
Combinatorics, Probability and Computing (2020), 29, pp. 672–697
doi:10.1017/S0963548320000188

ARTICLE

Sampling biased monotonic surfaces using exponential
metrics†

Sam Greenberg1,‡, Dana Randall2 and Amanda Pascoe Streib3∗

1Department of Defense, Arlington, VA, USA, 2School of Computer Science, Georgia Institute of Technology, Atlanta,
GA 30332, USA and 3Center for Computing Sciences, Bowie, MD 20715, USA
∗Corresponding author. Email: amanda.streib@gmail.com

(Received 3 November 2017; revised 19 February 2020; accepted 15 March 2020; first published online 30 June 2020)

Abstract
Monotonic surfaces spanning finite regions of Zd arise in many contexts, including DNA-based self-
assembly, card-shuffling and lozenge tilings. One method that has been used to uniformly generate these
surfaces is a Markov chain that iteratively adds or removes a single cube below the surface during a step.
We consider a biased version of the chain, where we aremore likely to add a cube than to remove it, thereby
favouring surfaces that are ‘higher’ or have more cubes below it. We prove that the chain is rapidly mixing
for any uniform bias in Z

2 and for bias λ> d in Z
d when d> 2. In Z

2 we match the optimal mixing time
achieved by Benjamini, Berger, Hoffman and Mossel in the context of biased card shuffling [2], but using
much simpler arguments. The proofs use a geometric distance function and a variant of path coupling in
order to handle distances that can be exponentially large. We also provide the first results in the case of
fluctuating bias, where the bias can vary depending on the location of the tile. We show that the chain con-
tinues to be rapidly mixing if the biases are close to uniform, but that the chain can converge exponentially
slowly in the general setting.
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1. Introduction
In this paper we are concerned with designing provably efficient algorithms for sampling from a
family of discrete monotonic surfaces, where we bias the distribution to favour surfaces that are
‘higher’. There is a long history of sampling from various families of monotonic surfaces because
many natural combinatorial problems are known to have an associated height function that can
be interpreted as a piecewise linear surface. In statistical physics, for example, domino tilings of
the Cartesian lattice and lozenge tilings of the triangular lattice are natural models of diatomic
molecules that have associated three-dimensional height functions. Similarly, states of the zero
temperature antiferromagnetic Potts model have a height function that maps 3-colourings in
Z
d−1 to surfaces in Z

d (see e.g. [13]). In each case, random sampling provides insight into the
thermodynamic properties of these physical systems. We focus on surfaces that are unions of
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(a) (b)

Figure 1. Monotonic surfaces in two and three dimensions.

(d − 1)-dimensional faces of the Cartesian lattice Zd and discuss extensions to these other natural
families at the end of the paper.

In two dimensions, monotonic surfaces, called staircase walks, are paths within a finite region
of the lattice Z2 that step to the right or down at every edge (see Figure 1(a)). Markov chains for
sampling staircase walks have been used to analyse card-shuffling algorithms by associating to a
permutation a set of staircase walks [2, 18]. One simpleMarkov chainMU for sampling uniformly
from the set of staircase walks, known as the ‘mountain / valley chain’, tries to invert a mountain
that moves to the right and then down to a valley that goes down and then to the right, or vice
versa. This chain has also been studied in the context of Dyck paths, or staircase walks that start
at (0, n), end at (n, 0) and do not cross below the line x+ y= n. Dyck paths are enumerated by
the nth Catalan number, and MU has proved useful for sampling from these and other Catalan
structures [15]. Wilson [18] gave tight bounds on the convergence rate of the mountain / valley
chain in the general case and in the case of Dyck paths by showing that in both cases it mixes in
time�(n3 log n).

Monotonic surfaces in Z
3 correspond bijectively with lozenge tilings of finite regions of the tri-

angular lattice [13]. A lozenge tiling is a covering of the lattice region with lozenges, or rhombuses
that cover two adjacent triangular faces. Thus a lozenge tiling is just a perfect matching (or dimer
covering) in the dual graph. When we look at a two-dimensional picture of a lozenge tiling, our
eyes automatically interpret the picture as a surface that is the upper envelope of a set of supported
cubes in Z

3 (see Figure 1(b)). We call this set of cubes σ a downset, since the set is downwardly
monotonic, and we let M(σ ) denote the monotonic surface formed by σ ; clearly these surfaces
and downsets are also in bijection.

