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Abstract

Many local Markov chains based on Glauber dynamics are known to undergo a
phase transition as a parameter λ of the system is varied. For independent sets on
the 2-dimensional Cartesian lattice, the Gibbs distribution assigns each independent
set a weight λ|I|, and the Markov chain adds or deletes a single vertex at each step.
It is believed that there is a critical point λc ≈ 3.79 such that for λ < λc, local
dynamics converge in polynomial time while for λ > λc they require exponential
time. We introduce a new method for showing slow mixing based on the presence or
absence of certain topological obstructions in the independent sets. Using elementary
arguments, we show that Glauber dynamics will be slow for sampling independent sets
in 2 dimensions when λ ≥ 56.812, improving on the best known bound while using
simpler arguments. We also show they are slow on the torus when λ ≥ 50.5253.

1 Introduction

Glauber dynamics [9], or Markov chains employing local moves, can be very useful for
sampling from large combinatorial state spaces. We consider the behavior of these Markov
chains in the context of sampling independent sets on 2-dimensional lattice regions. Let
Λ be an n× n region on the Cartesian lattice and consider the set of independent sets Ω
on Λ. The Gibbs distribution on Ω depends on a parameter λ > 0, and is given by

π(I) = λ|I|/Z,

where |I| is the size of the independent set and Z =
∑

I∈Ω λ
|I| is the normalizing constant

known as the partition function. The Glauber dynamics connects pairs of configurations
with Hamming distance one, with transition probabilities defined so that the unique
stationary measure is the Gibbs distribution.

An interesting phenomenon occurs as the parameter λ is varied. When λ is sufficiently
small, the Gibbs distribution favors configurations that are sparse, and Glauber dynamics
will be efficient. However, when λ is sufficiently large, the distribution favors dense
configurations, and Glauber dynamics will take an exponential amount of time to converge
to equilibrium. The slow convergence arises because the Gibbs distribution is bimodal;
configurations that are extremely dense lie predominantly on the odd or the even lattice,
while configurations that are roughly half odd and half even have much smaller probability.
Since Glauber dynamics changes the relative numbers of even and odd vertices in an
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independent set by at most 1 in each step, the Markov chain has a bottleneck prohibiting
fast mixing.

This dichotomy in mixing times is closely related to whether there is a unique limiting
distribution for the Gibbs distribution on the infinite lattice, known as a Gibbs state.
It is believed there is a critical value λc such that for λ < λc there is a unique Gibbs
state, while for λ > λc, there are multiple Gibbs states. Starting with Dobrushin in
1968 [5], physicists have been developing techniques to systematically characterize these
two regimes. For independent sets on the two-dimensional lattice, λc is believed to be
approximately 3.79 [1].

The methods used to show fast and slow mixing of Markov chains build on methods
developed in statistical physics in the context of uniqueness of the Gibbs state. Luby and
Vigoda [11] showed that Glauber dynamics on independent sets is fast when λ ≤ 1 on
the 2-dimensional lattice and torus. Van den Berg and Steif [2] showed that mixing is
fast even for λ a little bigger than one by relating mixing times to rigorous bounds on the
critical point for site percolation on the grid. On the other hand, Borgs et al. [4] showed
that mixing of local Markov chains is slow on toroidal lattice regions for sufficiently large
λ. Although the bound on λ remains unpublished, the authors claim that their methods
yield slow mixing in two dimensions for λ > 80 [7, 16]. All of these bounds are far from
the believed critical point, which is also 3.79 in the context of mixing.

In this paper, we introduce a new method that shows slow mixing of local dynamics
and we demonstrate the method in the context of independent sets. The set up is largely
the same as previous approaches: we show that the state space can be partitioned into
three pieces, two exponentially larger than the third, such that moving from one of the
two large pieces to the other with steps of the Markov chain requires passing through the
small one in the middle. Such a partition can be used to show that the conductance of
the chain is exponentially small, thereby proving that the chain takes exponential time to
converge (see [15]). We employ a common technique known as a Peierls argument, used in
statistical physics to show non-uniqueness and in computer science to show slow mixing.
The Peierls argument constructs injections from one part of the state space to another in
a way that allows one to infer that one piece of the partition is exponentially smaller than
the other two.

What is new in our approach is the way in which we define the partition of the state
space Ω into three pieces. Traditionally this partition is based on the contours around
components of the independents sets whose boundaries lie on either the even or the odd
sublattice. Following this approach, if we take the middle (small) piece in the partition
to be the independent sets that are half even and half odd, then we are faced with the
daunting task of bounding the number of such configurations. Borgs et al. [4] built on a
sophisticated technique from statistical physics known as Pirigov-Sinai theory, as well as
powerful combinatorial tools for counting contours, in order to carry out their proofs of
slow mixing.

