j PQ. Then E[Aq)|P1,P2] S 0.

Proof. Appealing to path coupling, it suffices to show
that the the lemma is true for tilings P, and P> at
distance 1, so they differ by a single domino rotation on
a single level, say level ¢. Thus, if P; corresponds to
tilings 71 < ... < 13 < ... X T},, then P5 corresponds
totilings Ty < ... 2T/ = ... X T,.

Let 75,54 be the tower starting at r in level j
in the direction d if a rotation can be performed in
the direction indicated by the sign s in either P, or
P,. Also, let §;, 54 = E[A®|(Py, P, j, 7, 5,d)] be the
expected change to the distance between P; and P,
given the choice of (4,7, s,d). Then

E[AQ|PL, P)] = Y &

Jirys,d

Notice that the only towers which cause a change
in the distance between tilings must be on level i — 1,1
or i+ 1. Hence, restricting to levels ¢ — 1, ¢ and ¢4 1
and regrouping terms in an unusual, but useful way, we

find:

E[A®|Py, Py] =

Z[Zai,r,s,d + Z i—1,r,—s,—d

s,d r r

+ Y Gittr—s—dl,

where —s and —d reverse the sign and direction. Let us
assume, without loss of generality, that s = + and d =
NW . Let ¢ be the unique neighbor of p to the West or
North on level i such that hr,(q) = hy,(p)—1 (mod 4).
Again, the only towers in the ¢th level which cause a
change to the distance between tilings must start at p, ¢
or a point 7 to the SE of p. Any tower starting at r that
is allowable must have height h in one configuration and
height A 4+ 1 in the other, and the net effect of choosing
r will be 0. This gives us that

Z5i,r,+,NW + Z di—1,r—,sE+ Z dit1,r— SE
r r r

= 0iq4+ Nw + 0ip + NW + 251—1,7«,—,513
r

+Z5z’+1,r,—,SE-
r

(4.1)

Now note that Zr di—1,r,— sg = 0 since any move that
tries to decrease the height of some points on level
(¢ — 1) will not be affected by the difference on the ith
level. If there is a tower on level ¢ + 1 that can only be
rotated in one of the tilings, it must be that it starts at p
(because the fact that it is blocked in one of the tilings
indicates that p is a local minimum on level i+ 1). All
other tower moves are either accepted (or rejected) in

both tilings. Hence, equation 4.1 is just

i+, Nw + 0ip 4+ NW + bit1p - SE.

We know that J;, 4+ nw < 0, so it suffices to
show that J; 4 4+ Nw + diy1,p,— sg cannot be too large.
A case analysis reveals that either 6; o+ yw = 0 or
di+1,p—,se = 0 as follows. Suppose dt1p - s > 0.
Then for 7,41, -,se to be a tower in eractly one
tiling, it must be that Hp, (¢,i4+ 1) = Hp,(q,%) (recall
these heights are the same in P; and P»). But then
Ti,q,+,Nw must be blocked. Therefore at most one of
(14 1,p,—,SE) and (i,q,+, NW) can define a tower.
As in the 2-dimensional case, the expected change due
to any single move is at most 1/4N, hence

1

Oig+,NW +0i41p 58 < -

Therefore,

E[A®|Py, Py, +, NW]

= 0ig4,Nwtip 4 Nw +diy1p - 58 < 0.

All other choices of (s, d) are analogous, so

Z 6i,r,s,d S 0.

i,r,s,d

E[A®|Ty, Ty] =

Appealing again to lemma 4.2 (theorem 5 of [13]), we
conclude that Mgzgioer 18 rapidly mixing.

THEOREM 4.2. Let R be a region which can be tiled
with layered prism tiles. The mizing time of the
Markov chain Msgiower on tilings of R satisfies
7(€) < [2eN*Ine~1], where N is the volume of R.

