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Abstract. Decomposition theorems are useful tools for bounding the conver-
gence rates of Markov chains. The theorems relate the mixing rate of a Markov
chain to smaller, derivative Markov chains, defined by a partition of the state
space, and can be useful when standard, direct methods fail. Not only does this
simplify the chain being analyzed, but it allows a hybrid approach whereby dif-
ferent techniques for bounding convergence rates can be used on different pieces.
We demonstrate this approach by giving bounds on the mixing time of a chain on
circuits of length 2n in Z¢.

1 Introduction

Suppose that you want to sample from a large set of combinatorial objects. A popular
method for doing this is to define a Markov chain whose state space {2 consists of the
elements of the set, and use it to perform a random walk. We first define a graph H
connecting pairs of states that are close under some metric. This underlying graph on
the state space representing allowable transitions is known as the Markov kernel.

To define the transition probabilities of the Markov chain, we need to consider the
desired stationary distribution = on 2. A method known as the Metropolis algorithm
assigns probabilities to the edges of H so that the resulting Markov chain will converge
to this distribution. In particular, if A is the maximum degree of any vertex in H, and

(x,y) is any edge,
P(z,y) = Lrnin( ,%) )

We then assign self loops all remaining probability at each vertex, so P(z,z) > 1/2
forall z € Q. If H is connected, = will be the unique stationary distribution of this
Markov chain. We can see this by verifying that detailed balance is satsified on every
edge (z,y), i.e.,, m(x)P(z,y) = 7(y)P(y, x).

As a result, if we start at any vertex in {2 and perform a random walk according to
the transition probabilities defined by P, and we walk long enough, we will converge to
the desired distribution. For this to be useful, we need that we are converging rapidly to
, S0 that after a small, polynomial number of steps, our samples will be chosen from a
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distribution which is provably arbitrarily close to stationarity. A Markov chain with this
property is rapidly mixing.

Consider, for example, the set of independent sets Z of some graph G. Taking the
Hamming metric, we can define H by connecting any two independent sets that differ
by the addition or deletion of a single vertex. A popular stationary distribution is the
Gibbs distribution which assigns weight 7(1) = !!!/Z., to I, where v > 0 is an input
parameter of the system, |I| is the size of the independentset 7, and Z, = >, A1
is the normalizing constant known as the partition function. In the Metropolis chain, we
have P(I,1') = 5 min(1,) if I’ is formed by adding a vertex to 7, and P(I,1) =
5= min(1,7~ ") if I’ is formed by deleting a vertex from 1.

Recently there has been great progress in the design and analysis of Markov chains
which are provably efficient. One of the most popular proof techniques is coupling.
Informally, coupling says that if two copies of the Markov chain can be simultaneously
simulated so that they end up in the same state very quickly, regardless of the starting
states, then the chain is rapidly mixing. In many instances this is not hard to establish,
which gives a very easy proof of fast convergence.

Despite the appeal of these simple coupling arguments, a major drawback is that
many Markov chains which appear to be rapidly mixing do not seem to admit cou-
pling proofs. In fact, the complexity of typical Markov chains often makes it difficult
to use any of the standard techniques, which include bounding the conductance, the log
Sobolev constant or the spectral gap, all closely related to the mixing rate.

The decomposition method offers a way to systematically simplify the Markov
chain by breaking it into more manageable pieces. The idea is that it should be eas-
ier to apply some of these techniques to the simplified Markov chains and then infer
a bound on the original Markov chain. In this survey we will concentrate on the state
decomposition theorem which utilizes some partition of the state space. It says that if
the Markov chain is rapidly mixing when restricted to each piece of the partition, and
if there is sufficient flow between the pieces (defined by a ““projection” of the chain),
then the original Markov chain must be rapidly mixing as well. The allows us to take
a top-down approach to mixing rate analysis, whereby we need only consider the mix-
ing rate of the restrictions and the projection. In many cases it is easier to define good
couplings on these simpler Markov chains, or to use one of the other known methods
of analysis. We note, however, that using indirect methods such as the decomposition
or comparison (defined later) invariably adds orders of magnitude the bounds on the
running time of the algorithm. Hence it is wise to use these methods judiciously unless
the goal is simply to establish a polynomial bound on the mixing rate.