Here, instead, we characterize the three pieces of the partition using simple topological
obstructions in the independent sets. These are defined using the vertices that are
unoccupied in the independent set rather than the vertices that are present. In other
words, instead of looking at (potentially) multiple contours around components of points
in the independent set, we concentrate on a single connected feature in the complement
that must be present whenever an independent set is sufficiently sparse. We call this a



fault line, and, roughly speaking, it is a width 2 path from the top of Λ to the bottom
(or from the left side to the right) that is unoccupied (see Figure 2). The presence of a
fault line in an independent set characterizes our middle (small) piece ΩF in the partition
of the state space. If there is no fault line, then there must be monochromatic bridges in
each direction, i.e., paths of points in the independent set that lie solely on one of the two
sublattices and extend from one side of Λ to the other. We assign all the independent
sets that do not have a fault line to Ω0 or Ω1 depending on whether these monochromatic
bridges fall on the even or odd sublattices — indeed all the bridges in an independent set
must fall on the same sublattice if there is no fault line!

This characterization tremendously simplifies the proofs of slow mixing. Moreover, it
yields much stronger bounds on λ: we show that Glauber dynamics is slow on the two-
dimensional grid when λ < 56.812 and on the two-dimensional torus when λ < 50.5253,
resulting in an improvement over the best bounds to date while employing much simpler
arguments. While we demonstrate this approach only in the context of independent sets
on two-dimensional lattice regions, we note that the technique is far more general and is
likely to yield improved bounds for slow mixing in the context of other sampling problems.
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(a) The n× n lattice Λ (b) The graph H (c) A fault line F
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Figure 1: The graph H and a fault line F in HU (I), shown dotted in part (c).

2 Glauber dynamics on the 2-dimensional grid

Let Λ be an n × n region on the 2-dimensional Cartesian lattice and let Ω be the set of
independent sets on Λ. Our goal is to sample from Ω according to the Gibbs distribution
in which each I ∈ Ω is assigned probability

π(I) = λ|I|/Z,

where Z =
∑

I′∈Ω λ
|I′| is the normalizing constant.

Glauber dynamics is a local Markov chain that connects two independent sets if they
if they have Hamming distance one. The Metropolis probabilities [13] that force the chain
to converge to the Gibbs distribution are given by

P (I, I ′) =


1

2n min
(

1, λ|I
′|−|I|

)
, if I ⊕ I ′ = 1,

1−
∑

J∼I P (I, J), if I = I ′,

0, otherwise.

Our concern is determining how quickly this chain converges to its stationary
distribution, as this controls the efficiency of the sampling algorithm. For this we study



the mixing time τ , which measures the chain’s distance to stationarity in terms of the
total variation distance:

τ(ε) = min{t : ‖P t′ , π‖tv ≤ ε, ∀t′ ≥ t}.

The spectral gap of the transition matrix Gap(P ) = 1 − |λ1|, where λ0 = 1 ≥ |λ1| ≥
. . . , |λ|Ω|−1| are the eigenvalues of the transition matrix P , is known to be inversely related
to the mixing time. However, it typically prohibitively difficult to calculate.

Alternatively, the conductance provides another bound on the mixing time that can
be more amenable to analysis. Let

Φ = min
S∈Ω:π(S)≤1/2

∑
x∈S,y/∈S π(x)P (x, y)

π(S)
,

where π(S) =
∑

x∈S π(x) is the weight of the cutset S. The following theorem, due to
Jerrum and Sinclair [15] establishes the connection between small conductance and slow
mixing.

Theorem 2.1. For any Markov chain with conductance Φ,

Φ2

2
≤ Gap(P ) ≤ 2Φ.

Hence, exponentially small conductance implies that a chain requires exponential time to
converge to equilibrium.

Using this theorem, our goal now is to define a partition of the state space that has
very small conductance, thereby showing that Glauber dynamics mixes slowly. Section 2.1
introduces the notation that we will use to characterize this partition and in Section 2.2
we show how to use these definitions to bound the conductance.

2.1 Topological obstructions Given a lattice region Λ = (V,E), we first define a
graph on the edges of Λ whose adjacencies capture those pairs of edges that are incident
and perpendicular. In particular, let H = (VH , EH) be defined so that VH = E and
(e1, e2) ∈ EH iff e1 and e2 share one vertex and their other vertices have no coordinates
in common. In other words, if e1 = (u1, v1) and e2 = (u2, v2) where u1 = v1, then e1 ∼ e2

if v1 = v2 + α, where α = (±1,±1). Hence an edge e = (u, v) ∈ Λ corresponds to a vertex
VH with at most 4 neighbors in H, two arising from edges (in Λ) incident to u, and two
incident to v. In what follows it will sometimes be convenient to identify vertices e in
HU (I) with the midpoint of the corresponding edge in Λ. (See Figure 1.)