A natural Markov chain for uniformly sampling lozenge tilings tries to identify three closely
packed lozenges forming a hexagon and rotates them by 180 degrees. Equivalently, we interpret
this move quite naturally using the bijection with surfaces and this move corresponds to perturb-
ing the surface locally by adding or removing a single cube, so this is precisely MU in Z

3. It is easy
to see that this chain connects the state space because, starting from any configuration, we can
remove cubes until we reach the ‘empty configuration’. This Markov chain is known to be rapidly
mixing, or quickly converging to equilibrium, so it is effective for efficiently generating samples
from close to the uniform distribution [8, 13, 16, 18].

There has also been interest in a biased version MB of this local Markov chain, where we are
more likely to add unit cubes than remove them. More precisely, if σ is formed from τ by the
addition of a single cube at position x̄, then λx̄ = P(τ , σ )/P(σ , τ ) is the bias at x̄. If λx̄ > 1 for
every x̄, then the stationary distribution favours configurations with more cubes.

Biased surfaces arise in nanoscience in the context of DNA-based self-assembly growth models
(see e.g. [10, 17, 19, 20]). In this setting, roughly ‘square’ shaped tiles are constructed from strands
of DNA so that each side of the tiles is single-stranded. Certain pairs of tiles are encouraged to
line up and attach along edges by encoding corresponding sides with complementary sequences of
base pairs. At appropriately chosen temperatures, these tiles will have a good chance of assembling
according to these prescribed rules, although they also have a chance of disassociating and break-
ing apart. Majumder, Sahu and Reif [14] consider a DNA self-assembly model that allows the left
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column and bottom row of a large square to first form, and then iteratively allows tiles to associate
with the large substrate if their left and bottom neighbours are already present (see Figure 1(a)).
Likewise, tiles can disassociate if their upper and right neighbours are not present, although disas-
sociation happens at a lower rate. The dynamics of this model are precisely captured by the local
Markov chain MB on two-dimensional monotonic surfaces and the chain must be rapidly mix-
ing if the substrate is to efficiently self-assemble, as required. The three-dimensional analogue has
also been used to study self-assembly, where tiles are now shaped like cubes (as in Figure 1(b)) and
complementary sequences are used to encourage specified pairs of faces to attach. The problem of
generating biased surfaces in two dimensions was independently studied in the context of biased
card shuffling, where we allow nearest-neighbour transpositions but favour putting each pair in
order at each step [2].

Previous work has focused primarily on the case where the biases are uniform; that is, λx̄ = λ for
every x̄, for which the stationary probability will be proportional to λ|σ |, where |σ | is the number
of unit cubes lying below the surface σ . In two dimensions, the uniform bias Markov chain is
equivalent to an asymmetric exclusion process, which Benjamini, Berger, Hoffman and Mossel
[2] studied in order to analyse a biased card shuffling algorithm that favours putting each pair
of cards in the lexicographically correct order. They give a bound of �(n2) on the mixing rate
of the biased chain on h×w regions of Z2 (where h+w= n) for any uniform bias λ> 1 that
is a constant. The bounds are optimal when h=w= n/2. The recent work of Levin and Peres
[12] extends our current results to the case when the bias has a dependence on n, the size of
the lattice. In addition, for the three-dimensional variant, Caputo, Martinelli and Toninelli [8]
introduced different methods to prove that the biased chain mixes in time Õ(n3) for any constant
bias λ, where the Õ notation suppresses logarithmic factors. In dimensions d> 3 almost nothing
is known, in either the biased or unbiased settings.

1.1 Our results
We make progress in several aspects of the problem of sampling biased surfaces. In two dimen-
sions we show that the biased chain is rapidly mixing for any uniform bias on a large family
of simply connected regions, even when the bias is arbitrarily close to one. Our proof is signifi-
cantly simpler than the arguments of [2], while achieving the same optimal bounds on the mixing
time for square regions when the bias is constant. In fact, we get optimal bounds for all rectan-
gular h×w regions. We also show that the chain is rapidly mixing for a large family of simply
connected d-dimensional lattice regions provided the bias λ� d2. The key observation underly-
ing these results is that there is an exponential metric on the state space such that the distance
between pairs of configurations is always decreasing in expectation. We then show how to modify
the Path Coupling Theorem to handle the case when the distances are exponentially large and
the expected change in distance is small during moves of the coupled chain. Previously, Berger,
Kenyon, Mossel and Peres [3] also used an exponential metric in the context of Glauber dynamics
on trees, appealing to the multiplicative version of the Path Coupling Theorem originally given
by Bubley and Dyer [5]. Our version of the Path Coupling Theorem makes explicit when we can
use exponential metrics to bound convergence times. We believe that this new theorem is of inde-
pendent interest, and it has already been used, for example, in the context of sampling lattice
triangulations [7] and rectangular dissections [6].