2 Mixing machinery

In what follows, we assume that M is an ergodic (i.e. irreducible and aperiodic), re-
versible Markov chain with finite state space (2, transition probability matrix P, and
stationary distribution 7.

The time a Markov chain takes to converge to its stationary distribution, i.e., the
mixing time of the chain, is measured in terms of the distance between the distribution
at time ¢ and the stationary distribution. Letting P!(z, y) denote the ¢-step probability



of going from z to y, the total variation distance at time ¢ is

1
t _ - t _
P, 7l = max o EEQIP (z,y) — 7 (y)l-
Yy

For ¢ > 0, the mixing time 7(¢) is
7(¢) = min{t : ||Pt/, ||t < e, Vt' >t}

We say a Markov chain is rapidly mixing if the mixing time is bounded above by a
polynomial in n and log é where n is the size of each configuration in the state space.

It is well known that the mixing rate is related to the spectral gap of the transition
matrix. For the transition matrix P, we let Gap(P) = Ao — |\1| denote its spectral gap,
where Ao, A1, ..., A1 are the eigenvalues of P and 1 = Ao > [A1] > || for all
1 > 2. The following result the spectral gap and mixing times of a chain (see, e.g., [18]).

Theorem 1. Let 7, = min,eq w(x). Forall e > 0 we have

(@) 7() < gaipy log(2)
(b) 7(e) > sty log(5).

Hence, if 1/Gap(P) is bounded above by a polynomial, we are guaranteed fast
(polynomial time) convergence. For most of what follows we will rely on the spectral
gap bound on mixing. Theorem 1 is useful for deriving a bound on the spectral gap
from a coupling proof, which provides bounds on the mixing rate.

We now review of some of the main techniques used to bound the mixing rate of a
chain, including the decomposition theorem.

2.1 Path Coupling

One of the most popular methods for bounding mixing times has been the coupling
method. A coupling is a Markov chain on (2 x (2 with the following properties. Instead
of updating the pair of configurations independently, the coupling updates them so that
i) the two processes will tend to coalesce, or “move together” under some measure
of distance, yet ii) each process, viewed in isolation, is performing transitions exactly
according to the original Markov chain. A valid coupling ensures that once the pair of
configurations coalesce, they agree from that time forward. The mixing time can be
bounded by the expected time for configurations to coalesce under any valid coupling.

The method of path coupling simplifies our goal by letting us bound the mixing rate
of a Markov chain by considering only a small subset of 2 x (2 [3, 6].

Theorem 2. (Dyer and Greenhill [6]) Let & be an integer valued metric defined on
£2 x 2 which takes values in {0, ..., B}. Let U be a subset of £2 x {2 such that for all
(x,y) € 2 x (2 there exists a path = zq, 21, ..., 2, = y between z and y such that
(zi,2i41) € Ufor0 < i < rand

r—1

Z D(2;,2zi41) = P, ).

=0



Define a coupling (x,y) — («’,y’) of the Markov chain M on all pairs (z,y) € U.
Suppose that there exists o < 1 such that E[®(z’,y")] < a®(x,y) for all (x4, y:) € U,
Then the mixing time of M satisfies

log(Be™1)
l—a

7(e) <

Useful bounds can also be derived in the case that o = 1 in the theorem (see [6]).

2.2 The disjoint decomposition method

Madras and Randall [12] introduced two decomposition theorems which relate the mix-
ing rate of a Markov chain to the mixing rates of related Markov chains. The state de-
composition theorem allows the state space to be decomposed into overlapping subsets;
the mixing rate of the original chain can be bounded by the mixing rates of the restricted
Markov chains, which are forced to stay within the pieces, and the ergodic flow between
these sets. The density decomposition theorem is of a similar flavor, but relates a Mar-
kov chain to a family of other Markov chains with the same Markov kernel, where the
transition probabilities of the original chain can be described as a weighted average of
the transition probabilities of the chains in the family.

We will concentrate on the state decomposition theorem, and will present a newer
version of the theorem due to Martin and Randall [15] which allows the decomposition
of the state to be a partition, rather than requiring that the pieces overlap.