The graph H plays a crucial role in defining the features of independent sets that
determine the partition of the state space for our proof of slow mixing. Given an
independent set I ∈ Ω, we first focus on the set of unoccupied vertices I = V \I. Let HU (I)
be the induced subgraph of H whose vertices correspond to edges in Λ whose endpoints
are both unoccupied. A couple of observations about the graph HU (I) will be very useful
later on. If I is an independent set, then every vertex v in HU (I) that lies in the interior of
H must have degree at least two in HU (I). We can see this by noticing that such a vertex
corresponds to an edge e = (u, v) in Λ with u, v ∈ I. Therefore the two unit squares in Λ
bounded on one side by e each contain at most one vertex in I. In fact, there is at least
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Figure 2: Reducing the number of alternations on a spanning path.

one edge incident to v arising from unoccupied vertices in each of these two squares; we
make use of this fact in lemma 2.1.

The following definition begins our characterization of independent sets in Ω.

Definition 2.1. We say that HU (I) spans Λ if it contains a connected path p from the
top boundary of H to the bottom, or from the left side to the right side. We call p a
spanning path if it is minimal, meaning that it hits the top and bottom boundaries, or left
and right, exactly once.

Any spanning path p in HU (I) is a topological obstruction that partitions the grid Λ
into two regions, left and right if p is vertical, or bottom and top if p is horizontal. These
regions are the components formed when we remove all the edges in Λ corresponding to
vertices on p.

Consider superimposing the path p and the lattice Λ so that a vertex on p bisects its
corresponding edge. In some case it turns out that the path is only tangent to an edge e
in Λ, so that cutting e is not necessary to disconnect the lattice. If the path touches e but
does not cross it, then we say v is an alternation (see Figure 2, part (a)).

Notice that if p does not have any alternations, then it is nicely behaved in the sense
that p cuts edges in such a way that the vertices on either side of the path all lie on the
same sublattice of Λ. Similarly, if p has one alternation at v and we cut along p, then the
vertices of Λ that fall just to one side of p have one parity until v and then have the other
parity, with the complementary parities on the other side of the cut.

It turns out that the occurrence of an alternation on a spanning path might be
unavoidable. Imagine the top left and bottom right “quadrants” of a square lattice region
are densely packed with vertices on odd points, and the other two quadrants are densely
packed with vertices on even points, allowing some space between these as necessary to
ensure that this is an independent set. Then, by parity, any spanning path from the top
to the bottom must contain an alternation, and similarly for paths from the left to the
right of Λ. The following definition and lemma shows that this example is the worst case
possible if we are interested in minimizing the occurrence of alternations.

Definition 2.2. We call a spanning path a fault line if it has zero or one alternation
point(s).



Lemma 2.1. Let I be an independent set such that HU (I) has a spanning path. Then it
has a fault line.

Proof. Let I be an independent set such that HU (I) has at least one spanning path and
assume without loss of generality that it is vertical (since if it isn’t we could rotate the
square by 90o for the purpose of this argument). Just as every spanning path p partitions
Λ into two pieces, it also naturally partitions the vertices of H that are not on the path p
into two sets; we call these the left side L(p) and the right side R(p). There is a partial
order on vertical spanning paths, where we say p ≤ p′ if L(p) ⊆ L(p′). This partial order
gives rise to a natural lattice structure on paths in HU (I), and there is a vertical spanning
path p` that is minimal in the sense that L(p`) ⊆ L(p) for all vertical spanning paths p.
We call p` the leftmost spanning path.

It will be convenient to restrict our attention to “clean paths” that do not have two
consecutive alternations since we can always remove these. If a spanning path has such
a pair of alternation points, then there are four consecutive vertices v1, v2, v3, v4 on the
path (defining three consecutive edges) that correspond to the four sides of a square in
Λ. Removing these three edges and instead adding the edge (v1, v4) results in a path with
fewer alternation pairs, and we can iterate this process until this is a clean path. If we
preform this modification to the leftmost path p`, forming q`, then we do in fact get the
leftmost clean path (i.e., the clean path that is left of all other clean paths). To see this,
observe that q` > p` by the minimality of p`. If there were any paths that contained either
alternation point from a pair we removed but not the other, then p` again could not have
been minimal. Therefore q` is the leftmost clean path.

If q` does not contain alternation points, then we have identified a fault line, so we
assume that it contains at least one alternation. Let v be any such alternation point on q`.
Recall that for v to be an alternation, q` must hit v but not cross it (see Figure 2). This
means that if u and w are the two neighbors of v along this path, then u, v, w correspond
to three of the four edges around some unit square in Λ, and all four corners of the square
must be unoccupied in I. Let x be vertex in HU (I) corresponding to the remaining side
of this square. The point x cannot fall on the left side of q` or the new path q′ formed by
replacing v with x along q`, which is also clean, would violate the minimality condition of
q`. In addition, x cannot fall on the path q` because the presence of either edge (u, x) or
(w, x) would mean the path is not clean; likewise, if x lies on the path but is not adjacent
to u or w on p, then, adding the edge (u, x) and removing the segment of p between u
and x would result in a path left of q`. Therefore x lies to on right side of q`. In addition,
we already observed that every vertex v in HU (I) that lies in the interior of H has degree
at least two, and there must be one neighbor representing a side of each of the two unit
squares containing v. The two neighbors of v along the path q` both come from the same
square since v is an alternation, so v must have at least one additional neighbor y in
HU (I). If y were to lie on the path q` then we could shorten the path by connecting v and
y directly, and this new path would violate the minimality of q`. Therefore y lies on the
left side of q`.

