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Abstract

We show that local dynamics require exponential time for two sam-
pling problems motivated by statistical physics: independent sets on the
triangular lattice (the hard-core lattice gas model) and weighted even ori-
entations of the two-dimensional Cartesian lattice (the 8-vertex model).
For each problem, there is a parameter λ known as the fugacity, such that
local Markov chains are expected to be fast when λ is small and slow when
λ is large. Unfortunately, establishing slow mixing for these models has
been a challenge, as standard contour arguments typically used to show
that a chain has small conductance do not seem to apply. We modify this
approach by introducing the notion of fat contours that can have nontriv-
ial area, and use these to establish slow mixing of local chains defined for
these models.

1 Introduction

Markov chains based on local moves, known as Glauber dynamics, are used
extensively in practice to sample from large state spaces. For example, consider
the following Markov chain used to sample independent sets on Z

d, the so-called
“hard-core lattice gas model.” Here, the state space is the set of independent
sets and the Gibbs (or Boltzmann) distribution is parameterized by a “fugacity”
λ > 0 and defined as π(I) = λ|I|/Z, where Z is the normalizing constant known
as the partition function. The local Markov chain starts at any initial state,
say the empty set, and repeatedly adds and removes single vertices according
to the correct conditional probabilities so that the chain converges to the Gibbs
distribution. We are interested in characterizing when simple chains like this
converge quickly to equilibrium, so they can be used for efficient Monte Carlo
algorithms requiring many samples.

An interesting phenomenon occurs as the parameter λ is varied: for small
values of λ, the local Markov chain converges quickly to stationarity, while
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for large values of λ, the convergence will be prohibitively slow. When λ is
sufficiently large, dense independent sets dominate the stationary distribution π
and the chain will take a very long time to move from an independent set that lies
mostly on the odd sublattice to one that lies mostly on the even sublattice. The
key observation is that local moves that add or remove just one vertex at a time
would have to visit a configuration that has roughly half of its vertices on the
even sublattice and half on the odd sublattice; if λ is large, then these balanced
configurations will have exponentially small Gibbs probability. This means that
it will take exponential time to move from a predominantly even configuration to
a predominantly odd one, and the chain will take exponential time to converge
to equilibirum. This phenomenon, whereby a system behaves very differently
at low or high fugacity, is well known in the statistical physics community and
characterizes a phase transition in the underlying model. Physicists observe such
a dichotomy in the context of identifying when there will be a unique limiting
distribution on the infinite lattice, known as a Gibbs state; below some critical
λc there is a unique Gibbs state, while above λc there are multiple Gibbs states.

In order to show that a Markov chain is slow, it suffices to show that it
has exponentially small conductance, i.e., that there is a bottleneck in the state
space. To establish small conductance rigorously, it is sufficient to show that
the state space can be partitioned into three sets such that the middle set has
exponentially small probability compared to the other two, and yet to move
from a configuration in one of the big sets to a configuration in the other it is
necessary to pass through one in the middle set.

In the context of independent sets on the Cartesian lattice, the large sets
can consist of configurations that lie predominantly on each sublattice, and the
middle set can contain configurations that are roughly balanced. Balanced in-
dependent sets cannot have nearly as many vertices as configurations that lie
predominantly on one of the two sublattices, and therefore they have exponen-
tially small probability when the fugacity is larger than one. In fact, it can be
shown that when λ is large enough, then the total weight of the middle set will
have exponentially small probability, even though it may contain a very large
number of configurations. Peierls arguments allow us to formalize this intuition
by defining “contours” between regions bounded by odd or even vertices in the
independent set and constructing injections that map configurations in the mid-
dle set to ones with substantially larger stationary probability. For independent
sets, the injection is constructed by shifting the interior of such a contour and
adding many new vertices to the set (see, e.g., [2, 4, 3, 9]).

