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Abstract

Graded posets frequently arise throughout combina-
torics, where it is natural to try to count the number of
elements of a fixed rank. These counting problems are
often #P-complete, so we consider approximation al-
gorithms for counting and uniform sampling. We show
that for certain classes of posets, biased Markov chains
that walk along edges of their Hasse diagrams allow us
to approximately generate samples with any fixed rank
in expected polynomial time. Our arguments do not rely
on the typical proofs of log-concavity, which are used to
construct a stationary distribution with a specific mode
in order to give a lower bound on the probability of
outputting an element of the desired rank. Instead, we
infer this directly from bounds on the mixing time of
the chains through a method we call balanced bias.

A noteworthy application of our method is sam-
pling restricted classes of integer partitions of n. We
give the first provably efficient Markov chain algo-
rithm to uniformly sample integer partitions of n from
general restricted classes. Several observations allow
us to improve the efficiency of this chain to require
O(n1/2 log(n)) space, and for unrestricted integer par-
titions, expected O(n9/4) time. Related applications
include sampling permutations with a fixed number of
inversions and lozenge tilings on the triangular lattice
with a fixed average height.

1 Introduction

Graded posets are partially ordered sets equipped with
a unique rank function that both respects the partial or-
der and such that neighboring elements in the Hasse di-
agram of the poset have ranks that differ by ±1. Graded
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posets arise throughout combinatorics, including per-
mutations ordered by numbers of inversions, geomet-
ric lattices ordered by volume, and independent sets
and matchings ordered by cardinality. Sometimes we
find rich underlying structures that allow us to directly
count, and therefore sample, fixed rank elements of a
graded poset. In other cases, efficient methods are un-
likely to exist, so Markov chains offer the best approach
to sampling and approximate counting.

Jerrum and Sinclair [?] observed that we could
sample matchings of any fixed size with the addition
of a bias parameter λ that gives weight proportional
to λ|m| to each matching m. For any graph G, they
showed that the sequence ai, the number of matchings
of G of size i, is log-concave, from which it follows that
f(i) = aiλ

i is also. In particular, f(i) must be unimodal
for all λ. Setting λ = ak/ak+1 makes k the mode
of distribution f(i), and therefore samples with this
weighting will be of the appropriate size with probability
at least 1/(n + 1). Jerrum and Sinclair showed that
the matching Markov chain is rapidly mixing for all
λ, so it can find matchings of fixed size k efficiently
whenever 1/poly(n) < λ < poly(n). (This condition is
not always satisfied, but the more involved algorithm
of Jerrum, Sinclair, and Vigoda circumvents this issue
[?].) Log-concavity is critical to this argument in order
to conclude that there is a value of λ for which samples
of the desired size occur with high enough probability.

This follows a common approach used in physics for
which we would like to sample from a microcanonical en-
semble, i.e., the states with a fixed energy, from a much
larger canonical (or grand canonical) ensemble, where
the energies are allowed to vary due to interactions with
the external environment. In particular, given input pa-
rameter λ, often related to temperature, a configuration
σ has Gibbs (or Boltzmann) weight π(σ) = λr(σ)/Z,
where r(σ) is the rank of σ and Z is the normalizing
constant. Elements σ sampled from this distribution are
uniformly distributed, conditioned on their rank. The
choice of λ controls the expected rank of the distribu-
tion, so simulations of the Markov chain at various λ
can be useful for understanding properties of configura-
tions with a fixed energy. Typically, however, there is
no a priori guarantee that this approach will enable us
to sample configurations of a given size efficiently.
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Our main example throughout will be sampling
and counting (possibly restricted) integer partitions.
An integer partition of nonnegative integer n is a
decomposition of n into a nonincreasing sequence of
positive integers that sum to n. The seven partitions
of 5 are: (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1),
and (1, 1, 1, 1, 1). Integer partitions are commonly
represented by staircase walks in Z2 known as Young
(or Ferrers) diagrams, where the heights of the columns
represent distinct pieces of the partition. Partitions of
n have exactly n squares, i.e., the area of the diagram,
and their column heights are nonincreasing. Partitions
arise in many contexts, include exclusion processes [?],
random matrices [?], representation theory [?], juggling
patterns [?], and growth processes [?] (see, e.g., [?]).

1.1 Sampling Elements from Graded Posets
Several general approaches have been developed to
sample elements of fixed rank from a graded poset,
with varying success. The three main approaches for
sampling are dynamic programming algorithms using
self-reducibility, Boltzmann samplers using geometric
random variables, and Markov chains. The first two
approaches require methods to estimate the number of
configurations of each size, so Markov chains offer the
most promising approach for sampling when these are
unavailable.

Each of these approaches has been studied exten-
sively in the context of sampling integer partitions. The
first class of approaches uses dynamic programming and
generating functions to iteratively count the number of
partitions of a given type. Nijinhuis and Wilf [?] give
a recursive algorithm using dynamic programming that
computes tables of exact values. This algorithm takes
O(n5/2) time and space for preprocessing and O(n3/2)
time per sample. Squire [?] improved this to O(n2)
time and space for preprocessing and O(n3/2 log(n))
time per sample using Euler’s pentagonal recurrence
and a more efficient search method. The time and space
complexity bounds of these algorithms account for the
fact that each value of p(n), as well as the intermedi-
ate summands, requires O(n1/2) space by the Hardy-
Ramanujan formula. Therefore, even when available,
dynamic programming approaches for exact sampling
break down in practice on single machines when n ≥ 106