We will now argue that there must be a path in HU (I) extending from v to the left
boundary of H. We defined q` so that v cannot lie on the top or bottom boundary of H.
Similarly, it cannot lie on the right boundary since this would prohibit x from lying to the
right of q`. So v either lies on the left boundary of H, in which case we have identified



a trivial path from v to this boundary, or it lies on the interior of H. Considering the
remaining case in which v lies in the interior, let z0 = v and let z1 = y be the neighbor of
v that lies to the left of q`. We construct the rest of this path recursively. Given a vertex
zi, we define zi+1 to be any neighbor of zi that is on the other side of zi from zi−1 (i.e.,
mapping back to the edges in Λ, the unit square including zi and zi+1 is distinct from the
one defined by zi and zi−1). This construction continues until we hit a point zi that is
on the boundary of H or the path q`. However, since q` is the leftmost vertical path, it
is impossible for zi to lie on the path q` or we would be able to find a new path which is
clean and to the left of q`; we simply replace the segment of q` from v to zi with this new
path we just constructed, removing any alternation pairs if necessary. Likewise, the other
potentially bad case in which zi lies on the top or bottom boundary, depicted in part (b)
of Figure 2, is also impossible if q` is the leftmost clean path. Therefore v = z0, z1, ..., zi
must be a path in HU (I) from v to the left boundary of H. Moreover, by construction
this path has no alternation points.

Our last step is constructing a second path from v to the right boundary of H, since
together these two paths from v to the boundary will form a spanning path. As before,
let x ∈ GU (I) be the final vertex in the square defined by the two edges (u, v) and (w, v)
on q` incident to v. We have already argued that x falls to the right of q`. Let qr be the
rightmost vertical spanning path that includes v but does not include x. The path q` is
an example of a such a path, so this is always defined. Because there is a lattice structure
on spanning paths, we know that qr ≥ q`, so qr must include vertices u and w. Replace v
with x along this path. Now x is an alternation point with v to the left of the path so, by a
construction similar to the one above, there must be a path from x to the right boundary
of H that does not contain any alternation points. Adding edges (v, u) and (u, x) to these
two paths we constructed yields a horizontal spanning path with at most one alternation
point at u, as depicted in part (c) of Figure 2. Hence this spanning path is indeed a fault
line in I.

The independent sets with spanning paths, and therefore fault lines, form one piece in
the partition of Ω that we will use to show slow mixing. To complete this characterization,
we now consider the remaining independent sets that do not have spanning paths.

In what follows, it will be convenient to refer to the two natural sublattices of the
bipartite lattice Λ = (V,E). Let V0 be the even vertices in Λ, i.e., points (x, y) such that
x+y is even, and let V1 be the odd vertices V \V0. The sublattices denoted Λ0 = (V0, E0)
and Λ1 = (V1, E1) connect vertices on V0 and V1 respectively that have distance exactly
two in Λ. Thus, each vertex in each of these sublattices has at most eight neighbors. We
use Λ2 = Λ0 ∪ Λ1 to represent the union of these two sublattice, when convenient, so
Λ2 has two distinct connected components, one on the odd vertices and one on the even
vertices. The boundary of Λ0 is the set of even vertices that are either on the boundary
of Λ or adjacent to an odd vertex on the boundary of Λ; we define the boundary of Λ1

similarly. Finally, the boundary of Λ2 refers to the union of these two boundaries and is
precisely the union of vertices on the boundary of Λ with those adjacent to a vertex on
the boundary of Λ.

Definition 2.3. A monochromatic bridge in an independent set I is a path q in Λ0 or
Λ1 that includes only occupied vertices and crosses from the left boundary to the right
boundary of Λ2, or from the top to the bottom. If it crosses from left to right we call it a



horizontal bridge and if it crosses from top to bottom, we call it a vertical bridge. We say
that I has a monochromatic cross if it contains both a horizontal and a vertical bridge.

It is straightforward to see that any independent set that has a horizontal bridge on one
sublattice cannot have a vertical bridge on the other sublattice. Therefore all bridges in
an independent set with a monochromatic cross must have the same parity.

Lemma 2.2. If I is an independent set then it has either a monochromatic cross or a fault
line, but not both.

Proof. It is fairly easy to see that if I has a fault line it cannot also have a monochromatic
cross. This is because every point along a fault corresponds to two unoccupied vertices in
L, one on each sublattice. Removing these vertices disconnects the left (or top) boundary
of Λ2 from the right (resp. bottom) boundary on each of the two sublattices.