The situation is similar for spin models such as the Ising model. In this
case, vertices are assigned + or – spins and neighboring vertices prefer to have
the same spin. This preference is amplified at lower temperatures. When the
temperature is sufficiently small, configurations will be predominantly one spin
or the other, and local Markov chains that flip one spin at a time can be shown
to converge slowly to stationarity. As before, the proofs of slow mixing are based
on Peierls arguments, however in this case contours separate regions that are
mostly – and mostly + and, instead of shifting the interior, the injection flips
(or complements) the spins on the points within a contour [12].
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1.1 Non-bipartite independent sets and weighted even ori-

entations

The dichotomy observed for local Markov chains on independent sets in the
Cartesian lattice is believed to persist when the underlying lattice is the 2-
dimensional triangular lattice. For small λ, the local chain is known to be rapidly
mixing [7], but for large enough λ, independent sets will tend to be denser and
we again expect any local dynamics to be slow. Notice that on the triangular
lattice there are three maximal independent sets instead of two, arising from
the natural tri-partition of the lattice, which we color black, white and gray as
in Figure 1. The most likely configurations should be largely monochromatic
since these will be the densest. To move from an independent set that is mostly
black to one that is mostly white, however, it is necessary to visit one that has
fewer than half of the maximum number of vertices of each of the colors, and
these should be unlikely when λ is large.

Unfortunately, Peierls arguments that succeed on the Cartesian lattice do
not seem to generalize readily to non-bipatite graphs such as the triangular
lattice. The problem is that a contour surrounding a region whose boundary is
black might be adjacent to some vertices that are white and some that are gray;
there is no guarantee that shifting or flipping the interior of the contour will
allow us to add enough new vertices to sufficiently increase the weight, as we do
on bipartite lattices. An example of such a problematic balanced configuration
is illustrated in Figure 1.

Figure 1: An independent set of the triangle lattice, with a contour separating
one region of points from the others.

The second model we consider, weighted even orientations, also seems re-
sistant to standard contour arguments. Given a rectangular region L in the
Cartesian lattice Z

2, the state space Ω8 is the set of even orientations of the
internal edges of L, i.e., orientations of edges incident to at least one vertex
of degree 4 so that each of these vertices has even in-degree and out-degree.
This is known as the 8-vertex model in statistical physics, as there are 8 pos-
sible orientations of the edges incident to any internal vertex. We call these
vertices sources if they have out-degree 4 and sinks if they have in-degree 4; all
other internal vertices are called Eulerian as their in-degree and out-degree are
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both 2. (Vertices on the boundary of L are not sources, sinks, or Eulerian.)
For σ ∈ Ω8, let S(σ) be number of sources and sinks in σ. Given γ > 0, we
assign configuration σ probability π(σ) = γS(σ)/Z, where Z is the normalizing
constant.

The local Markov chain M8 is defined on the set of even orientations. In
each step, the chain chooses a cycle of length four in the lattice (i.e. a face)
and either reverses the orientations of all the internal edges around that cycle
or keeps them all unchanged, according to the correct conditional probabilities
dictated by the Gibbs distribution. This chain can be shown to connect the
state space for all finite γ.

When γ = 0, the only allowable configurations are Eulerian orientations
(known as the 6-vertex model) where every internal vertex has in-degree = out-
degree = 2, and the local Markov chain is known to be efficient [6, 10]. When
γ is close to 1, we can use simple coupling arguments to show that the chain
is again rapidly mixing. However, when γ is sufficiently large, we expect most
vertices to be sources or sinks, and the chain should take exponentially long to
move from a configuration that has predominantly sources which are on the odd
sublattice and sinks which are on the even sublattice, to one with predominantly
even sources and odd sinks. While one would expect that configurations that
are “balanced” are exponentially unlikely, this does not seem to follow from any
standard contour arguments. As demonstrated by Figure 2, it is not always
possible to define a map between valid configurations by flipping or shifting the
interior of contour that is guaranteed to significantly increase the stationary
probability, as required for the Peierls argument.

Figure 2: An even orientation of the Cartesian lattice, with a contour separating
one region of sources and sinks from the others.

1.2 Our results

We provide the first rigorous proofs that the local Markov chains are slow for
independent sets on the triangular lattice and for weighted even orientations on
Z

2. For even orientations, we show slow mixing of the local Markov chain on
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rectangular regions with fixed boundary conditions, while for independent sets
we consider rhomboidal regions with periodic (toroidal) boundary conditions;
these turn out to be the simplest regions for our arguments, respectively. Our
two main theorems are as follows.

Theorem 1. Let Λ be an n×n rhomboidal region of the triangular lattice with
periodic boundary conditions, let ΩIS be the set of independent sets on Λ, and
let MIS be the local Markov chain on ΩIS. There exists λ such that for all
λ′ > λ, the mixing time of MIS(λ′) is Ω(ekn) for some constant k.