due to space constraints.
Boltzmann samplers offer a more direct method

for sampling that avoids the computationally expensive
task of counting partitions. A Boltzmann sampler gen-
erates samples from a larger combinatorial class with
probability proportional to the Boltzmann weight λ|σ|,
where |σ| is the size of the partition. Samples of the
same size are drawn uniformly at random, and the al-

gorithm rejects those that fall outside of the target
size [?, ?]. The value λ is chosen to maximize the yield
of samples of our target size n. Fristedt [?] suggested
an approach that quickly generates a random partition
using appropriate independent geometric random vari-
ables. His approach exploits the factorization of the
generating function for p(n) and can be interpreted as
sampling Young diagrams σ in the n×∞ grid with prob-
ability proportional to the Boltzmann weight λ|σ|. Re-
cently Arratia and DeSalvo [?] gave a probabilistic ap-
proach that is substantially more efficient than previous
algorithms, thus allowing for fast generation of random
partitions for significantly larger numbers, e.g., n ≥ 106.
Building on the work of Fristedt [?], they introduce
the probabilistic divide-and-conquer (PDC) method to

generate random partitions of n in optimal Õ(n1/2) ex-

pected time and space (where Õ suppresses log factors).
Their PDC algorithm also uses independent geometric
random variables to generate a partition, but does so
recursively in phases. PDC achieves superior perfor-
mance relative to conventional Boltzmann Sampling by
rejecting impossible configurations in early phases.

Stochastic approaches using Markov chains have
produced a similarly rich corpus of work, but until now
have not provided rigorous polynomial bounds. One
popular direction uses Markov chains based on coagu-
lation and fragmentation processes that allow pieces of
the partition to be merged and split [?, ?]. Ayyer et
al. [?] recently proposed several natural Markov chains
on integer partitions in order to study juggling patterns.
In all of these works, most of the effort has been to
show that the Markov chains converge to the uniform
distribution over partitions and often use stopping rules
in order to generate samples. Experimental evidence
suggests that these chains may converge quickly to the
correct equilibrium, but they lack explicit bounds.

1.2 Results For any graded poset, let Ωk be the
elements of rank k and let Ω =

⋃n
i=0 Ωi be the entire

poset. We show that provably efficient Boltzmann
samplers on Ωk can be easily constructed from certain
rapidly mixing Markov chains on the Hasse diagram of
the entire poset Ω, under very mild conditions. We
apply this technique to design the first provably efficient
Markov chain based algorithms for sampling integer
partitions of an integer n, permutations with a fixed
number of inversions, and lozenge tilings with fixed
average height. Unlike all other methods for sampling
that depend on efficient counting techniques, our results
extend to interesting subspaces of these posets, such as
partitions with at least k pieces with size greater than `,
or partitions into pieces with distinct sizes, or many
other such restricted classes. For these subspaces, our



results provide the first sampling algorithms that do not
require the space-expensive task of counting.

We focus on the example of integer partitions of n
and prove that there is a Markov chain Monte Carlo
algorithm for uniformly sampling partitions of n from
a large family of region-restricted partitions, i.e., Young
diagrams restricted to any simply-connected bounding
region. The Markov chain on the Hasse diagram for
partitions is the natural “mountain-valley” chain stud-
ied for staircase walks, tilings, and permutations. The
transition probabilities are designed to generate a dia-
gram σ with weight proportional to λ|σ|. Previous work
on biased card shuffling [?] and growth processes [?, ?, ?]
shows that this chain is rapidly mixing for any constant
λ on well-behaved regions.

In the general setting of sampling from a graded
poset, our algorithm is similar to current Boltzmann
samplers that heuristically sample elements of a given
size, but often without rigorous analysis. However, we
establish conditions under which these algorithms can
be shown to be efficient, including restricted settings
for which no other methods provide guarantees on both
efficiency and accuracy. For example, we show that our
method can produce random partitions of n in O(n9/4)
expected time with only O(n1/2 log(n)) space. Using
coupling from the past, we can in fact generate samples
of the desired size exactly uniformly, if this is desirable.

Although our algorithm is slower than recent re-
sults for sampling unrestricted partitions using inde-
pendent geometric random variables [?, ?] (in the set-
tings where those methods apply), our method is sig-
nificantly more versatile. The Markov chain algorithm
readily adapts to various restricted state spaces, such
as sampling partitions with bounded size and num-
bers of parts, partitions with bounded Durfee square,
and partitions with prescribed gaps between successive
pieces including partitions into pieces with distinct sizes.
For general bounding regions, our algorithm still uses
O(n1/2 log(n)) space, and hence is usually much more
suitable than other approaches with substantially larger
space requirements.

Finally, we achieve similar results for sampling from
fixed a rank in other graded posets. These include
permutations with a fixed number of inversions and
lozenge tilings with a given average height, referring to
the height function representation of the tilings (see,
e.g., [?]). Kenyon and Okounkov [?] explored limit
shapes of tilings with fixed volume, and showed such
constraints simplified some arguments, but there has
not been work addressing sampling.

1.3 Techniques First, we present a new argument
that shows how to build Boltzmann samplers with per-

formance guarantees, even in cases where the under-
lying distributions are not known (or necessarily even
believed) to be unimodal, provided the Markov chain
is rapidly mixing on the whole Hasse diagram. We
prove that there must be a balanced bias parameter λ
that we can find efficiently allowing us to generate con-
figurations of the target size with probability at least
1/poly(n). The desired set is no longer guaranteed to
be the mode of the distribution, as generally required,
but we still show that rejection probabilities will not
be too high. We carefully define a polynomial sized set
from which the bias parameter λ will be chosen. Then
we show that at least one bias parameter in this set
will define a distribution satisfying

∑
i≤k Pr[Ωi] ≥ 1/c

and
∑
i>k Pr[Ωi] ≥ 1/c, for some constant c. Because

the Markov chain M changes the rank by at most 1 in
each step, we must generate samples of size exactly k
with probability at least 1/τ(M), where τ(M) is the
mixing time of M, which we prove using conductance.
Thus, when the chain is rapidly mixing, samples of size
k must occur with non-negligible probability. This new
method based on balanced biases is quite general and
circumvents the need to make any assumptions about
the underlying distributions.