Suppose that the state space is partitioned into m disjoint pieces (24, ..., £2,,. For
eachi = 1,...,m, define P, = P{{2;} as the restriction of P to (2, which rejects
moves that leave (2;. In particular, the restriction to (2; is a Markov chain, M, where
the transition matrix P; is defined as follows: If x # y and =,y € (2; then P;(x,y) =
P(z,y);ifx € 2 then Pi(z,z) =1-3" o ., Pi(z,y). Let m; be the normalized

restriction of 7 to (2;, i.e., m;(A4) = ”Sfé?f;) Notice that if £2; is connected then =; is
the stationary distribution of P;.

Next, define P to be the following aggregated transition matrix on the state space

[m]:
— . 1
P = g 3 TP
YyEL2;

Theorem 3. (Martin and Randall [15]) Let P; and P be as above. Then the spectral
gaps satisfy
Gap(P) > %Gap(ﬁ) _m[in] Gap(P;).
e|m

A useful corollary allows us to replace P in the theorem with the Metropolis chain
defined on the same Markov kernel, provided some simple conditions are satisfied.
Since the transitions of the Metropolis chain are fully defined by the stationary distri-
bution 7, this is often easier to analyze than the true projection.

Define Py on the set [m], with Metropolis transitions Py (¢, ) = min{1, ’;E%; }.
Let 0;($2;) = {y € £2; : Iz € £2; with P(z,y) > 0}.




Corollary 1. [15] With P, as above, suppose there exists 3 > 0 and v > 0 such that

(@) P(z,y) > B whenever P(x,y) > 0;
(b) 7(9:(£2;)) > ym(£2;) whenever P(i, j) > 0.

Then )
Gap(P) 2 5y Gap(Py) _min  Gap(F;).

1=1,..., m

2.3 The comparison method

When applying the decomposition theorem, we reduce the analysis of a Markov chain
to bounding the convergence times of smaller related chains. In many cases it will be
much simpler to analyze variants of these auxiliary Markov chains instead of the true
restrictions and projections. The comparison method tells us ways in which we can
slightly modify one of these Markov chains without qualitatively changing the mixing
time. For instance, it allows us to add additional transition edges or to amplify some of
the transition probabilities, which can be useful tricks for simplifying the analysis of a
chain.

Let P and P be two reversible Markov chains on the same state space {2 with the
same stationary distribution 7. The comparison method allows us to relate the mixing
times of these two chains (see [4] and [17]). In what follows, suppose that Gap(ﬁ), the
spectral gap of P, is known (or suitably bounded) and we desire a bound on Gap(P),
the spectral gap of P, which is unknown.

Following [4], we let E(P) = {(z,y) : P(z,y) > 0} and E(P) = {(z,y) :
P(g@ y) > 0} denote the sets of edges of the two chains, viewed as directed graphs. For
each (z,y) € E(P), define a path -,, using a sequence of states = = o, 1, ..., T, =
y with (z;, z;41) € E(P), and let |y, | denote the length of the path. Let I'(z, w) =

{(z,y) € E(P) : (z,w) € sy} be the set of paths that use the transition (z, w) of P.
Finally, define

1

A= e — v Pz,
(z,urir)lgg(P) W(Z)P(Z,w) F(zzw) |7 U|7T(.I') (CE y)

Theorem 4. (Diaconis and Saloff-Coste [4]) With the above notation, the spectral
gaps satisfy Gap(P) > L Gap(P)

It is worthwhile to note that there are several other comparison theorems which turn
out to be useful, especially when applying decomposition techniques. The following
lemma helps us reason about a Markov chain by slightly modifying the transition prob-
abilities (see, e.g., [10]). We use this trick in our main application, sampling circuits.

Lemma 1. Suppose P and P’ are Markov chains on the same state space, each re-
versible with respect to the distribution 7. Suppose there are constants ¢; and ¢o such
that ¢y P(x,y) < P'(z,y) < coP(z,y) for all z # y. Then ¢;Gap(P) < Gap(P') <
c2Gap(P).