Theorem 2. Let L be an n×n region in the Cartesian lattice, let Ω8 be the set
of even orientations of L, and let M8 be the local Markov chain on Ω8. There
exists γ such that for all γ′ > γ, the mixing time of M8(γ

′) is Ω(ekn) for some
constant k.

Our proofs are based on several innovations. First, we abandon the approach
of partitioning the state space so that the middle set contains “balanced” config-
urations in the sense described above. Instead we expand the approach in [9] of
basing the partition of the state space on “topological obstructions.” Roughly
speaking, the middle set in our partition of the state space is defined by the
presence of “fault lines,” or paths across the region that pass only through
“unfavorable” vertices (in our cases, vacant vertices in the independent sets or
Eulerian vertices in the even orientations). The absence of a fault line is charac-
terized by the presence of a pair of monochromatic blocking paths of “favorable”
vertices, and the color of these intersecting paths determines which part of the
state space a configuration lies in.

To see why this is different from the standard approach, consider an inde-
pendent set that contains such a pair of perpendicular paths, composed entirely
of vertices on the odd sublattice, and then also includes all possible vertices on
the even sublattice in the remaining space. This independent set is considered
“odd” even though it has O(n2) even vertices and only O(n) odd ones. This
partition of the state space was shown to greatly simplify the combinatorial
methods underlying the Peierls argument for bipartite independent sets [9] and
can be extended to the models we consider here as well.

It is still the case that the 1-dimensional contours on bipartite lattices, used
for independent sets and the Ising model, do not readily generalize to our prob-
lems for the reasons outlined above. However, a generalized notion of contours
that includes a larger 2-dimensional region can be made to work. Instead of
defining a minimal connected set of unfavorable vertices, we define fat contours
to be maximal connected sets of unfavorable vertices. We define an injective
map from configurations in the “middle set” of the state space by replacing
the entire fat contour with favorable vertices (a maximal independent set or a
maximal set of sources and sinks). This typically involves shifting parts of the
independent set outside of the fat contour in two different directions. We then
show that the gain is sufficient to outweigh the amount of information needed
to invert the map.

Last, in order to show slow mixing in the context of independent sets on the
triangular lattice with periodic boundary conditions, it is necessary to talk about
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multiple non-contractible fault lines, depending on the color of the boundary
vertices. On the Cartesian lattice with periodic boundary conditions, it was
only necessary to find two non-contractible cycles and to shift (or flip) the
configuration between these; on the triangular lattice it is sometimes necessary
to find three non-contractible cycles, as there are three types of regions.

Notice that it is not necessary to consider periodic boundary conditions in
the context of the 8-vertex model because our Peierls argument is based on a
map that just flips the interior of a fat contour. For independent sets, the map
requires shifting the interior of a fat contour, and this turns out to be simpler
on regions with periodic boundary conditions since we do not lose part of the
configuration after the shift as we would if we had non-periodic boundaries.

In Section 2, we cover some background material for basic Markov chain me-
chanics more formally. In Section 3 we introduce the notion of fat contours and
prove Theorem 2 for the 8-vertex model. In Section 4 we extend the argument
based on fat contours to the torus and prove Theorem 1 for independent sets
on the triangular lattice. In Section 5 we conclude with extensions and open
problems.

2 Preliminaries

Let M be an ergodic (i.e., irreducible and aperiodic), reversible Markov chain
with finite state space Ω, transition probability matrix P , and stationary dis-
tribution π. Let P t(x, y) be the t-step transition probability from x to y.

Definition 1. The total variation distance at time t is

‖P t, π‖tv = max
x∈Ω

1

2

∑

y∈Ω

|P t(x, y) − π(y)|.

Definition 2. For ε > 0, the mixing time τ = min{t : ‖P t
′

, π‖ ≤ ε, ∀t′ ≥ t}.

We say a Markov chain is rapidly mixing if the mixing time is bounded by a
polynomial in n and slowly mixing if the mixing time is exponential in n.

The conductance [5, 11] provides a way to upper and lower bound the mixing
time, and is defined as

Φ = min
S⊆Ω:0<π(S)≤1/2

∑

x∈S,y/∈S

π(x)P (x, y)

π(S)
.

The following theorem relating the conductance and the mixing time is due to
Jerrum and Sinclair [11] and is useful for showing a chain is slowly mixing.

Theorem 3. For any reversible Markov chain with conductance Φ,

τ(ε) ≥
1 − 2Φ

2Φ
ln ε−1.