We use biased Markov chains and Boltzmann sam-
pling to generate samples of the desired size k. We as-
sign probability λr(σ)/Z to every element σ ∈ Ω, where
r(σ) is its rank and Z is the normalizing constant. When
the underlying distributions on f(i) = |Ωi|λi are known
to be log-concave in i, such as unrestricted integer parti-
tions or permutations with a fixed number of inversions,
we can provide better guarantees than the general bal-
anced bias algorithm.

Several observations allow us to improve the run-
ning time of our algorithm, especially in the case of un-
restricted integer partitions. First, instead of sampling
Young diagrams in an n × n lattice region, we restrict
to diagrams lying in the first quadrant of Z2 below the
curve y = 2n/x, since this region contains all the Young
diagrams of interest and has area Θ(n log(n)), allowing
the Markov chain to converge faster. Next, we improve
the bounds on the mixing time for our particular choice
of λ given in [?] using a careful analysis of a recent result
in [?]. Last, we show how to salvage many of the samples
rejected by Boltzmann sampling to increase the success
probability to at least Ω(1/n1/4). With all of these im-
provements we conclude that the chain will converge in
O(n2) time and O(n1/4) trials are needed in expectation
before generating a sample corresponding to a partition
of n. We also optimize the space required to implement
the Markov chain. All Young diagrams in the region R
have at most O(n1/2) corners, so each diagram in stored
in O(n1/2 log(n)) space.



2 Bounding Rejection with Balanced Bias

Let Ω be the elements of any graded poset with rank
function r : Ω → Z≥0. The rank of the poset Ω
is R = max({r(σ) : σ ∈ Ω}) and the rank generating
function of Ω is FΩ(x) =

∑
σ∈Ω x

r(σ). Let Ωk be the
set of elements of Ω with rank k and let aΩ,k = |Ωk|.
For any λ > 0, the Gibbs measure of each σ ∈ Ω is
π(σ) = λr(σ)/Z, where Z = FΩ(λ) =

∑R
i=0 aΩ,iλ

i is the
normalizing constant.

We define the natural Markov chain M that tra-
verses the Hasse diagram of Ω as follows. Let ∆
be the maximum number of neighbors of any element
σ ∈ Ω in the Hasse diagram. For any pair of neigh-
boring elements σ, ρ ∈ Ω, we define the transition prob-
abilities P (σ, ρ) = min(1, π(ρ)/π(σ))/(2∆), and with
all remaining probability we stay at σ. This Markov
chain is known as the lazy, Metropolis-Hastings algo-
rithm [?] with respect to the Boltzmann distribution
π(σ) = λr(σ)/Z. If M connects the state space of the
poset, the process σt is guaranteed to converge to the
stationary distribution π starting from any initial σ0 [?].

The number of steps needed for the Markov chain
M with state space Ω to get arbitrarily close to this
stationary distribution is known as its mixing time τ(ε),
defined as

τ(ε) = min({t : ‖P t
′
, π‖tv ≤ ε for all t′ ≥ t}),

for all ε > 0, where ‖·, ·‖tv is the total variation
distance (see, e.g., [?]). We say that a Markov chain
is rapidly mixing if the mixing time is bounded above
by a polynomial in n and log(ε−1).

We wish to uniformly sample a random element σ ∈
Ωk, for a fixed k ∈ [R]. To achieve this, we repeatedly
sample from a favorable Boltzmann distribution over
all of Ω until we have an element of rank k. We show
that under very mild conditions on the coefficients of
the rank generating function, it is sufficient that the
Markov chain M over Ω be rapidly mixing in order
for the Boltzmann sampling procedure to be efficient.
Specifically, we require only that R = O(poly(n)) and
1 ≤ aΩ,i ≤ c(n)i for some polynomial c(n).

We formalize our claim by assuming the polynomial
c = c(n) ≥ 2. For t ≥ 0, let βt = ln(1/c)+ t ln(c)/R and

λt = eβt = ct/R−1.

Then let Prt[σ] = λ
r(σ)
t /Zt, where Zt = FΩ(λt). The

sequence {λt}∞t=0 is constructed in such a way that at
most R2 values need to be considered.

Lemma 2.1. For all σ ∈ Ω and t ≥ 0, we have

Prt+1[σ]

Prt[σ]
≥ 1

c
.

Proof. By the definition of βt+1, we have

1 ≥ eβtr(σ)

eβt+1r(σ)
= e− ln(c)r(σ)/R ≥ 1

c
.

It follows that

Prt+1[σ]

Prt[σ]
=
eβt+1r(σ)

eβtr(σ)
· Zt
Zt+1

≥ Zt
Zt+1

=

∑
σ∈Ω e

βtr(σ)∑
σ∈Ω e

βt+1r(σ)
≥

∑
σ∈Ω e

βt(σ)∑
σ∈Ω ce

βtr(σ)
=

1

c
.

The following lemma is critical to our argument
and states that there exists a balanced bias parameter
λ relative to our target set Ωk that assigns nontrivial
probability mass to elements with rank at most k and
elements with rank greater than k.