3 Sampling circuitsin the Cartesian lattice

A circuit in Z? is a walk along lattice edges which starts and ends at the origin. Our
goal is to sample from C, the set of circuits of length 2n. It is useful to represent each
walk as a string of 2n letters using {a1, ..., a4} and their inverses {a; ', ...,a; '}, where
a; represents a positive step in the ith direction, and a; ~1 represents a negative step.
Since these are closed circuits, the number of times a; appears must equal the number
of times a{l appears, for all i. We will show how to uniformly sample from the set
of all circuits of length 2n using an efficient Markov chain. The primary tool will be
finding an appropriate decomposition of the state space. We outline the proof here and
refer the reader to [16] for complete details.

Using a similar strategy, Martin and Randall showed how to use a Marko chain to
sample circuits in regular d-ary trees, i.e., paths of length 2n which trace edges of the
tree starting and ending at the origin [15]. This problem generalizes to sampling Dyke
paths according to a distribution which favors walks that hit the x-axis a large number
of times, known in the statistical physics community as “adsorbing staircase walks.”
Here too the decomposition method was the basis of the analysis. We note that there
are other simple algorithms for sampling circuits on trees which do not require Markov
chains. In contrast, to our knowledge, the Markov chain based algorithm discussed in
this paper is the first efficient method for sampling circuits on Z<.

3.1 The Markov chain on circuits

The Markov chain on C is based on two types of moves: transpositions of neighboring
letters in the word (which keep the numbers of each letter fixed) and rotations, which
replace an adjacent (a;, a; ') with (aj,a; 1), for some pair of letters a; and a;.

We now define the transition probabllltles P of M, where we say x €,, X to mean
that we choose = from set X uniformly. Starting at o, do the following. With probability
1/2, pick i €,, [n—1] and transpose o; and o;.+1. With probability 1/2, pick i €,, [n—1]
and k €, [d] and if o; and o1 are inverses (where o is a step in the positive direction),
then replace them with (ay,, a; '). Otherwise keep o unchanged.

The chain is aperiodic, ergodic and reversible, and the transitions are symmetric, so
the stationary distribution of this Markov chain is the uniform distribution on C.

3.2 Bounding the mixing rate of the circuits Markov chain

We bound the mixing rate of M by appealing to the decomposition theorem. Let o € C
and let x; equal the number of occurrences of a;, and hence a{l in o, for all 7. Define
the trace Tr(o) to be the vector X = (x4, ..., 24). This defines a partition of the state
space into

C =UCx,

where the union is over all partitions of n into d pieces and Cx is the set of words o € C
such that Tr(c) = X = (x1, ..., xa). The cardinality of the set Cx is (, . " ),

L1,Z1,

the number of distinct words (or permutatlons) of length 27 using the letters Wwith these



prescribed multiplicities. The number of sets in the partition of the state space is exactly
the number of partitions of n into d pieces, D = (™14, ).

Each restricted Markov chain consists of all the words which have a fixed trace.
Hence, transitions in the restricted chains consist of only transpositions, as rotations
would change the trace. The projection P consists of a simplex containing D vertices,
each representing a distinct partition of 2n. Letting

1
PY) = SIIX =Y

two points X and Y are connected by an edge of P iff #(X,Y) = 1, where || - ||,
denotes the ¢; metric. In the following we make no attempt to optimize the running
time, and instead simply provide polynomial bounds on the convergence rates.

e Step 1 — The restricted Markov chains: Consider any of the restricted chains Px
on the set of configurations with trace X. We need to show that this simpler chain,
connecting pairs of words differing by a transposition of adjacent letters, converges
quickly for any fixed trace.

We can analyze the transposition moves on this set by mapping C'x to the set of lin-
ear extensions of a particular partial order. Consider the alphabet U;{{a; 1, ..., @j », } U
{4;1,...,Ai z, }},and the partial order defined by the relations a; 1 < a; 2 < ... < a; 4,
and A;1 < A;2 < ... < A; 4, forall 4. It is straightforward to see that there is a bijec-
tion between the set of circuits in C x and the set of linear extensions to this partial order
(mapping a~! to A). Furthermore, this bijection preserves transpositions. We appeal to
the following theorem due to Bubley and Dyer [3]:

Theorem 5. The transposition Markov chain on the set of linear extensions to a partial
order on n elements has mixing time O(n* (log? n 4 loge™1)).