For the remainder of the proof we concentrate on verifying the converse. Suppose I
does not have a monochromatic cross, and in particular assume without loss of generality
that I does not have a horizontal bridge. We will show that I must have a vertical spanning
path, and therefore a fault line.
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Figure 3: The shift operation, and the points falling “between” F and F ′.

Let ∂L be the set of vertices in I that lie on the left boundary of Λ or have a neighbor
on the left boundary of Λ (as these are precisely the boundary vertices of Λ2). Let C(v)
be the connected component in Λ2 containing v, together with all of the neighbors of these
vertices in Λ (i.e., lying in the other sublattice). Now define IL = ∪v∈∂LC(v) to be the
union of all of these components that contain at least one vertex in ∂L. We assume that I
does not have a horizontal bridge, so IL cannot contain any vertex on the right boundary
of Λ2.

We now restrict our attention to the complement of this set, IL, and let CR ⊆ IL be
the connected component in the induced subgraph on IL containing the right boundary
of Λ. Borrowing terminology from [8], we define the inner boundary of CR to be the set
of vertices in CR that have neighbors in IL, together with any vertices in CR that lie on



the left boundary of Λ. The outer boundary of CR are the vertices in IL with neighbors
in CR. The union of these two sets contains a connected path p in Λ extending from the
top of the lattice to the bottom that does not partition IL into two or more pieces, so p
roughly follows the boundary of IL ∪ ∂L. All of the vertices on p are unoccupied; if they
are on the inner boundary then they are the unoccupied neighbors of a component C(v)
and if they are on the outer boundary then they must be unoccupied or they would have
been part of a connected component C(v).

We can now infer that the edges on p all correspond to vertices in HU (I). Let Sp be
the possibly larger set of vertices in HU (I) that correspond to edges in Λ with at least one
endpoint on p. We will show that the set Sp must contain a vertical spanning path. For
the sake of contradiction, assume Sp is not connected. Since all edges along p give rise to
a vertex in Sp, if Sp is not connected then p must contain a set of three colinear vertices
v1, v2, v3 such that v2 has only occupied neighbors. If v2 were on the left boundary and
had an occupied neighbor, then it would have been in IL. It also cannot lie on any other
boundary since I does not have a horizontal bridge and the path p is a minimal path
hitting the top and bottom boundaries once. Finally, if v is on the interior of Λ and both
of its neighbors are occupied, then both lie in IL so v1, v2, v3 would disconnect IL, also a
contradiction. Therefore it must be that S is connected in HU (I). In addition it spans the
H from the top to the bottom since p spans Λ, so we can conclude that I contains a fault
line.

The following lemma finishes our characterization of independent sets. It confirms
that in order to move from a configuration with an even monochromatic cross to one with
an odd monochromatic cross using steps of the Markov chain, we must pass through a
configuration with a fault line.

Lemma 2.3. If I and I ′ are two indpendent sets on Λ such that I has a monochromatic
cross in Λ0 (consisting of even vertices) and I ′ has a monochromatic cross in Λ1 (consisting
of odd vertices), then P (I, I ′) = 0.

Proof. We first show that I 6= I ′ by proving that a configuration cannot simultaneously
contain a monochromatic cross of each parity. Suppose that I has both an odd and an
even monochromatic cross, and consider the even vertical bridge and the odd horiztonal
bridge. Since each bridge connects vertices at distance 2 apart in Λ, there must be a vertex
v on one of the bridges that is within distance 1 of a point w on the other bridge. But v
and w cannot both be in I since they are nearest neighbors, hence we have a contradiction.

Now consider the case where P (I, I ′) > 0 and I 6= I ′. We can assume without loss of
generality that I = I ′ ∪ {v}, for some v /∈ I. But if I has an odd cross in Λ0 and we add
a vertex to form I ′ containing an even cross, then I ′ must in fact have a monochromatic
cross of each parity. From the previous argument this is impossible, so I and I ′ must be
at distance at least two in the Markov chain P .

2.2 Mixing times The purpose of the previous section was to identify a useful partition
of the state space into three sets: Ω = Ω0 ∪ΩF ∪Ω1. The set Ω0 contains all independent
sets with an even monochromatic cross, Ω1 contains all independent sets with an odd
monochromatic cross, and ΩF is the set of independent sets containing a fault line. We



u u uu u uu u uu u uu u uu u u
u u uu u

u u

u u

e
e
eu

u

u

u
u
u
u

g g
g g
gggg
g

=⇒ =⇒

I ∈ ΩF The region to the right of
F is shifted

φF,J(I, r)
for r = (1, 1, ..., 1)

J�

�

�

�

F F F ′

Figure 4: The injective map φF,J .

have shown that these three sets form a pairwise disjoint partition of the state space,
and furthermore Ω0 and Ω1 are not connected by moves in P . Our last remaining step
is showing that π(ΩF ) is exponentially smaller than both π(Ω0) and π(Ω1). Clearly we
know that π(Ω0) = π(Ω1) by symmetry.