Lemma 2.2. Let Ω be the elements of a graded poset
with rank R ≥ 1 such that 1 ≤ aΩ,i ≤ ci for all
i ∈ {0, 1, . . . , R} and some c ≥ 2. If k ∈ [R − 1], there
exists a t ∈ [R2] for which

Pr
t

[r(σ) ≤ k] ≥ 1

c+ 1
and Pr

t
[r(σ) > k] ≥ 1

c+ 1
.

Proof. Suppose there exists a minimum t∗ ∈ Z≥1

such that Prt∗ [r(σ) > k] > 1/(c + 1). Then
Prt∗−1[r(σ) ≤ k] ≥ c/(c + 1), so by Lemma ?? we
have Prt∗ [r(σ) ≤ k] ≥ 1/(c + 1). To prove the exis-
tence of t∗, recall that Prt[r(σ) > k] > 1/(c+ 1) if and

only if (c + 1)
∑R
i=k+1 aΩ,iλ

i
t > 1. To prove the second

inequality, it suffices to show (c + 1)λRt > 1. Letting
t = R2, we have λt = cR−1 ≥ 1 because R ≥ 1. There-
fore (c + 1)λRt > 1 as desired. Finally, let t∗ be the
minimum t ∈ [R2] satisfying Prt[r(σ) > k] > 1/(c+ 1).

We now prove our main theorem, which depends
on the mixing time τ(ε) of the Markov chain M for
the balanced bias λt, given by Lemma ??. The proof
uses a characterization of the mixing time of a Markov
chain in terms of its conductance [?, ?]. For an ergodic
Markov chain M with stationary distribution π, the
conductance of a subset S ⊆ Ω is defined as Φ(S) =∑
σ∈S,ρ∈S π(σ)P (σ, ρ)/π(S). The conductance of the

chain M is the minimum conductance over all subsets

ΦM = min
S⊆Ω

({Φ(S) : π(S) ≤ 1/2}) ,

and is related to the mixing time τ(ε) of M as follows.

Theorem 2.1. ([?]) The mixing time of a Markov
chain M with conductance Φ satisfies

τ(ε) ≥
(

1− 2Φ

2Φ

)
ln
(
ε−1
)
.



Theorem 2.2. (Balanced Bias) Let M be a rapidly
mixing Markov chain with state space Ω and mixing time
τ = τ(e−1) such that the transitions of M induce a
graded partial order on Ω with rank function r : Ω →
Z≥0 and rank R. If there exists a polynomial c ≥ 2
such that 1 ≤ aΩ,i ≤ ci for all i ∈ {0, 1, . . . , R}, then

π(Ωk) ≥ (2(c+ 1)(τ + 1))
−1

for any fixed k ∈ [R] with
the balanced bias. If M can be used to generate exact
samples from π in expected O(τ) time, then we can
uniformly sample from Ωk in expected O(cτ2) time.

Proof. Let M have conductance Φ and assume k < R.
Considering the cut S = Ω≤k and using Lemma ??, we
have min(π(S), π(S)) ≥ 1/(c+ 1) for the balanced bias
λt. It follows that

Φ(S) ≤
∑
σ∈S,ρ∈S π(σ)P (σ, ρ)

min(π(S), π(S))

≤ (c+ 1)
∑

σ∈Ωk,ρ∈Ωk+1

π(σ)P (σ, ρ)

≤ (c+ 1) π(Ωk).

By Theorem ??, τ ≥ (2Φ)−1− 1, so Φ ≥ (2(τ + 1))
−1

.

Therefore, π(Ωk) ≥ (2(c+ 1)(τ + 1))
−1

. It follows that
O(cτ) samples from π are needed in expectation to
generate a uniform σ ∈ Ωk for any fixed k ∈ [R − 1]
with the given balanced bias. Moreover, if each sample
is exactly generated in O(τ) expected time, then the
total running time of this sampling algorithm is O(cτ2).
The argument when k = R− 1 extends to k = R by the
detailed balance equation.

For simplicity, this theorem assumes we have a
method for generating samples exactly from π. In many
graded posets, including all considered here, we can use
the coupling from the past algorithm to generate perfect
samples in expected O(τ) steps per sample [?]. In cases
when we cannot sample exactly, we have the following
corollary of Theorem ?? that only requires samples be
chosen close to π.

Corollary 2.1. We can useM to approximately gen-
erate samples from Ωk to within ε of the total variation
distance of π in expected O(cτ2 max(log(ε−1), log(cτ)))
time.

Proof. Let ε∗ = min(ε, (8(c+ 1)(τ + 1))
−1

) be the de-
sired bound on the total variation distance between
the t-step distribution P t(σ, ·) starting from any initial
σ ∈ Ω and the stationary distribution π. Then

ε∗ ≥ 1

2

∑
ρ∈Ω

|P t(σ, ρ)− π(ρ)| ≥ 1

2
|P t(σ,Ωk)− π(Ωk)|.

Theorem ?? and our choice of ε∗ imply that P t(σ,Ωk) ≥
π(Ωk) − 2ε∗ ≥ (4(c + 1)(τ + 1))−1. Each sample can
be generated in O(τ(ε)) = O(τ log(ε−1)) steps, so the
expected runtime is O(cτ2 max(log(ε−1), log(cτ))).