Referring to theorem 1, we can derive the following bound.

Corollary 2. The Markov chain Px has spectral gap Gap(Px) > 1/(cn*log? n) for
some constant c.

e Step 2 — The projection of the Markov chain: The states (2 of the projection con-

sist of partitions of n into d pieces, so 2| = D. The stationary probability of X =
(21, .y q) IST(X) = ( n ), the number of words with these multiplicities.

L1y3LY1yeeeyXdy X

The Markov kernel is defined by connecting two partitions X and Y if the distance
H(X,Y) = (]|lz — y|]1)/2 = 1. Before applying corollary 1 we first need to bound the
mixing rate of the Markov chain defined by Metropolis probabilities. In particular, if
X =(z1,...,zq)andY = (z1,...,z; +1,...,2; — 1, ...,24), then

Py(X,Y) = L min (1, Z((?))

Lo 3
=— min|l,—1—].
2n? " (m+1)2




We analyze this Metropolis chain indirectly by first considering a variant P;, which
admits a simpler path coupling proof. Using the same Markov kernel, define the transi-

tions
1

2n?(z; +1)2°
In particular, the x; in the denominator is the value which would be increased by the
rotation. Notice that detailed balance is satisfied:

X)) (wm+1)? Py(V,X)

TY) 22 Pu((X)Y)

PZ/\I(XaY) =

This guarantees that Py, has the same stationary distribution as Pxs, namely 7.

The mixing rate of this chain can be bounded directly using path coupling. Let
U C 2 x §2 be pairs of states X and Y such that (X, Y") = 1. We couple by choosing
the same pair of indices ¢ and j, and the same bit b € {—1, 1} to update each of X and
Y, where the probability for accepting each of these moves is dictated by the transitions
of Py,.

Lemma 2. For any pair (X, Y;) € U, the expected change in distance after one step
of the coupled chain is E[®(X 11, Yiq1)] < (1 — 55) B(Xy, V7).

Proof. If (X;,Y;) € U, then there exist coordinates k and &’ such that y,, = x; + 1 and
Yy = T — 1. Without loss of generality, assume that ¥ = 1 and &’ = 2. We need to
determine the expected change in distance after one step of the coupled chain. Suppose
that in this move we try to add 1 to z; and y; and subtract 1 from =; and ;. We consider
three cases.

Case 1: If [{¢,5} N {1,2}| = 0, then both processes accept the move with the same
probability and &(X 41, Y1) = 1.

Case 2: If |{4,5} N {1,2}| = 1, then we shall see that the expected change is also
zero. Assume without loss of generality that ¢ = 1 and j = 3, and first consider the
case b = 1. Then we move from X to X’ = (x1 + 1,22, 25 — 1,...,z4) With proba-
bility m andfromY to Y’ = (z1 + 2,22 — 1,23 — 1, ..., 74) With probability
m. Since P, (X, X") > P, (Y,Y"), with probability P;,(Y,Y”) we update
both X and Y'; with probability P;, (X, X’) — P;,(Y,Y") we update just X; and with
all remaining probability we update neither. In the first case we end up with X’ and
Y”, in the second we end up with X’ and Y and in the final case we stay at X and Y.
All of these pairs are unit distance apart, so the expected change in distance is zero. If
b= —1,then Py, (X, X") = Py;(Y.Y") = 555;7y= and again the coupling keeps
the configurations unit distance apart.

Case 3: If |{4,7} N {1,2}| = 2, then we shall see that the expected change is at most
zero. Assume without loss of generality thati = 1, 7 = 2 and b = 1. The probability of
moving from X to X" = (z1 + L,z — 1,...,24) = Y is Pj,(X, X") = m
The probability of moving fromY to Y = (21 + 2,22 — 2,...,2zq) is P, (Y, Y") =
m. So with probability P;,(Y,Y") we update both configurations, keeping
them unit distance apart, and with probability P}, (X, X") — Pj,(Y,Y") > 55 we

2n6




update just X, decreasing the distance to zero. When b = —1 the symmetric argument
shows that we again have a small chance of decreasing the distance.