The key ingredient for bounding π(ΩF ) is an injective map from ΩF into Ω. In order
to define this injection, we need to understand a “shift operation” on elements of ΩF . Let
I ∈ ΩF be an independent set with a vertical fault line F . The fault line partitions the
vertices in Λ into two sets, Right(F ) and Left(F ), depending on the side of the fault on
which they lie. Recall that a fault has at most one alternation point, and that all other
points along the path in HU (I) bisect an edge in Λ. Define the length of a fault to be the
number of edges in Λ that are bisected by vertices in F . Notice that all fault lines with
zero alternation points have length N = n+ 2`, for some integer `, since they all have the
same parity. We will use this representation even if there is a single alternation point; this
will affect the analysis of what follows by only a constant factor.

Let I ′ = σ(I, F ) be the configuration formed by shifting Right(F ) one to the right.
We will not be concerned right now if some vertices “fall off” the right side of the region
Λ. Let F ′ = σ(F ) be the F shifted one to the right. We define the points that lie in
Right(F ) ∩ Left(F ′) to be the points that fall “in between” F and F ′. (See Figure 3.)

Note that F ′ also divides Λ into two pieces, Left(F ′) and Right(F ′). We say that
points in Right(F ) ∩ Left(F ′) are in between F and F ′.

Lemma 2.4. Let I be an independent set with a fault line F . Let I ′ = σ(F, I) and
F ′ = σ(F ) be defined as above. Then

1. F and F ′ are both fault lines in I ′.

2. If we form I ′′ by adding all the points that lie in between F and F ′ to I ′ (except the
unique odd point incident to the alternation point, if it exists), then I ′′ will be an
independent set.

3. If |F | = n+ 2`, then there are exactly n+ ` points that lie in between F and F ′.

Proof. 1. Points in Left(F ) are not shifted, so any of these adjacent to F remain
unoccupied after the shift. Points in Right(F ) ∩ Left(F ′) were unoccupied before the
shift, and therefore remain unoccupied when Right(F ) is shifted to the right. So F is a



fault in I ′. All points that are adjacent to F ′ are the image of points adjacent to F under
the shift, so these are all unoccupied in I ′ and F ′ is also a fault.

2. If u ∈ Right(F ) ∩ Left(F ′), then any occupied neighbor of u must be in Right(F ) and
has been shifted so that its preimage is now unoccupied. Moreover, only points in Left(F ′)
can be shifted to a neighbor of u, so these remain unoccupied after the shift. Therefore
all neighbors of u in I ′ are unoccupied. Finally, notice that if there are no alternations,
then all points in Right(F )∩Left(F ′) lie on the same sublattice, so they can all be added
simultaneously. If there is an alternation v ∈ HU (I), then the only two possible neighbors
in Right(F ) ∩ Left(F ′) with different parity are incident to the edge corresponding to v.
We do not add the odd one, so again I ′′ will be an independent set.

3. Consider any horizontal line across Λ. Each such line crosses F an odd number of
times. The point immediately to the right of the first crossing is in Right(F ) ∩ Left(F ′),
the next is in Left(F ), and this alternation continues. If the number of crossings is 2k+ 1,
then there are exactly k + 1 that are in Right(F ). Summing over the n rows gives n + `
points in Right(F ) ∩ Left(F ′), where n+ 2` is the total length of the fault F .

We are now ready to prove the main lemma we will use to show that π(ΩF ) is very
small. Let I ∈ ΩF be an independent set with a fault line, which we assume is vertical.
(If I only has horizontal fault lines, we can rotate Λ so that it is vertical for the purpose
of this argument; the net effect of ignoring these independent sets is at most a factor of 2
in the upper bound on π(ΩF ), and this will get incorporated into other constant factors.)
Let F = F (I) be the leftmost fault line. To span the n × n box, the length of the fault
must be at least 2n and it will have even length, so we write the length as 2n + 2`, for
some non-negative integer `.

Let Λ1,n be the 1 × n lattice representing the last column of Λ, and let J be any
independent set on Λ1,n. We further partition ΩF , into ∪F,JΩF,J , where I ∈ ΩF,J if it has
leftmost fault line F and is equal to J when restricted to the last column Λ1,n.

Lemma 2.5. Let F be a fault in Λ with length 2n + 2` and let δ equal the number of
alternation points on F (so δ = 0 or 1). Let J be an independent set on Λ1,n. With ΩF,J

defined as above, we have

π(ΩF,J) ≤ λ|J |(1 + λ)−(n+`−δ).

Proof. Let r ∈ {0, 1}n+`−δ be any binary vector of length n + ` and let |r| denote the
number of bits set to 1, where |r| ≤ n + `. The main step in this proof is to define an
injective map φF,J : ΩF × {0, 1}n+` → Ω such that, for any I ∈ ΩF ,

π(φF,J(I, r)) = π(I)λ−|J |+|r|.