3 Sampling Integer Partitions

We demonstrate how to use the balanced bias technique
to sample from general classes of restricted integer par-
titions. Integer partitions have a natural representation
as Young diagrams, which formally are finite subsets
σ ⊆ Z2

≥0 with the property that if (a, b) ∈ σ, then

{(x, y) ∈ Z2
≥0 : 0 ≤ x ≤ a and 0 ≤ y ≤ b} ⊆ σ. Young

diagrams can be visualized as a connected set of unit
squares on the integer lattice with a corner at (0, 0)
and a nonincreasing upper boundary from left to right.
Each square in the Young diagram must be supported
below by the x-axis or another square and supported to
the left by the y-axis or another square. We are inter-
ested in region-restricted Young diagrams, a variant of
Young diagrams whose squares are restricted to lie in
a connected region R ⊆ Z2

≥0 such that each square is
supported below and to the left by the boundary of R
or another square. Note that we use R in this section to
denote a region instead of the rank of a poset. We will
see that the rank of the poset induced by the natural
partial order on R-restricted Young diagrams is |R|.

We call Young diagrams σ ⊆ Z2
≥0 such that |σ| = n

unrestricted integer partitions of n and use this term
interchangeably with integer partitions. Many well-
studied classes of restricted integer partitions have natu-
ral interpretations as region-restricted Young diagrams.
For example, the set of integer partitions of n with at
most k parts and with each part at most size ` give rise
to the Gaussian binomial coefficients and can be thought
of as the set of Young diagrams of size n contained in a
k × ` box.

Figure 1: Unrestricted and restricted integer partitions.

3.1 The Biased Markov Chain Let the state space
Ω be the set of all Young diagrams restricted to lie in
a region R. Young diagrams have a natural graded



partial order via inclusion, where σ ≤ ρ if and only
if σ ⊆ ρ, so the rank of a diagram σ is r(σ) = |σ|.
The following Markov chain M on the Hasse diagram
of this partial order makes transitions that add or
remove a square on the boundary of the diagram in each
step according to the Metropolis-Hastings algorithm.
Therefore the stationary distribution is a Boltzmann
distribution parameterized by a bias value λ. Let R
be a region such that every partition restricted to this
region has at most ∆ neighboring configurations.

Biased Markov Chain on Integer PartitionsM
Starting at any Young diagram σ0 ⊆ R, repeat:

• Choose a neighbor ρ of σt uniformly at random with
probability 1/2∆.

• Set σt+1 = ρ with probability min(1, λ|ρ|−|σt|).

• With all remaining probability, set σt+1 = σt.

The state space Ω is connected, because any config-
uration can eventually reach the minimum configuration
σ = ∅ with positive probability. By construction, M is
lazy (i.e., it is always possible that σt = σt+1), so it
follows that M is an ergodic Markov chain, and hence
has a unique stationary distribution π. Using the de-
tailed balance equation for Markov chains [?], we see
that π(σ) = λ|σ|, for all σ ∈ Ω.

This Markov chain can be used to efficiently ap-
proximate the number of partitions of n restricted to R
within arbitrarily small specified relative error, because
this problem is self-reducible [?]. Observe that we can
run M restricted to R polynomially many times and
compute the mean height m in the first column of the
sampled Young diagrams. Then we recursively approxi-
mate the number of partitions of n−m restricted to the
region R′ = {(x, y) ∈ R : 1 ≤ x and y ≤ m} with M,
and return the product of m and this approximation.

3.2 Sampling Using Balanced Bias In the follow-
ing general sampling theorem for restricted integer par-
titions, the mixing time of M must hold for all bias
parameters λt.

Theorem 3.1. Let τ = τ(e−1) be the mixing time ofM
on the region R. We can uniformly sample partitions of
k restricted to a region R in expected O(∆τ2) time.

Proof. There is only one such partition when k = 0 or
k = |R|, so assume k ∈ [|R| − 1]. By construction
we have |Ωk+1|/|Ωk| ≤ ∆ for all fixed k, so 1 ≤
|Ωi| ≤ ∆i for all i ∈ {0, 1, . . . , |R|}. By Lemma ??
there exists a balanced bias λ, which we can identify
adaptively in O(log(|R|)) time with a binary search as

we are sampling, since Boltzmann distributions increase
monotonically with increasing λt. Therefore, we can
generate Young diagrams restricted to R with any fixed
rank in expected O(∆τ2) steps of M by Theorem ??.

If more is known about the number of elements at
each rank or the geometry of R, then we can give better
bounds on the runtime of this algorithm. For example, if
R is the region of a skew Young diagram (see Figure ??),
a region contained between two Young diagrams, then
we can adapt Levin and Peres’ mixing results about
biased exclusion processes to this setting.

Theorem 3.2. ([?]) Consider the biased exclusion pro-
cess with bias β = βn = 2pn − 1 > 0 on the segment of
length 2n and with n particles. Set α =

√
pn/(1− pn).

For ε > 0, if n is large enough, then

τ(ε) ≤ 4n

β2

[
log
(
ε−1
)

+ log

[
α

(
αn − 1

α− 1

)2
]]

.

Corollary 3.1. If the region R is a skew Young dia-
gram contained in an n×n box, we can uniformly sample
partitions of k restricted to R in expected O(n16) time.

Proof. The biased exclusion process on a segment of
length 2n with n particles is in bijection with M when
the restricting region is an n × n box. The proof of
Theorem ?? in [?] uses a path coupling argument that
directly extends to and gives an upper bound for the
mixing time of M when the region R is a skew Young
diagram, since the expected change in distance of two
adjacent states in the more restricted setting can only
decrease. Let λn,t denote λt in an instance of size n. We
analyze the three cases λn,t < 1, λn,t = 1, and λn,t > 1,
and then bound the mixing time of M for all λn,t.