We conclude this section by returning to the original
description of the Markov chain where transitions are
restricted to be elementary domino rotations (and not
tower moves). The comparison method of Diaconis
and Saloff-Coste [4] can be used to show that the
rapid convergence of M3zgiower implies the rapid mixing
of this simpler Markov chain. This analysis follows
the argument given by Randall and Tetali in the 2-
dimensional case [15].



5 Properties of random tilings.

Using the technology set forth in section 4, it is possible
to uniformly sample tilings. We conjecture that the
elongated volumes have frozen regions akin to the arctic
circle theorem in two dimensions. Random tilings of
the serrated volumes, on the other hand, do not have
predictably tiled subregions. We show, in fact, that
the entropy of O is equal to the entropy of 7. The
proof suggests that the local statistics of the tilings will
be uniform throughout these regions. We present this
proof in section 5.1. In section 5.2 we show random
tilings of the elongated volumes which were generated
using the Markov chain.

5.1 The entropy of serrated volumes O and 7.
The entropy of a physical system captures many of
its thermodynamic properties; intuitively it conveys
information about the average “randomness” captured
by typical configurations. More precisely, the entropy
S of a family of regions R = {R,} is defined as

%fi—')‘l, where #(R,) is the number of
tilings of region R, . In this section we show that tilings
oAf the Aztec tetrahedron 7, and the Aztec octahedron
O,, have equal entropy when n is large.

Let #(R) be the number of tilings of a region R.
We let a, = log #((5”), A, = Vol(@n) be the volume,

and let a,, = j—’; be their ratio. Similarly, we let b, =
log #(ﬁ), B, = Vol(ﬁ) and G, = g—’;. The goal of

this section is to show that limn_,og o, = limﬂ_>OO Bn
thus implying that the tilings of {O,} and {7,} have
equal entropy in the limit.

We start with a few lemmas which show an inter-
esting combinatorial decomposition of the tetrahedral
and octahedral regions showing that they can be exactly
packed with smaller octahedral and tetrahedral regions.
These decompositions are very similar to the well-known
decompositions of true octahedra and tetrahedra, with
the technical detail that a mixture of tetrahedral regions
of size p and p — 1 must be used to compensate for the
irregular boundaries of the Aztec regions we study. The
corollaries to these lemmas use these decompositions to
show that the logarithms of the number of tilings of
these regions satisfy a superadditive relationship. We
offer pictorial proof sketches of the lemmas in the spe-
cial case that £ = 2 and defer the details for the full
version of the paper.

S = lim, e

LEMMA b.1. The tetrahedral pyramid of order kn, 7A7m,
can be packed with smaller Aztec octahedra and tetrahe-
dra such that:

Bpp, = c1Ap + 2By + c3Bp_1,

3 3 2
wherec; = k _k,c2 — E43kT42k +3’; +2k

k®—3k%42k
6 6 :

and ¢3 =

When k = 2, lemma 5.1 says By, = A, + 4B,.
In other words, an Aztec tetrahedron of size 2n can
be exactly packed with one Aztec octahedron and
four Aztec tetrahedra of size n. To demonstrate this
decomposition in this special case, we refer the reader to
figure 9. The leftmost picture represnts the lowest tiling
an Aztec diamond, which corresponds to the view from
above of an empty Aztec tetrahedron of order 2n. The
next picture represents the tiling corresponding to the
Aztec tetrahedron after two small tetrahedra of order n
are packed inside. Finally, after adding an octahedron
and 4 tetrahedra, we arrive at the rightmost picture,
which corresponds to the highest tiling of the Aztec
diamond (and the volume is fully packed).

+2‘f’n
- i e |

Figure 9: The proof of lemma 5.1 when k£ = 2.

CoROLLARY 5.1. The logarithm of the number of
tilings of T, satisfies by, > cran + c2b, + c3by_1.