Given this map, we have

1 = π(Ω) ≥
∑

I∈ΩF,J

∑
r∈{0,1}n+`−δ

π(φF,J(I, r))

=
∑

I∈ΩF,J

∑
r∈{0,1}n+`−δ

π(I)λ−|J |+|r|

=
∑

I∈ΩF,J

π(I)λ−|J |
∑

r∈{0,1}n+`−δ

λ|r|

=
∑

I∈ΩF,J

π(I)λ−|J |(1 + λ)n+`−δ

= λ−|J |(1 + λ)n+`−δ π(ΩF,J).

We define the injective map φF,J in stages, referring the reader to Figure 4. For any
I ∈ ΩF,J , we delete the last column (which is equal to J). Next, recalling that any fault
line partitions Λ into two pieces, we identify all points in I that fall on the right half
and shift these to the right by one using the map σ(I, F ). From Lemma 2.4 we know
that the number of points that fall between these two fault lines is n+ `, where n+ 2` is
the length of the fault. The final step defining the map is to insert new points into the
independent set along this strip between the two faults using the vector r, thereby adding
|r| new points. The new independent set φF,J(I, r) has |I| − |J | + |r| points, and hence
has weight π(I)λ−|J |+|r|

Lemma 2.6. Let Λ1,n be a 1× n strip, and let Ωr be the set of independent sets on Λ1,n.
Then ∑

J∈Ωr

λ|J | ≤ c1

(
1 +
√

1 + 4λ
2

)n
,

for some constant c1.

Proof. Let Si be the set of indpendent sets on Λ1,n and let Ti =
∑

J∈Si λ
|J |. Then

T0 = 1, T1 = 1 + λ, and
Ti = Ti−1 + λTi−2.

Solving this Fibonacci-like recurrence yields the lemma.

Theorem 2.2. Let Ω be the set of indpendent sets on the n × n lattice Λ weighted by
π(I) = λ|I|/Z,whereZ =

∑
I∈Ω λ

|I| is the normalizing constant. Let ΩF be the set of
independent sets on Λ with a fault line. Then

π(ΩF ) ≤ p(n) e−c2n,

for some polynomial p(n) and constant c2 > 0, whenever λ ≥ 56.812.

Proof. We will make use of the injective map φF,J : ΩF,J×{0, 1}N → Ω, where N = n+2`
is the length of the fault line. Our final ingredient will be to bound the number of fault
lines of length N . Notice that fault lines are self-avoiding walks in a lattice region that
has been rotated by 45 degrees. A crude upper bound for the number of walks of length



N is n3N , since we have n choices for our starting point along the top border of Λ and at
most 3 choices for the next point along the walk. There has been a lot of work deriving
better bounds on the number of self-avoiding walks, and the best known rigorous upper
bound for the so-called “connective constant” is µ < 2.6792, where the number of walks
is less than µN [14].

We now have

π(ΩF ) =
∑
F,J

π(ΩF,J)

≤
∑
F,J

λ|J |(1 + λ)−(n+`−δ)

≤ λ
∑
F

(1 + λ)−(n+`)
∑
J∈Ωr

λ|J |

≤ λc1

∑
F

(1 + λ)−(n+`)

(
1 +
√

1 + 4λ
2

)n

≤ λc1

n2∑
i=0

nµ2n+2i(1 + λ)−(n+i)

×
(

1 +
√

1 + 4λ
2

)n

= λc1n
∑
i

(
µ2

(1 + λ)

)i(
µ2(1 +

√
1 + 4λ)

2(1 + λ)

)n
,

where the third equality follows from Lemma 2.6. This means that we will have
π(ΩF ) ≤ p(n)e−c2n, for some polynomial p(n), if

1. (1 + λ) > µ2 and

2. 2(1 + λ) > µ(1 +
√

1 + 4λ).

Simple algebra reveals that the second condition is satisfied whenever λ2 +(2−µ2−µ4)λ+
(1 − µ2) > 0. Taking µ = 2.6792, we find that both of these conditions are met when
λ > 56.812.

We get the following corollary as an immediate consequence.

Corollary 2.1. Glauber dynamics for independent sets on the n × n grid Λ takes time
at least ec2n to mix, for some constant c2 > 0, when λ > 56.812.

Proof. We will bound the conductance by considering the cut S = Ω0. It is clear that



π(S) ≤ 1/2 since S = ΩF ∪ Ω1 and π(Ω0) = π(Ω1). Thus,

Φ ≤ ΦS =

∑
s∈Ω0,t∈ΩF

π(s)P (s, t)
π(Ω0)

=

∑
s∈Ω0,t∈ΩF

π(t)P (t, s)
π(Ω0)

≤
∑

t∈ΩF
π(t)

π(Ω0)

=
π(ΩF )
π(Ω0)

.