To prove the existence of a balanced bias using
Lemma ??, observe that 1 ≤ aΩ,i ≤ p(i) ≤ 2i for all
i ∈ {0, 1, . . . , n2}. In the first case, assume λt,n < 1.
Then we have t ∈ [n2 − 1] since |R| = n2. Translating
M to the biased exclusion process, pn,t = 1/(1 + λn,t),

βn,t = (1− λn,t)/(1 + λn,t), and αn =
√

1/λn,t. To use
Theorem ??, we first prove 1/β2

n,t ≤ 10n4. To see this,
observe that t = n2−1 minimizes βn,t, hence maximizes
the desired quantity. Then limn→∞(1/βn,n2−1)2 =
4n2/ log(2)2 ≤ 10n4. Next, since an,t > 1, we have

αn,t

(
αnn,t − 1

αn,t − 1

)2

≤ αn,t
(
nαnn,t

)2 ≤ n2

λ
n+1/2
n,t

≤ n22n+1/2,

because λn,t ≥ 1/2. Thus, τ(ε) = O(n5(log(ε−1) + n))
for all λn,t by Theorem ??.

In the unbiased case when λn,t = 1, Wilson [?]
proved that the mixing time ofM is Θ(n3 log(n/ε)). In



the third case, λt,n > 1 so t ∈ {n2 + 1, n2 + 2, . . . , n4},
pn,t = λn,t/(1 + λn,t), βn,t = (λn,t − 1)/(1 + λn,t), and
αn,t =

√
λn,t. By similar analysis, 1/β2

n,t ≤ 10n4 and

αn,t

(
αnn,t − 1

αn,t − 1

)2

≤ n2λ
n+1/2
n,t ≤ n2

(
2n

2−1
)n+1/2

,

since λn,t ≤ 2n
2−1. Thus τ(ε) = O(n5(log(ε−1) + n3)),

so by Theorem ?? we can uniformly sample partitions
of k restricted to R in expected O(n16) time.

3.3 Sampling Using Log-concavity When more is
known about the stationary distribution π, specifically
the sequence {|Ωi|}∞i=0, we can typically improve the
bounds on the running time of our algorithm. In par-
ticular, we show that we can sample unrestricted inte-
ger partitions in expected O(n9/4) time. Our primary
techniques involve using a compressed representation of
partitions and using log-concavity to show strong prob-
ability concentration around partitions of the desired
size. These techniques extend to a variety of settings
where log-concavity or probability concentration can be
shown.

To sample integer partitions of n, we set the bias pa-
rameter λn = p(n− 1)/p(n) to force the stationary dis-
tribution to concentrate at n. The sequence {p(k)}∞k=26

is log-concave [?, ?], so it follows that the sequence
{p(k)λkn}∞k=26 is, too. Log-concave sequences of posi-
tive terms are unimodal, which implies that the mode
of our stationary distribution is at k = n. Moreover,
we show how log-concavity gives exponential decay on
both sides of the mode, and hence strong concentration.

We now argue that we need only consider Young
diagrams that lie under the curve y = 2n/x to sample
partitions of n, as all Young diagrams with squares
above that curve must have more than 2n squares total.

Proposition 3.1. A Young diagram that lies under the
curve y = 2n/x can be stored in O(n1/2 log(n)) space.

Proof. For any square in the Young diagram, both of
its coordinates are not greater than

√
2n, for then it

would lie above y = 2n/x. We may record the height
of each column and the width of each row in the range
{0, 1, . . . , b

√
2nc − 1} to capture the position of every

square in the diagram. Therefore, we can represent the
diagram using exactly these 2b

√
2nc heights and widths.

Using the compressed representation in the previous
proposition, we see that there will not be more than
O(n1/2) possible transitions at any possible state, since
our algorithms adds or removes at most one square on
the upper boundary in each step. Note that we can
adapt this technique in the general case for any region
R that lies under the curve y = 2n/x.

Proposition 3.2. There are at most 4
√

2n potential
transitions for any Young diagram that lies under the
curve y = 2n/x.

Proof. Observe that since the squares in any row or
column must be connected, there are at most two valid
moves in any particular row or column. Therefore,
by Proposition ??, there are at most 4b

√
2nc possible

transitions from any such Young diagram.

We now shift our attention to bounding λn and
the consequences it has on both the mixing time of M
and the concentration of π. Hardy and Ramanujan [?]
gave the classical asymptotic formula for the partition
numbers

p(n) ∼ 1

4
√

3n
eπ
√

2n/3,

and we use related bounds given in [?] for the following
lemma. The proof is deferred to the next subsection.

Lemma 3.1. For all n ≥ 30, we have

1− 2√
n
< λn < 1− 1√

n
.

Theorem 3.3. The Markov chain M with bias λn
restricted to the region R bounded by the curve y = 2n/x
mixes in O(n3/2(log(ε−1) + n1/2)).

Proof. We modify Theorem ?? and its proof in [?]. In
this biased exclusion process, λ = λn, β = (1−λ)/(1+λ)
and α =

√
1/λ. By Proposition ??, there are at most

4
√

2n transitions from any state, so for n large enough

τ(ε) ≤ 8
√

2n

β2

[
log
(
ε−1
)

+ log (diam (Ω))
]
,

where diam(Ω) is the maximum length path between
any two states, as defined in [?]. Therefore, we have
diam(Ω) ≤ |R|α2n and |R| ≤ 2nH2n ≤ 2n(log(2n) + 1),
so diam(Ω) ≤ 2n(log(2n)+1)α2n = 2n(log(2n)+1)λ−n.
By Lemma ?? and the bound 1 + x ≤ ex, for all x ∈ R,

log
(
λ−n

)
≤ log

((
1 +

2√
n− 2

)n)
≤ 3
√
n,

for n sufficiently large. We have 1/β ≤ 2
√
n − 1 by

Lemma ??. Therefore, τ(ε) = O(n3/2(log(ε−1)+n1/2)).