Last, we consider ‘fluctuating bias’, where the rate at which we add or remove a cube depends
on its location. This setting is quite natural for the self-assembly growth process where the tile
at a particular location may have site-specific sequences along its bounding edges. We show that
the fast convergence results still hold whenever the biases are close to uniform over locations. In
fact, in two dimensions, we show that the chain mixes in time O(n2) even if the biases are not
close together, as long as all of the biases are bounded away from one by a constant. However,
in the general setting we may see very different behaviour. We construct an example where the
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convergence rate requires exponential time starting at any initial configuration. In this example
every move occurs with at least inverse polynomial probability and at each location it is at least as
likely to add a cube as to remove. This demonstrates that the behaviour of these growth processes
is quite complicated in the case of fluctuating bias.

The remainder of the paper is organized as follows. In Section 3 we review the path coupling
method and introduce the modified Path Coupling Theorem, which is more appropriate when
distances are exponentially large. In Section 4 we formalize themodel andMarkov chain and show
how to bound the mixing time of the chain. In Section 5 we generalize these techniques to apply
to the setting of fluctuating bias. Finally, in the last section we discuss other related problems,
including sampling biased 3-colourings in Z

d.

2. The Markov chain
We can now formalize our definition of monotonic surfaces and the Markov chain that makes
local updates to these surfaces. Throughout the majority of the paper we focus on surfaces aris-
ing in the context of staircase walks, lozenge tilings and higher-dimensional surfaces that bound
downsets of unit boxes in Z

d. We discuss the generalizations to other families of monotone
surfaces such as those arising from 3-colourings in Z

d in the conclusions.
We start by first considering monotonic surfaces forming over simple h×w regions R in Z

2.
Later we will show that we can generalize these results to a family of simply connected regions in
Z
d that we call nice. The generalization is straightforward but requires some careful notation, so

for simplicity we postpone the details until Section 4.2. Recall that in Z
2 amonotonic surface in R

is a path starting and ending on the boundary of R that takes precisely h steps down and w steps
to the right and is composed entirely of edges with both endpoints in R. Such a path is illustrated
in Figure 1(a) when R is a 4× 4 square. Notice that any monotonic surface can be interpreted as
the upper boundary of a set of unit squares (which we call a downset), where each square in the
set is supported below and to the left by other squares in the set or the boundary of R. Let M be
the bijection between downsets σ and their corresponding monotonic surfaces M(σ ). We let the
state space�mon be the set of all downsets of R.

Now we can describe the Markov chain MB on �mon. For simplicity, we start by defining
the unbiased chain MU that converges to the uniform distribution over monotonic paths �mon.
Assume without loss of generality that h�w. As there are typically many fewer allowable moves
than the volume of R, we concentrate the selections to places where there is a possible move (in
this case, to the cubes to the left or right of all the ‘down’ edges). Start at an arbitrary downset, for
example let σ0 = RL, where RL is the empty downset, and repeat the following steps. If we are at a
downset σt at time t, pick an edgeD from among all the ‘down’ edges. Also, pick an integer b ∈ ±1
uniformly at random. If b= +1, add the cube to the right of the edge D to create σt+1, if this is a
valid downset. If b= −1, let σt+1 be obtained from σt by removing the cube to the left of D if this
is a valid downset. In all other cases, keep σt unchanged so that σt+1 = σt .

For technical reasons, we analyse a slower version M ′
U of this chain, which we describe next.

Start at an arbitrary downset, and repeat the following steps. If we are at a downset σt at time t,
pick a diagonalD that is parallel to the vector u∗ = (1, 1) and which intersects the monotonic path
at a vertex v. Also, pick an integer b ∈ ±1 uniformly at random. If b= +1, add the cube above and
to the right of the vertex v to create σt+1, if this is a valid downset. If b= −1, let σt+1 be obtained
from σt by removing the cube below and to the left of v if this is a valid downset. In all other cases,
keep σt unchanged so that σt+1 = σt .

The new Markov chain M ′
U does not add any valid transitions in comparison with MU , so the

effect of this change is to merely add an extra self-loop probability of a factor of (h+w)/h (i.e.
the number of diagonals divided by the number of down edges). Thus the mixing time of M ′

U is
(h+w)/h times the mixing time of MU . This can be a significant difference for very asymmetric
regions.
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Lemma 2.1. For any rectangular region R, the chains MU and M ′
U connect the state space�mon.