Summing over all of these possibilities yields the lemma. a

The path coupling theorem implies that the mixing time is bounded by 7(e) <
O(nS%logn). Furthermore, we get the following bound on the spectral gap.

Theorem 6. The Markov chain P}, on (2 has spectral gap Gap(Py,) > ¢’ /(n®logn)
for some constant ¢'.

This bounds the spectral gap of the modified Metropolis chain P;,, but we can read-
ily compare the spectral gaps of P;, and Py, using lemma 1. Since all the transitions
of Py, are at least as large as those of P;,, we find

Corollary 3. The Markov chain Py, on £2 has spectral gap Gap(Pyr) > ¢ /(n%logn).
e Step 3 — Putting the pieces together: These bounds on the spectral gaps of the re-

strictions P; and the Metropolis projection P, enable us to apply the decomposition
theorem to derive a bound on the spectral gap of P, the original chain.

Theorem 7. The Markov chain P is rapidly mixing on C and the spectral gap satisfies
Gap(P) > ¢ /(n*2dlog® n), for some constant ¢

Proof. To apply corollary 1, we need to bound the parameters 3 and ~. We find that
8 > mld’ the minimum probability of a transition. To bound v we need to determine
what fraction of the words in C'x are neighbors of a word in Cy if (X, Y) = 1 (since
7 is uniform within each of these sets). If X = (z1,...,xzq) and Y = (z1,...,2; +
1,...,xz; —1,...,zy,), this fraction is exactly the likelihood that a word in C'x has an a;
followed by an a; ', and this is easily determined to be at least 1/n.

Combining 8 > Eld, v > % with our bounds from lemmas 2 and 3, corollary 1
gives the claimed lower bound on the spectral gap. a

4 Other applications of decomposition

The key step to applying the decomposition theorem is finding an appropriate partition
of the state space. In most examples a natural choice seems to be to cluster configu-
rations of equal probability together so that the distribution for each of the restricted
chains is uniform, or so that the restrictions share some essential feature which will
make it easy to bound the mixing rate.

In the example of section 3, the state space is divided into subsets, each representing
a partition of n into d parts. It followed that the vertices of the projection formed a
d-dimensional simplex, where the Markov kernel was formed by connecting vertices
which are neighbors in the simplex. We briefly outline two other recent applications of
the decomposition theorem where we get other natural graphs for the projection. In the
first case graph defining the Markov kernel of the projection is one-dimensional and in
the second it is a hypercube.



4.1 Independent sets

Our first example is sampling independent sets of a graph according to the Gibbs mea-
sure. Recall that (/) = 7‘1‘/27, where v > 0 is an input parameter and Z., normalizes
the distribution. There has been much activity in studying how to sample independent
sets for various values of + using a simple, natural Markov chain based on inserting,
deleting or exchanging vertices at each step. Works of Luby and Vigoda [9] and Dyer
and Greenhill [5] imply that this chain is rapidly mixing if v < 2/(A — 2), where A is
the maximum number of neighbors of any vertex in G. It was shown by Borgs et al. [1]
that this chain is slowly mixing on some graphs for ~ sufficiently large.

Alternatively, Madras and Randall [12] showed that this algorithm is fast for every
value of ~, provided we restrict the state space to independent sets of size at most n* =
[|V]/2(A+ 1)]. This relies heavily on earlier work of Dyer and Greenhill [6] showing
that a Markov chain defined by exchanges is rapidly mixing on the set of independent
sets of fixed size k, whenever & < n*. The decomposition here is quite natural: We
partition Z, the set of independent sets of G, into pieces Z; according to their size.
The restrictions arising from this partition permit exchanges, but disallow insertions or
deletions, as they exit the state space of the restricted Markov chain. These are how
exactly the Markov chains proven to be rapidly mixing by Dyer and Greenhill (but with
slightly greater self-loop probabilities) and hence can also be seen to be rapidly mixing.
Consequently, we need only bound the mixing rate of the projection.

Here the projection is a one-dimensional graph on {0, ..., n*}. Further calculation
determines that the stationary distribution 7(%) of the projection is unimodal in &, im-
plying that the projection is also rapidly mixing. We refer the reader to [12] for details.