Another key observation we make to generate par-
titions of n more efficiently is to salvage samples larger
than n instead of rejecting them, while preserving uni-
formity on the distribution Ωn. For any k ≥ 0, consider
the function fk : Ωn → Ωn+k that maps a partition
σ = (σ1, σ2, . . . , σm) to fk(σ) = (σ1 + k, σ2, . . . , σm).



Note that σ1 ≥ σ2 ≥ · · · ≥ σm since σ is a Young di-
agram. Clearly fk is injective, so we can consider the
inverse map f−1

k ((ρ1, ρ2, . . . , ρ`)) that subtracts k from
ρ1 if ρ1− k ≥ ρ2, and is invalid otherwise. Then, define
g : Ω≥n → Ωn ∪ {0} as

g((ρ1, ρ2, . . . , ρ`)) =

{
(ρ1 − k, ρ2, . . . , ρ`) if (∗)
0 otherwise,

where condition (∗) is ρ1 + ρ2 + · · · + ρ` = n + k and
ρ1 − k ≥ ρ2. The following lemma, whose proof is
deferred to the next subsection, uses the log-concavity
of the partition numbers to give a strong lower bound
on the success of the map g.

Lemma 3.2. Let σ be a random Young diagram from
the stationary distribution of M, and let g be the
function defined above. Then for all n sufficiently large,
Pr[g(σ) generates a partition of n] ≥ 1/160n1/4.

Assembling the ideas in this section, we now for-
mally present our Markov chain Monte Carlo algorithm
for generating partitions of n uniformly at random.

Algorithm for Sampling Integer Partitions

Repeat until success:

• Sample σ ∈ Ω using M.

• If n ≤ |σ| ≤ 2n and g(σ) 6= 0, return g(σ).

Note that we restrict |σ| ≤ 2n instead of |σ| ≤ 2n log(n)
so that g maps to Ωn uniformly. All partitions of
2n are elements of Ω2n, but the same is not true
for larger partitions since the bounding region R is
the curve y = 2n/x. Lastly, recall that coupling
from the past can be used efficiently in this setting to
generate perfectly uniform samples, because the natural
coupling is monotone and there is a single minimum and
maximum configuration [?].

Theorem 3.4. Our Markov chain Monte Carlo algo-
rithm for generating a uniformly random partition of n
runs in expected O(n9/4) time and O(n1/2 log(n)) space.

Proof. The proof directly follows from Proposition ??,
Lemma ??, and Theorem ??.

3.4 Proofs of Lemma ?? and Lemma ?? We
prove Lemma ?? using bounds for p(n) given in [?].
Let µ(n) = µn = π

6

√
24n− 1 and

T (n) =

√
12

24n− 1

[(
1− 1

µn

)
eµn +

(−1)n√
2
eµn/2

]
.

The function T (n) is the sum of the three largest terms
in the Hardy-Ramanujan formula, and the explicit error

bounds in [?] that we use were first proved by Lehmer
[?]. We only prove upper bounds in the following two
proofs, as the lower bounds are proved similarly.

Lemma 3.3. For all n ≥ 2, we have∣∣∣∣∣p(n)−
√

12

24n− 1

(
1− 1

µn

)
eµn

∣∣∣∣∣ < 1 + eµn/2.

Proof. By Lemma 2.3 and Proposition 2.4 in [?],

p(n) < T (n) + 1 +
16

µ3
n

eµn/2

<

√
12

24n− 1

(
1− 1

µn

)
eµn + 1 + eµn/2.

Proof of Lemma ??. By Lemma ??,

λn <
1 + eµn−1/2 +

√
12

24(n−1)−1

(
1− 1

µn−1

)
eµn−1

−
(
1 + eµn/2

)
+
√

12
24n−1

(
1− 1

µn

)
eµn

=
eµn−1

(
e−µn−1 + e−µn−1/2 +

√
12

24(n−1)−1

(
1− 1

µn−1

))
eµn

(
−
(
e−µn + e−µn/2

)
+
√

12
24n−1

(
1− 1

µn

)) ,

for all n ≥ 14, because the lower bound for p(n) is
initially negative. We have

e−µn + e−µn/2 <
1

n

( √
12

24n− 1

(
1− 1

µn

))
,

for all n ≥ 65, so it follows that

λn <
eµn−1

eµn


(

1 + 1
n−1

) √
12

24(n−1)−1

(
1− 1

µn−1

)
(
1− 1

n

) √
12

24n−1

(
1− 1

µn

)


=
eµn−1

eµn

(
n

n− 1

)2(
µ3
n (µn−1 − 1)

µ3
n−1 (µn − 1)

)
,

for all n ≥ 2. Observe that µn−1 − µn < − π√
6n

and

µ3
n (µn−1 − 1)

µ3
n−1 (µn − 1)

<
n

n− 1
,

for all n ≥ 2. Using ex ≤ 1 + x+ x2/2, for all x ≤ 0,

λn <
eµn−1

eµn

(
n

n− 1

)3

< e
− π√

6n

(
n

n− 1

)3

≤
(

1− π√
6n

+
π2

12n

)(
n

n− 1

)3

< 1− 1√
n
,

where the final inequality is true for all n ≥ 160. When
30 ≤ n < 160, we verify the claim numerically.



Now we prove Lemma ?? by showing that the trun-
cation scheme g(σ) succeeds with sufficient probability.
By Hardy-Ramanujan formula, we have that for any
constant c > 0 and n sufficiently large,

1− c
4
√

3n
eπ
√

2n/3 ≤ p(n) ≤ 1 + c

4
√

3n
eπ
√

2n/3.