Thus, to lower bound the mixing time, it is sufficient to show that the conduc-
tance is sufficiently small.
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3 Weighted Even Orientations

Let L be an n×n region of the Cartesian lattice Z
2, and let Ω8 be the set of all

orientations of the internal edges of L so that all vertices in the interior of L have
even in-degree and even out-degree. Given a fixed constant γ > 0 representing
the fugacity, for each σ ∈ Ω8, the Gibbs measure is π(σ) = γS(σ)/Z, where S(σ)
is the number of sources and sinks in σ and Z is the normalizing constant.

Let the Markov chain M8 be the local chain on Ω8 that chooses a face of
L uniformly at random and either flips the orientations of all internal edges
incident to that face or does nothing, according to the correct conditional prob-
abilities. More precisely, let s1 be the number of sources and sinks among the
four vertices defining the face in the current configuration and let s2 be the
number of sources and sinks that would surround that face if we were to flip
the orientations of the bounding edges. Then we flip the orientations of the
bounding edges with probability λs2/(λs1 + λs2) and we keep the orientation
unchanged with probability λs1/(λs1 +λs2). This chain is ergodic and converges
to π. We are interested in the mixing rate of the chain.

When λ = 1, all even orientations are equally likely and the probability of
flipping the orientation of edges around any face is the same. If we define the
distance between two configurations to be the number of edges in which their
orientations differ, then it is easy to construct a coupling argument to show that
the chain is rapidly mixing. (See [1] for the coupling theorem.) In fact, when
λ = 1, all moves occur with probability 1/2. We can define a coupling so that
the distance function never increases during moves of the coupled chain.

When λ 6= 1 the distance function can increase as well as decrease, but the
coupling argument still can be made to work when λ is sufficiently close to 1.
We also know that the chain is rapidly mixing when λ = 0, as this corresponds
to Eulerian orientations on Cartesian lattice regions (since there cannot be any
sources or sinks)t. The chain is known to be rapidly mixing in this special case
[6, 10].

However, when λ is large, the Markov chain behaves quite differently and
we verify that the convergence to equilibrium requires exponential time. Before
proceeding with our analysis of the mixing time, we present a reinterpretation
of Ω8 as an edge coloring. For every configuration, color an edge white if it
points from a vertex on the even sublattice to a vertex on the odd one, and
color it black if it points from an odd vertex to an even one. An example of this
transformation is shown in Figure 3.

Now Ω8 can be seen as the set of edge-colorings where every internal vertex
has an even number of edges of each color. The sources and sinks are now
monochromatic vertices, i.e., all incident edges are the same color. We call in-
ternal vertices that are incident to both black and white edges bichromatic. (As
before, the vertices on the boundary are neither monochromatic or bichromatic.)
The intuition behind the slow mixing is that it takes a long time to move from
a configuration that is predominantly white to one that is predominantly black.
This is because it is necessary to pass through configurations that have a large
number of bichromatic vertices, and these have much smaller stationary prob-
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ability. The goal is to show that there is a partition of the state space that
defines a bad cut so that we can use the conductance theorem to show that
the chain mixes slowly. Rather than the natural choice of partitioning the state
space according to the relative numbers of black and white vertices in the con-
figurations, we instead use the approach of [9] and partition according to “fault
lines.”

Figure 3: A configuration σ ∈ Ω8 (with sources and sinks marked) and the
corresponding edge-coloring.

Call two vertices of L edge-adjacent if they share an edge of L and call two
vertices of L face-adjacent if they lie on a common face of L. (“Face-adjacent”
is a looser term, as the vertices can be edge-adjacent or diagonally opposite
across a face.) Define a vertical fault line to be a connected path of bichromatic
face-adjacent vertices where one end is adjacent to the top row of L and the
other is adjacent to the bottom. A horizontal fault line is defined similarly. Let
F ⊂ Ω8 be the set of all configurations containing a fault line.

Now we define a vertical bridge to be an edge-connected path of monochro-
matic vertices where one end is adjacent to the top of L and the other is adjacent
to the bottom. A horizontal bridge is defined similarly. We say that a configu-
ration has a cross if it contains both a horizontal and a vertical bridge (of the
same color). Let W be the set of configurations containing a white cross and B
be the set of configurations containing a black cross. We now show that these
three sets F , W , and B are disjoint and characterize all of Ω8.

Lemma 1. We may partition Ω8 into F , W, and B. That is, every configura-
tion of Ω8 has either a fault line, a white cross, or a black cross (but no two of
these).