We find a similar decomposition for (5n :

LEMMA 5.2. The octahedral pyramid of order kn, @kn ,
can be packed with smaller Aztec octahedra and tetrahe-
dra such that:

Apn = c4Ap + o5 (Bn + Bn—l) )

2k3 -2k

and ¢5 = 3

3
where ¢4 = %

When k£ = 2, lemma 5.2 states Ay, = 64, +
4B, + 4Bp_1. Again, we demonstrate this proof pic-
torially in this special case (see figure 10).

Sl e

M2l 2T,y +On

:
.

Figure 10: The proof of lemma 5.2 when k£ = 2.



COROLLARY 5.2. The logarithm of the number of
tilings of O, satisfies agp > catn + c5 (bn + by_1).

We use these calculations to show that the entropy
of the two families of regions turns out to be the same.
The superadditive lemmas 5.1 and 5.2 allow us to upper
bound the entropy of each region in terms of the other,
thus establishing equality.

THEOREM b.1. The entropy of tilings of the Octahedral
pyramid On and the Tetrahedral pyramid Tn are equal:

lim a, = lim S,.
n—oo n—oo

Proof. Fix n and p, and let k = L”p%lj and r; =
Akp
a

< 1 be the ratio of the volumes of two closely
related regions. Then

an
o, = —
An

a
P

> g catp + c5(bp + bp—1)

1
2 Akp

!

b, bp—1
< A A —|—C5BpB —|—C5Bp 1Bp 1)

where ¢y = (2k3 + k)/3 and c5 = (2k3 — 2k)/3 are
from the statement of corollary 5.2.

Now, letting Min, = min(«a,, 8, fp—1), and using
the volume relationships from lemma 5.2, it follows that

:A—kp

C4Ap + Cng + C5Bp_1

anp > ry Min,
Agp
= r; Min,.
As n — o0,
lim o, > lim ry Min, = Min,.

This holds for all p, so
lim o, > sup Min,.

(5.1)

We now use the tetrahedral decompositions to achieve

a similar bound on lim £,. Letting 7, = %’”’, the
analogous calculations yield
Bn > 12 Min,.
Thus,
lim 8, > sup Min,. (5.2)

In addition, since we chose k to be L"p;lj , we have, by

an identical argument,

lim B,_1 > sup Min,. (5.3)

Putting together inequalities 5.1, 5.2 and 5.3, we have
that
lim Min, > sup Min,.

Hence, since sup Min, > lim Min,, it follows that
lim Min, exists and

lim Min, = sup Min,. (5.4)

To complete the proof, we need to argue that
lima, = lim@,. Let Maz, = max(a,,Bp, fp—1). It
suffices to show that lim Maz, = lim Min, . Again, fix
p and let k = [”P%lj . From lemma 5.1 and 5.2, we have

that
A B B
a, > 0114 pa e pﬁp = p 16}9 1,
and
. C4A C5B C5B 1
mln(ﬁn:ﬁn—l) > B pOép+ B pﬁp p ﬁp 1-

Therefore, letting

L . ClAp Cng Cng_l C4Ap Cng C5Bp_1
Cn = min < An 3 An bl An bl Bn ) Bn ) Bn )

we see that

Min, > éy( Maz, — Min,) + Min,.

If p > 4, then a simple calculation determining the
ratio of volumes reveals that ¢ > 1/6. Since limé, is
bounded away from zero, the equality in equation 5.4
implies that lim Maz, = lim Min,. Consequently,

lima, = limg,.

5.2 Frozen regions in elongated volumes.

Our simulations demonstrate that the elongated vol-
umes behave quite differently than the serrated volumes.
It appears that O, and 7, have bounded regions, out-
side of which the tilings appear frozen. Figures 11 and
12 demonstrate this phenomenon (frozen regions are
omitted). We call the boundary of the frozen region
of O, the “arctic sphere” and conjecture that the arc-
tic sphere converges to a true sphere (slightly truncated
by the vertical walls).
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Figure 11: Random tiling of an Aztec octahedron.
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