Letting λ = λn, the Hardy-Ramanujan formula implies
that for all n ≥ 20,

e−πk/
√

6n ≤ λk ≤ ek/n−πk/
√

6n.

Lemma 3.4. Let Zn be the normalizing constant of the
desired distribution. Then we have Zn < 40n3/4λnp(n),
for all n sufficiently large.

Proof. Clearly Zn ≤
∑∞
k=0 p(k)λk. We further know

that f(k) = p(k)λk is unimodal with a maximum at
k = n. By the log-concavity of {f(k)}∞k=26, we have

f(n+ k)

f(n)
≥ f(n+ 2k)

f(n+ k)
and

f(n− k)

f(n)
≥ f(n− 2k)

f(n− k)
,

for all k ≥ 1. Therefore, we can bound Zn as

Zn ≤ kf(n)

 1

1− f(n+k)
f(n)

+
1

1− f(n−k)
f(n)

 ,

for any k ≥ 1. Specifically, if both f(n + k)/f(n)
and f(n− k)/f(n) are at most some fixed constant less
than 1, then Zn = O(kf(n)). Using the bounds above,

f(k) = p(k)λk ≤ 1 + c

4
√

3k
ek/n−π(k−2

√
kn)/

√
6n

=
1 + c

4
√

3k
ek/n−π(

√
k−
√
n)

2
/
√

6n+π
√
n/6.

Letting n+ k = (
√
n+ n1/4)2, for n large enough,

f

((√
n+ n1/4

)2
)
≤ 1 + c

4
√

3n
e1.1−π/

√
6+π
√
n/6.

We can then bound the density value at (
√
n + n1/4)2

relative to the maximum by

f
((√

n+ n1/4
)2)

f(n)
≤

1+c
4
√

3n
e1.1−π/

√
6+π
√
n/6

1−c
4
√

3n
eπ
√

2n/3−π
√
n/6

=
1 + c

1− c
e1.1−π/

√
6.

Taking c ≤ 0.01, we have

f
((√

n+ n1/4
)2)

f(n)
≤ 1.01

0.99
e

1.1− π√
6 < 0.85.

Similarly, for n sufficiently large,

f
((√

n− n1/4
)2)

f(n)
< 0.85.

Therefore, we have Zn < 40n3/4λnp(n) using the fact
that k ≤ 3n3/4.

Proof of Lemma ??. We use Lemma ?? and Lemma ??
to bound the probability that g(σ) generates a partition
of n successfully. Therefore, we have

Pr[g(σ) generates a partition of n] =

n∑
k=0

λn+kp(n)

Zn

≥ 1

40n3/4

n∑
k=0

λk ≥ 1

40n3/4

n∑
k=0

(
1− 2√

n

)k
=

1

40n3/4
·
√
n

2

(
1−

(
1− 2√

n

)n+1
)
≥ 1

160n1/4
.

4 Sampling in Other Graded Posets

We demonstrate the versatility of using a Markov chain
on the Hasse diagram of a graded poset to sample
elements of fixed rank. When this chain is rapidly
mixing for all λt with t ∈ [R2], we can apply Boltzmann
sampling and Theorem ?? to generate approximately
uniform samples in polynomial time. Similar to region-
restricted integer partitions, analogous notions of self-
reducibility apply to restricted families of permutations
and lozenge tilings, so there exist fully polynomial-
time approximation schemes for these enumerations
problems because we can efficiently sample elements of
a given rank from their respective posets [?].

(a) (b) (c)

(d) (e) (f)

Figure 2: Random permutations with (a) 5, (b) 20,
(c) 40, (d) 60, (e) 80, (f) 95 percent of

(
100
2

)
inversions.



(a) (b)

(c) (d)

Figure 3: Random lozenge tilings with average height (a) 5, (b) 15, (c) 35, (d) 50 percent of 753.

4.1 Permutations with Fixed Rank In the first
case, we consider permutations of n elements with a
fixed number of inversions. The Hasse diagram in
this setting connects permutations that differ by one
adjacent transposition. This partial order is in bijection
with the weak Bruhat order on the symmetric group.
In the unbiased case (λ = 1), the nearest neighbor
Markov chain mixes in time Θ(n3 log(n)) [?]. With
constant bias the chain is known to converge in time
Θ(n2) [?, ?]. The number of permutations of n with k
inversions is known to be log-concave in k, so standard
Boltzmann sampling techniques can be used. However,
using our balanced bias method, we avoid the need for
bounds on the growth of inversion numbers in restricted
settings, such as permutations where at least i of the
first j elements are in the first half of the permutation.
Figure ?? illustrates the distribution of inversions of
random permutations in S100 sampled from various
ranks of the inversion poset as Rothe diagrams [?].

4.2 Lozenge Tilings with Fixed Average Height
Lozenge tilings are tilings of a triangular lattice region
with pairs of equilateral triangles that share an edge.
There is a well-studied height function that maps hexag-
onal lozenge tilings bijectively to plane partitions lying
in an n × n × n box (see, e.g., [?]), and it follows that
lozenge tilings with a fixed average height of k are pre-
cisely the plane partitions with volume k. The Markov
chain that adds or removes single cubes on the surface
of the plane partition (corresponding to rotating three
nested lozenges 180 degrees) is known to mix rapidly in
the unbiased case. Caputo et al. [?] studied the biased
version of this chain with a preference toward removing
cubes, and showed that this chain converges in O(n3)
time. Applying the balanced bias method, we can use
Boltzmann sampling to generate random lozenge tilings
with any target average height in polynomial time, as
shown in Figure ??.
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