Proof. The sets W and B are clearly disjoint, as every configuration in W has a
vertical white bridge and every configuration in B has a horizontal black bridge;
no configuration can have both. Similarly F is disjoint from W and B because
fault lines obstruct crosses; if a configuration has a horizontal fault line it can
not have a vertical bridge. What remains to be shown is that these three sets
cover all of Ω8, that any configuration without a cross must have a fault line.
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Let σ be a configuration with no horizontal bridge and let the vertex set T be
the union of all bichromatic face-connected paths with one end adjacent to the
top of L. As the top row of internal vertices of L is not a bridge, T is non-empty
(although not necessarily connected). An example of T is illustrated in Figure
4. By the definition of T , each vertex face-adjacent to T is monochromatic,
or it would be included in T . If T is nowhere adjacent to the bottom of L,
then the vertices adjacent to T contain a horizontal bridge (and therefore a
contradiction). Hence T must contain a vertex adjacent to the bottom of L,
and so contains a vertical fault line.

Figure 4: A configuration σ with and without T removed. Notice that, as T
does not reach the bottom of L, σ contains a horizontal bridge just below T .

By a similar argument, if σ has no vertical bridge then σ has a horizontal
fault line.

We now show that for M8 to pass from W to B, it must pass through F , so
the edges incident to F define a cut in the state space.

Lemma 2. For transition probability P (·, ·) of M8, we have P (σW , σB) = 0
for all σW ∈ W and σB ∈ B.

Proof. The first important thing to note is that a single move of M8 cannot
turn a monochromatic white vertex into a monochromatic black vertex (or vice
versa), as the move can only change at most two incident edges. We may now
prove the lemma by contradiction.

Assume we do have two configurations σW ∈ W and σB ∈ B that differ by a
single move of M8, say on face f . The configuration σW must have a horizontal
white bridge, where each edge on the bridge is incident to only white edges.
Moreover, each vertex on this bridge must be incident to at least two white
edges that are not on f . If we recolor the edges of f black, each of these vertices
remain white or become bichromatic, and therefore none of these can be part
of a black bridge in σB . But σB has a vertical black bridge consisting of black
vertices, which is a contradiction since every vertical bridge must intersect each
horizontal bridge. Therefore we can conclude that W and B are not connected
by a single move in M8.
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Next, we proceed to show that the stationary probability of F is exponen-
tially small. We define a fat contour to be a maximally face-connected set of
bichromatic vertices containing a fault line. As a fault line is a face-connected set
of bichromatic vertices, any configuration with a fault line has a fat contour. To
bound π(F), we define a mapping ψ : F → Ω8 which takes σ ∈ F and recolors
edges incident to a fat contour so that the contour contains only white (or black)
vertices. Although ψ is not one-to-one, we will show that for every σ′ ∈ Img(ψ),
the stationary probability of the pre-image ψ−1(σ′) = {σ ∈ O : ψ(σ) = σ′} is
exponentially less than the stationary probability of σ′.

Our definition of ψ(σ) proceeds as follows. First, choose an arbitrary fat
contour of σ, F (e.g. farthest to the left or top). Define an island to be a
connected component of vertices after the removal of F and the boundary of L.
Notice that, while an island might contain bichromatic vertices, the vertices of
an island adjacent to F are either entirely white or entirely black. Our mapping
reverses the color of every edge with at least one vertex in a white island. (We
leave black islands as they are.) Now the edges incident to F are entirely black
and F can be recolored completely with black monochromatic vertices. An
example of this modification is in Figure 5. The resulting configuration has |F |
more monochromatic vertices than the pre-image, corresponding to additional
sources and sinks in the original even orientation.

Figure 5: A coloring σ, σ with the fat contour removed, and ψ(σ).

Notice that to find the inverse of ψ, we need only the location of F and the
colorings of the edges incident to vertices of F . The edges on the boundary of
the fat contour will then define whether a island was originally white or black,
and we can recover the colors of edges in those islands accordingly. In Lemma 3
below, we bound the number of possible fat contours and their edge colorings.
This allows us to bound the size of F in Lemma 4.

Lemma 3. If F is a fat contour such that |F | = ℓ, then there are fewer than
2n · 64ℓ possible choices for the vertices of F and fewer than 6ℓ colorings of the
edges incident to those vertices.