Proof. Let σ be any downset and let xmax be any cube in σ such that
∑

i xmax
i is maximized, if

it exists. We can always remove xmax and move to σ ′ = σ \ xmax without violating the downset
condition. Thus, from any valid downset σ we can always remove points and get to the ‘low-
est’ downset RL. Also, such a sequence of steps can be reversed to move from RL to any other
downset ρ.

Since we have shown that the moves of MU and M ′
U each connect the state space and all valid

(non-lazy) moves have the same transition probabilities, we can conclude from detailed balance
that the chains converge to the uniform distribution over downsets�mon.

We now define the biased Markov chain M ′
B by using Metropolis–Hastings transition proba-

bilities so that we converge to the desired distribution on biased surfaces. This new chain connects
the state space by the same argument as in Lemma 2.1. As in the uniform setting, MB is defined
similarly, but chooses a down edge instead of a diagonal at each step.

The biased Markov chain M ′
B

Starting at any σ0, iterate the following.

• Choose a diagonal D and a bit b ∈ {±1} as described above, with v the point of intersection
of d with the path σt .

• If b= +1, add the cube above and to the right of the vertex v to create σt+1, if this is a valid
downset.

• If b= −1, then with probability 1/λx let σt+1 be obtained from σt by removing the cube x
below and to the left of v if this is a valid downset.

• Otherwise let σt+1 = σt .

The biased Markov chains MB and M ′
B converge to the correct distribution on �mon by the

detailed balance condition.

3. Path coupling with exponential metrics
Path coupling is a standard technique used to bound mixing times, and although a naive applica-
tion of it is not sufficient here, we will see that with some new ideas, we can make it work. One
of the innovations behind our proofs is to introduce a new metric, and in some cases this metric
requires a modified Path Coupling Theorem. We present the background and our new theorem
here.

A coupling of a chain M is a Markov process on �×� such that the marginals each agree
with M and, once the two coordinates coalesce, they move in unison thereafter. The Coupling
Lemma bounds the total variation distance by the probability that the processes have coalesced
(see e.g. [1]).

Theorem 3.1. For any coupling, we have dtv(Pt(x, ·), π)� P(Xt �= Yt).

Definition For initial states x, y let
Tx,y =min{t : Xt = Yt | X0 = x, Y0 = y},

and define the coupling time to be T =maxx,y E[Tx,y].

The following lemma bounds the mixing time in terms of the coupling time of any coupling
(see e.g. [1]).
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(a) (b)

Figure 2. A pair of downsets σt (a) and ρt (b) where
ρt = σt ∪ {(2, 2)}.

Theorem 3.2. For any coupling with coupling time T, the mixing time satisfies τ (ε)� �Te ln ε−1�.

The goal, then, is to define a good coupling and show that the coupling time is polynomially
bounded. Path coupling is a convenient way of establishing this property by only considering a
subset of the joint state space�×�.

Theorem 3.3. Dyer and Greenhill [9]. Let ϕ be an integer-valued metric defined on �×� which
takes values in {0, . . . , B}. Let U be a subset of �×� such that for all (xt , yt) ∈�×� there
exists a path xt = z0, z1, . . . , zr = yt between xt and yt such that (zi, zi+1) ∈U for 0� i< r and∑r−1

i=0 ϕ(zi, zi+1)= ϕ(xt , yt). Let M be a Markov chain on � with transition matrix P. Consider
any random function f : �→� such that P[f (x)= y]= P(x, y) for all x, y ∈�, and define a cou-
pling of the Markov chain by (xt , yt)→ (xt+1, yt+1)= (f (xt), f (yt)). Suppose there exists β � 1 such
that

E[ϕ(xt+1, yt+1)]� βϕ(xt , yt),
for all (xt , yt) ∈U.

(1) If β < 1, then the mixing time satisfies

τ (ε)� ln (Bε−1)
1− β

.

(2) If β = 1, i.e. E[�ϕ(xt , yt)]=E[ϕ(xt+1, yt+1)]−E[ϕ(xt , yt)]� 0, for all xt , yt ∈U, then let
α > 0 satisfy P[ϕ(xt+1, yt+1) �= ϕ(xt , yt)] � α for all t such that xt �= yt. The mixing time of
M then satisfies

τ (ε)�
⌈
eB2

α

⌉
�ln ε−1�.

To understand why it is difficult to use coupling to prove that M ′
B is rapidly mixing, we first

examine the straightforward coupling of (σt , ρt) in the uniform bias case. The natural coupling
simply chooses the same diagonal D and bit b to generate both σt+1 and ρt+1. We first consider
a natural distance metric on �mon ×�mon called the Hamming distance, where h(σt , ρt)= |σt ⊕
ρt| (and⊕ is the symmetric difference). However, with this coupling and metric, we face difficulty
with even the simplest of pairs (σt , ρt).