Given theorem 2.2, it is trivial to show that π(Ω) > 1/3, thereby establishing that the
conductance is exponentially small. It follows from theorems 2.1 that Glauber dynamics
takes exponential time to converge.

Remark: Note that the only part of the calculations leading to the proof of Theorem 2.2
that builds on nontrivial bounds is the estimate µ < 2.6792. Using the trivial bound of
µ ≤ 3 instead, our result becomes completely self-contained, showing instead that Glauber
dynamics is slowly mixing when λ > 10.1962.

3 Glauber dynamics on the 2-d torus

Let n be even, and let Λ̂ = Z/n × Z/n be the n × n lattice region Λ with toroidal
boundary conditions. We take Ω̂ to be the set of independent sets on Λ̂ and π̂ to be the
Gibbs distribution. As before, we consider Glauber dynamics that connect configurations
with Hamming distance one.

Most of the definitions are analogous to the grid case, only now we do not have to
worry about alternations at all. Given I, we define HU (I) as before by including edges
whose endpoints are unoccupied in I.

Definition 3.1. (1) We say I has a spanning cycle if there is a non-contractable cycle
in HU (I). The independent set I has a fault F = (F1, F2) if there are two vertex disjoint
spanning cycles F1 and F2 that do not have alternation points. (By parity, if there is one
there must be two.)

We say I has a monochromatic cross if there are two cycles in Λ̂2 with different winding
numbers, where Λ̂2 is the graph on the even (or odd) sublattice of Λ̂ that connects points
at distance 2.

We now partition Ω̂ into Ω̂ = Ω̂0 ∪ Ω̂F ∪ Ω̂1, where Ω̂0 and Ω̂1 are the sets that have
a monochromatic cross of the appropriate parity and Ω̂F is the set of configurations that
have a fault. It is not difficult to show that these three sets form a partition of the state
space and that it is impossible to move from Ω̂0 to Ω̂1 using steps of the Markov chain
without passing through Ω̂F . We defer the details for the final version.

In order to show slow mixing of Glauber dynamics, it is now enough to show that
π̂(Ω̂F ) is exponentially smaller than π̂(Ω̂0) and π̂(Ω̂1). Note that if F = (F1, F2) is a fault,
then each of F1 and F2 must have at least 2n steps, and each path has even length, so the
total length can be written as 4n+ 2` for some non-negative integer `.



Lemma 3.1. Let I be an independent set on Λ2 and let F = (F1, F2) be a fault in I with
total length 4n+ 2`. Let Ω̂F be the configurations in Ω̂F with “first” fault F . Then

π(Ω̂F ) ≤ (1 + λ)−(n+`).

Proof. We define an injection φF : Ω̂F × {0, 1}n+` ↪→ Ω so that

π̂(φF (I, r)) = π̂(I)λ|r|.

The injection is formed by cutting the torus Λ2 along F1 and F2 and shifting one of the
two connected pieces in any direction by one unit. There will be exactly n+ ` unoccupied
points near F that are guaranteed to have only unoccupied neighbors. We add a subset
of the vertices in this set to I according to bits that are one in the vector r.

Given this map, we have

1 = π̂(Ω̂) ≥
∑
I∈bΩF

∑
r∈{0,1}n+`

π̂(φF (I, r))

=
∑
I∈bΩF

π̂(I)
∑

r∈{0,1}n+`

λ|r|

= π̂(Ω̂F ) (1 + λ)n+`.

Theorem 3.1. Let Ω̂ be the set of independent sets on Λ2 weighted by π̂(I) = λ|I|/Z,
where Z =

∑
I∈bΩ λ|I| is the normalizing constant. Let ΩF be the set of independent sets

on Λ2 with a fault. Then
π̂(ΩF ) ≤ p(n) e−c3n,

for some polynomial p(n) and constant c3 > 0, whenever λ ≥ 50.5253.

Proof. Summing over possible locations for the two faults F1 and F2 and appealing to
Lemma 3.1, we have

π̂(Ω̂F ) = 2
∑
F

π̂(Ω̂F )

≤ 2
∑
F

(1 + λ)−(n+`)

≤ 2
(n2−2n)/2∑

i=0

(
n

2

)
µ4n+2i(1 + λ)−(n+i)

< n2
∑
i

(
µ4

(1 + λ)

)n(
µ2

(1 + λ)

)i
.

Hence, we have π(ΩF ) ≤ p(n) e−c3n for some polynomial p(n) and constant c3 < 0
whenever (1 + λ) ≥ µ2. Taking the known bound µ < 2.6792 gives λ ≥ 50.5253.

Combining Theorems 2.1 and 3.1, we get the following corollary as an immediate
consequence.



Corollary 3.1. Glauber dynamics on independent sets on the n×n torus Λ2 takes time
at least ec3n to mix, for some constant c3 > 0, when λ ≥ 50.5253.
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