Proof. Without loss of generality, we assume F is a vertical fat contour. This
at most halves the total choices for F . The fat contour must then include
some vertex adjacent to the top of L. The location of this vertex together with
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a description of a DFS traversal of F starting at this vertex is sufficient to
reconstruct the vertices in F . As there are at most eight choices at each step
in the DFS (four adjacencies along edges and four diagonals across faces) there
are at most 82ℓ such traversals. With n choices for the starting vertex, we have
the bound on F .

Finally, for each vertex in F , there are at most 6 possible Eulerian orienta-
tions of the incident edges, so 6ℓ is an immediate (albeit weak) upper bound on
the number of colorings of the edges incident to F .

Lemma 4. There exist constants γ0, n0, c > 1 such that, if γ > γ0 and n > n0,
then π(F) < c−n.

Proof. For each ℓ ∈ [n, n2], let Fℓ be the edge-colorings in F where the fat
contour chosen by ψ is of size ℓ. Then, for each σ′ ∈ Img(ψ),

π(ψ−1(σ′)) =
n2

∑

ℓ=n

∑

σ∈Fℓ:ψ(σ)=σ′

π(σ)

=
n2

∑

ℓ=n

∑

σ∈Fℓ:ψ(σ)=σ′

π(σ′) · γ−ℓ

≤
n2

∑

ℓ=n

2n64ℓ6ℓ · π(σ′) · γ−ℓ

< 2n3

(

384

γ

)n

π(σ′).

This bound on the pre-image allows us to bound π(F) as follows:

π(F) =
∑

σ′∈Img(ψ)

π(ψ−1(σ′))

<
∑

σ′∈Img(ψ)

2n3

(

384

γ

)n

π(σ′)

= 2n3

(

384

γ

)n

π(Img(ψ))

< 2n3

(

384

γ

)n

.

Taking λ > 384 yields the lemma.

The final step of the proof of Theorem 2 is to show that this lemma is
sufficient to bound the conductance. Consider the cut defined by the set W .
By symmetry π(W) = π(B) = (1 − π(F))/2. Therefore, as W satisfies the
restrictions of the set S in the definition of Φ,

Φ ≤
π(F)

π(W)
≤

c−n

(1 − c−n)/2
,
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where c > 1. Appealing to Theorem 3, this proves Theorem 2.

4 Independent Sets on the Triangular Lattice

A similar approach to the one used in Section 3 can be applied to the context of
independent sets on the triangular lattice. The primary challenge in extending
the argument to this context is that the map now needs to be based on shifting
the interior of a contour, and here the lattice regions have periodic boundary
conditions.

Let Λ be a 3n× 3n rhomboidal region of the triangular lattice with periodic
boundary conditions and let ΩIS be the set of all independent sets on Λ. Given
a constant λ > 0, define a probability distribution π(I) = λ|I|/Z, where Z is
the normalizing constant.

The chain MIS is defined as follows: choose a vertex of Λ uniformly at
random and add or remove that vertex from I with the correct conditional
probabilities, if possible. That is, if the vertex could be included without violat-
ing the independence condition, add it with probability λ/(1 + λ) and remove
it with probability 1/(1 + λ). Otherwise do nothing.

The lattice has a natural tri-partition, which we color black, white, and gray.
Call a face of Λ empty if it is not incident to any vertex of I, as illustrated in
Figure 6. Call two faces of Λ adjacent if they share at least one vertex. We
then define a fault line to be a non-contractible cycle of empty faces. We let
F ⊂ ΩIS be the set of all independent sets with at least one fault line.

Figure 6: An independent set on Λ and the corresponding empty faces.

The obstruction preventing a fault line must be a set of tightly packed ver-
tices of I. Call two vertices of an independent set touching if they are incident to
faces which share an edge. Note that touching vertices must have the same color.
We define a monochromatic bridge to be a non-contractible cycle of touching
vertices of I. For any non-contractible cycle, the winding vector is an ordered
pair of integers (wx, wy), where wi represents the net number of times the cycle
intersects an elementary loop in the ith lattice direction. For instance, the ele-
mentary loops have winding vector (0, 1) and (1, 0). We say a configuration has
a monochromatic cross if it contains two bridges with different winding vectors.
(As cycles with different winding vectors must intersect, these two bridges are
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automatically of the same color.) Let B, W , and G be the set of independent
sets containing black, white, and gray crosses, respectively.

We first show that these sets define a partition of ΩIS .

Lemma 5. Every independent set in ΩIS has a fault line or a white, black, or
gray cross, but no two of these.

