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Abstract. We present the first provably polynomial
time sampling scheme for generating spin configura-
tions of any ferromagnetic Ising system, one of the most
widely studied models in statistical mechanics. The
algorithm is based on the randomized approximation
scheme of Jerrum and Sinclair which estimates the par-
tition function of the Ising system using the so-called
“high temperature expansion” representation. Their es-
timation algorithm did not give rise to an Ising sampling
algorithm via self-reducibility because ferromagnetism
was not preserved by the reductions. Recently Nayak,
Schulman and Vazirani gave a quantum algorithm for
sampling Ising spin states based on the JS algorithm.
We show that by using the JS algorithm and a third
equivalent representation of the Ising partition function
(the Fortuin-Kasteleyn “random-cluster model”), self-
reducibility yields a (classical) polynomial time algo-
rithm for sampling Ising spin configurations.

A ferromagnetic Ising system (see [2] for a general
introduction) consists of a graph � whose vertices rep-
resent particles and whose edges represent interactions
between particles. A spin configuration is an assign-
ment of spins, either � or � , to each of the particles.
Particles which are adjacent prefer to have the same
spin. In addition, there may be an external magnetic
field which makes each vertex prefer one of the two
spins. A standard reduction replaces this field by an ex-
tra spin variable, so for convenience we assume without
loss of generality that the external field is zero. More
precisely, let ���	� 
 be the interaction energy between
vertices � and � , where ������������ . In a ferromag-
netic Ising system, ���	� 
���� for each ������������ . Let� be any assignment of � �!�"�$# to each of the vertices.
Then we define the Hamiltonian of � as%  � �'& () �	� 
+*-,$. ���	� 
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where /�8 is the indicator function which is � when the
event 9 is true and � otherwise. The probability :; � �
that the Ising spin state takes the value � is given by
the Gibbs measure:

:; � �<&>=@?�A	B ) 0 *C D�'� �
where E is inverse temperature andC D�'�F&G( 0 = ?�A	B ) 0 * H� �
is the normalizing constant referred to as the parti-
tion function. The partition function (1) has two other
standard representations which we require, in particu-
lar, the Fortuin-Kasteleyn random cluster representa-
tion (2) and the high temperature expansion (3). Given
a graph �I&JDK;�L��� , in both cases the state space now
consists of subgraphs M�NO� (or �QPR&SDK;�HMT� ). De-
fine U �	� 
 &V�XW =@?�A@Y 1[Z 5 . The partition function

C D�'�
defined over spin configurations � can be rewritten asC D�'�\& (P�]^.
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where s'M is the number of components in M andt;u@v"w -�x� is the set of subsets of E such that all of the
vertices have even degree. Notice that in both casesC D�<� is the expected value of a certain quantity when
each edge occurs independently with probability U �	� 

(in the FK representation (2)) or Uy�	� 
lz	e (in the high
temperature expansion (3)). As with spin configura-
tions, we define the probability of a subgraph to be
its contribution to

C D�'� in the above sums divided byC D�<� .
The Ising model allows physicists to study magneti-

zation on a microscopic level, and many of the thermo-
dynamic properties of an Ising system can be estimated
from the partition function or from sampling typical
spin configurations according to their Gibbs measure.
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Many heuristics involve clever sampling algorithms to
study these properties. The celebrated Swendsen-Wang
algorithm [11] which uses both the spin and the random
cluster representation seems to be very efficient and is
used extensively in practice, but typically results are not
rigorous. Only recently has there been rigorous analy-
sis of the Swendsen-Wang algorithm in special cases,
and this is mostly in the form of negative results [6, 3]
and in particular classes of graphs there are finally some
positive results [3, 7].

A major contribution to the theoretical treatment of
designing efficient and rigorous algorithms for study-
ing quantities pertaining to an Ising system was due to
Jerrum and Sinclair who developed an fpras (fully poly-
nomial randomized approximation scheme) for approx-
imating the partition function [8]. The analysis is based
on their seminal work for rigorously bounding the con-
ductance of a Markov chain and on the third represen-
tation of the partition function, the high energy expan-
sion. Surprisingly, however, this did not lead immedi-
ately to a rigorous method for sampling spin configura-
tions. While most natural problems are self-reducible
and the framework formalized by Jerrum, Valiant, and
Vazirani [9] provides reductions between approximate
counting and random sampling, the high energy expan-
sion does not admit a straightforward self-reduction by
successively fixing the spins on some of the sites as one
might expect. In addition to the physical applications
for studying magnetization, algorithms which rely on
sampling Ising configurations according to their Gibbs
measure have been used in vision where it is not suf-
ficient to approximate the partition function (see, e.g.,
[5, 1] ).

In this note we present an fully-polynomial approx-
imate generator for sampling spin configurations of
any ferromagnetic Ising system; the algorithm out-
puts configurations � with probability �  � � where:; � �Lz!H����� �����  � ��� :; � �+H���	� � and it runs in
time polynomial in 
 and ���� H� z�� � � where 
 is the size
of the input graph.

The key observation is that the random cluster model
is self-reducible. It is straightforward to verify that for
any edge �= � � ,C D�<�F& U��� C D��� ��� H�cW U��� � C D� ? � �
where � � is the graph formed by contracting the edge
�= in � and � ? is the graph formed by removing the
edge �= . Using standard ideas and making successive
calls to the Jerrum-Sinclair algorithm for approximat-

ing the partition function
C

we get a generator for ran-
dom cluster states M N � according to the correct dis-
tribution.

To complete the algorithm we simply assign spins to
each of the vertices so that all vertices within the same
connected component of M are assigned the same spin.
The probability of each spin configuration occurs with
precisely the probability defined by the Gibbs distribu-
tion, as demonstrated by Fortuin and Kasteleyn [4].
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