4.2 The swapping algorithm

To further demonstrate the versatility and potential of the decomposition method, we
review an application of a very different flavor. In recent work, Madras and Zheng [13]
show that the swapping algorithm is rapidly mixing for the mean field Ising model (i.e.,
the Ising model on the complete graph), as well as for a simpler toy model.

Given a graph G = (V, E), the ferromagnetic Ising model consists of a graph G
whose vertices represent particles and whose edges represent interactions between par-
ticles. A spin configuration is an assignment of spins, either + or —, to each of the
vertices, where adjacent vertices prefer to have the same spin. Let J, , > 0 be the in-
teraction energy between vertices = and y, where (z,y) € E. Leto € 2 = {+, -}V
be any assignment of {+, —} to each of the vertices. The Hamiltonian of o is

H(o)= Y Joylosto,
(z,y)€EE

where 1 4 is the indicator function which is 1 when the event A is true and 0 otherwise.
The probability that the Ising spin state is o is given by the Gibbs distribution:




where  is inverse temperature and
Z(G) = Z e PH(),

It is well known that at sufficiently low temperatures the distribution is bimodal (as
a function the number of vertices assigned +), and any local dynamics will be slowly
mixing. The simplest local dynamics, Glauber dynamics, is the Markov chain defined
by choosing a vertex at random and flipping the spin at that vertex with the appropriate
Metropolis probability.

Simulated tempering, which varies the temperature during the runtime of an algo-
rithm, appears to be a useful way to circumvent this difficulty [8, 14]. The chain moves
between m close temperatures that interpolate between the temperature of interest and
very high temperature, where the local dynamics converges rapidly. The swapping al-
gorithm is a variant of tempering, introduced by Geyer [7], where the state space is
£2™ and each configuration S = (o1, ...,0.,) € 2™ consists of one sample at each
temperature. The stationary distribution distribution is 7(S) = I, m;(o;), where 7;
is the distribution at temperature . The transitions of the swapping algorithm consist
of two types of moves: with probability 1/2 choose ¢ € [m/] and perform a local update
of o; (using Glauber dynamics at this fixed temperature); with probability 1/2 choose
i € [m — 1] and move from S = (o1, ...,0m) 105" = (01, ..., Ti41, Tiy ooy Om), 1€,
swap configurations ¢ and 7 + 1, with the appropriate Metropolis probability.

The idea behind the swapping algorithm, and other versions of tempering, is that,
in the long run, the trajectory of each Ising configuration will spend equal time at each
temperature, potentially greatly speeding up mixing. Experimentally, this appears to
overcome obstacles to sampling at low temperatures.

Madras and Zheng show that the swapping algorithm is rapidly mixing on the mean-
field Ising model at all temperatures. Let 2 C (2 be the set of configurations that
are predominantly +, and similarly {2~. Define the trace of a configuration S to be
Tr(S) = (v1,...,vm) € {+,—}" where v; = +ifo; € 2T andv; = —ifo; € 2.
The analysis of the swapping chain uses decompasition by partitioning the state space
according to the trace.

The projection for this decomposition is the m-dimensional hypercube where each
vertex represents a distinct trace. The stationary distribution is uniform on the hyper-
cube because, at each temperature, the likelihood of being in 27 and 2~ are equal due
to symmetry. Relying on the comparison method, it suffices to analyze the following
simplification of the projection: Starting at any vertex V' = (v1, ..., v, ) in the hyper-
cube, pick i €, [m]. If i = 1, then with probability 1/2 flip the first bit; if ¢ > 1, then
with probability 1/2 transpose the v; 1 and v;; and with all remaining probability do
nothing. This chain is easily seen to be rapidly mixing on the hypercube and can be
used to infer a bound on the spectral gap of the projection chain.

To analyze the restrictions, Madras and Zheng first prove that the simple, single
flip dynamics on 21 is rapidly mixing at any temperature; this result is analytical,
relying on the fact that the underlying graph is complete for the mean-field model.
Using simple facts about Markov chains on product spaces, it can be shown that the
each of the restricted chains must also be rapidly mixing (even without including any



swap moves). Once again decomposition completes the proof of rapid mixing, and we
can conclude that the swapping algorithm is efficient on the complete graph.
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