Proof. This proof is similar to the argument in [9] that shows that independent
sets on the Cartesian lattice without fixed boundary conditions must have hor-
izontal and vertical bridges of one color or there must be a fault line. A key
point we use here is that any two non-contractible cycles of different winding
vectors must intersect.

The sets B, W , and G are disjoint, as an independent set cannot have two
crosses of different colors, as that would involve two bridges of different winding
vectors and different colors, whose intersection would lead to a contradiction.
Similarly, F is disjoint from B, W , and G, as no set can have both a cross and
a fault line; the fault line must intersect at least one of the bridges, which is
impossible.

To see that there must be either a cross or a fault line, examine the torus
after the removal of a bridge. The remaining space is a non-contractible strip
of the torus of the same winding vector as the bridge. If there exists a path of
touching vertices across this strip, we find a bridge of a different winding vector
and therefore a cross. This is illustrated in Figure 7. On the other hand, if no
such path exists, then there must exist a fault line along the strip.

Figure 7: A cycle of winding vector (1, 1), the strip remaining after its removal,
and the cycle of winding vector (0, 1) created using the path across the strip.

We now show that removing F disconnects W , B, and G. Let P (·, ·) be the
transition probabilities of MIS .

Lemma 6. Let I1 ∈ W, I2 ∈ B and I3 ∈ G be three independent sets. Then
P (Ii, Ij) = 0 for all i 6= j.

Proof. Individual moves of MIS either add or remove a single vertex. Clearly
it requires multiple moves to eliminate one cross and complete another.
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We now show that the stationary probability of F is exponentially small.
In doing so, we again extend fault lines to 2-dimensional regions. Define a fat
contour to be a maximally connected set of empty faces containing a fault line.
We define a mapping ψ : F → ΩIS which eliminates at least one fat contour.
Although the mapping is not one-to-one, we will show that each I ′ ∈ Img(ψ)
has a pre-image whose total weight is exponentially smaller.

To bound the number of sets in this pre-image, we bound the number of fat
contours.

Lemma 7. If F is a fat contour with ℓ faces, then there are at most 2n236ℓ

choices for the locations of those faces.

Proof. First, we limit the notion of adjacencies in F . Define two adjacent faces
to be edge-adjacent if they share an edge. Call them point-adjacent if they share
a single vertex and yet are not both adjacent to a common face. As illustrated
in Figure 8, not all pairs of adjacent faces are edge- or point-adjacent. However,
note that edge- and point-adjacencies suffice to connect F , as a vertex of I
removes a complete hexagon from F . We can therefore find a traversal of F
that uses only edge- and point-adjacencies.

There are 2n2 choices for a face to start the DFS of F . Then each step
of the DFS has six possible directions (three edge-adjacencies and three point-
adjacencies), so there are at most 62l possible traversals starting at f .

Figure 8: Adjacent faces which are point-adjacent, edge-adjacent, and neither.

Our definition of ψ is slightly more complicated than in Section 3 because
we are considering toroidal regions. Suppose first that F contains two fault lines
with different winding vectors. Then the complement of F contains only regions
whose boundaries are contractible. By the maximality of F , each of these regions
has a monochromatic boundary, so we may refer to these connected components
(or “islands”) by the colors of their boundaries. Note that if the lattice partition
is colored as in Figure 1, if we shift all white islands one space East so that their
boundaries become gray, and shift all black islands one space to the North-East
so that their boundaries also become gray (and leave gray islands as they are),
we form a new independent set of the same size. After this shift, all vertices
incident to F are gray, so ψ may fill the entire fat contour with gray vertices.
If F has ℓ faces, ψ adds exactly ℓ/6 vertices to I, each the center of a vacant
hexagon. Such a transformation is illustrated in Figure 9.

Unfortunately, fat contours need not contain multiple fault lines with differ-
ing winding vectors and, indeed the complement of F can contain regions whose
boundaries are non-contractible. If this is the case, then F has a bridge on each
side. Define a bulge to be a maximal set of touching vertices of I which contain
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Figure 9: A set σ containing a pair of fault lines with differing winding vectors,
and ψ(σ).

a bridge. In this case F must be incident to a bulge on each side. If these are
of the same color, ψ can shift all islands within F to that color and fill F , as in
Figure 10.

Figure 10: A set σ containing a fault line with a black bulge on each side, and
ψ(σ).

Complicating matters further, there may be no fat contour incident to two
bulges of the same color. For instance, let F1 be a fat contour incident to a
white bulge on the left and a black one on the right. To the right of the black
bulge there must be another fat contour, F2. If F2 is incident to a white bulge,
ψ can shift the islands of F1 and F2 and the black bulge all to white. Then ψ
can fill both fat contours with white vertices. If F1 and F2 contain ℓ1 and ℓ2
faces (respectively), then ψ adds (ℓ1 + ℓ2)/6 vertices to I.

In one final case, suppose we have no pair of neighboring fat contours bor-
dered by bulges of the same color. Then there must then be a third fat contour
F3 which is incident to still another bulge. Luckily we only have three colors
of bulges; at some point these colors must repeat. For example, if we have, in
order, a black bulge, F1, a white bulge, F2, a gray bulge, F3, and then a black
bulge, then ψ can shift the white bulge, the gray bulge, and all islands of the fat
contours to black. We may then fill all three fat contours with black vertices.

To find the inverse of ψ, note that we need only the faces of the fat contour(s);
the colors of the neighboring vertices can be inferred from the shape of F , and
these colors define the direction of the shift.

We may now bound the stationary probability of F .

15



Lemma 8. There exist constants λ0, n0, c > 1 such that, if λ > λ0 and n > n0,
then π(F) < c−n.

Proof. For each ℓ ∈ [n, 2n2], let Fℓ ⊂ F be the independent sets where the
fat contours chosen by ψ contain a total of ℓ faces. Given ℓ1,ℓ2,ℓ3 such that
ℓ1 + ℓ2 + ℓ3 = ℓ, Lemma 7 shows that there are at most

∏3
i=1 2n236ℓi = 8n636ℓ

choices of faults such that |Fi| = ℓi. Then, for each I ′ ∈ Img(ψ),

π(ψ−1(I ′)) =

2n2

∑

ℓ=n

∑

I∈Fℓ:ψ(I)=I′

π(I)

=

2n2

∑

ℓ=n

∑

I∈Fℓ:ψ(I)=I′

π(I ′) · λ−
ℓ

6

<

2n2

∑

ℓ=n

l38n636ℓ · π(I ′) · λ−
ℓ

6

< 64n12

(

366

λ

)

2n
2

6

π(I ′).

The bound on the pre-image then allows us to bound π(F) as follows:

π(F) =
∑

I′∈Img(ψ)

π(ψ−1(I ′))

<
∑

I′∈Img(ψ)

64n12

(

366

λ

)2n2

π(I ′)

= 64n12

(

366

λ

)

2n
2

6

π(Img(ψ))

< 64n12

(

366

λ

)
2n

2

6

.

Taking λ > 366 completes the proof.

Note that by symmetry the sets W ,B and G have equal stationary probabil-
ity. Observing now that their total weight is at least 1 − c−n, the conductance
arguments of Sections 2 allow us to complete the proof of Theorem 1. Thus,
we have shown that local Markov chains for sampling independent sets on the
triangular lattice converge slowly to equilibrium for large λ.

5 Conclusions

We introduced a new tool for showing slow mixing of a local Markov chain
via simple combinatorial arguments. The main contribution is the use of fat
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contours that consist of large, full-dimensional regions of unfavorable vertices.
We then demonstrated how to use fat contours in the context of weighted even
orientations on the Cartesian lattice and independent sets on regions of the
triangular lattice with toroidal boundary conditions. In this presentation our
goal was presenting basic arguments and we have not made an attempt to
optimize constants. It would be interesting to see how these arguments can be
improved to show slow mixing for a wider range of values of λ for each model.

Using essentially the same arguments, the slow mixing results can be ex-
tended to weighted even orientations on regions with periodic boundary con-
ditions, as well as Cartesian lattice regions in higher dimensions. In the latter
case, fat contours have non-trivial volume and are again encoded by a depth-first
search of the components connecting large regions of “unfavorable” vertices.

Finally, we conclude with an open problem. We have shown that local chains
are slow for weighted independent sets when λ is large enough and and we know
that the chain is rapidly mixing when λ = 0 or very close to 1. We conjecture
that there is a unique value for λ below which the chain is rapidly mixing and
above which it is slowly mixing. This implies that we have polynomial time
convergence for all λ between 0 and 1, although this remains unknown.

References

[1] D. Aldous. Random walks on finite groups and rapidly mixing Markov
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