Examine the pair of downsets in Figure 2. They differ on a single point, so h(σt , ρt)= 1. In
order to use the coupling theorem above, the expected distance E[h(σt+1, ρt+1)] must be at most
h(σt , ρt). For this pair of downsets, there are two moves that decrease that distance; ifM ′

B chooses
the diagonal D0 = {(0, 0)+ tu∗ : t� 0} and either b= +1 or b= −1, then (σt+1, ρt+1) is (ρt , ρt)
or (σt , σt), respectively. In either case, the distance between σt+1 and ρt+1 decreases by 1. There
are also two moves that increase the distance. If M ′

B chooses D= {(1, 0)+ tu∗ : t� 0} and b= +1
orD= {(0, 1)+ tu∗ : t� 0} and b= +1, then ρt+1 gains a new point ((3, 2) or (2, 3), respectively),
but σt+1 remains unchanged; no addition to σt of a vector along that diagonal leaves a valid
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(a) (b)

Figure 3. Path coupling with an exponential distance metric.

downset. With either of these choices, the distance between σt+1 and ρt+1 increases by 1. If λ= 1,
this is sufficient for coupling; the expected change in distance is 0. Unfortunately, for any λ> 1,
the two bad moves happen with probability 1, whereas the two good moves happen with proba-
bility 1 and 1/λ, respectively. Therefore the expected distance between the pair (σt , ρt) increases
after one step. In higher dimensions, the situation becomes even worse. For the pair of three-
dimensional downsets in Figure 6, there are three moves which increase the Hamming distance
and only two moves which decrease the distance. Of course, the three moves that increase the
distance succeed with probability 1, but one of the two moves which decreases the distance only
succeeds with probability 1/λ.

One promising remedy is to alter the distance metric. The bad cases described above involve
two downsets that differ on some point x, where the two moves which decrease the distance
involve removing x from σt ⊕ ρt , while the moves that increase the distance involve adding x+ ui
to σt ⊕ ρt for some i (where u1 = (1, 0) and u2 = (0, 1)). Since the bad moves happen with greater
probability than the good moves, we consider a distance metric that counts the distance between
two sets that differ on x as greater than the distance between two sets that differ on x+ ui.
Specifically, we give a different weight to each northwest–southeast diagonal, with the weights
smaller along higher diagonals (as in Figure 3(a)). This allows us to make the change in distance
non-positive in the above cases. Of course we must ensure that the difference in weight is not
too great. This is because the opposite situation might happen as well, where the two bad moves
involve removing x− ui for some i (as in Figure 3(b)); although this situation was not a problem
for the Hamming distance metric, if we assign too much weight to those bad moves, the change
in distance might be positive in this case. We find the following distance metric suffices. First, let
R be the h×w rectangle in Z

2 and define μ= √
λ� 1. Then for two downsets σ , ρ in R, let

φ(σ , ρ)=μw+h
∑

x∈σ⊕ρ
μ−‖x‖1, (3.1)

where ‖ · ‖1 is the L1-norm. Notice that all elements on each northwest–southeast diagonal have
the same L1-norm, and so this metric assigns a weight of μk for the kth diagonal from the top
right, as in Figure 4. Notice also that this definition ensures that the distance between any two
downsets is either 0 or at least 1. We present the proof that this metric is decreasing in expectation
at every step in Section 4.1.

Unfortunately, this definition of the distance metric presents new problems. First, the distances
might now take on non-integer values, while the Path Coupling Theorem requires integer-valued
metrics. In fact, if this restriction is merely removed, then the theorem is no longer true as the
distances might get smaller and smaller without coalescence occurring in a polynomial number
of steps. However, it is enough to add the additional condition that no pairs of configurations
can have a distance within the open interval (0, 1). The second, more serious concern is that the
maximum distance between two configurations can be exponentially large in n. If the distance
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Figure 4. Exponential distance metric.

only changes by a small (polynomial) amount in each step, then we cannot expect the distance to
be zero in only a polynomial number of steps. For example, for small λ we can find configurations
xt and yt so thatE[ϕ(xt+1, yt+1)]� (1− 2−n)ϕ(xt , yt), so the expected change is too small to apply
part (1) of Theorem 3.3. Moreover, the maximum distance B is very large, so we cannot get a good
bound on the mixing time using part (2) of Theorem 3.3 either.

The following modification of the Path Coupling Theorem allows us to handle cases when the
distances can be exponentially large and the expected change in distance is small (or even zero).
We show that it suffices to prove that the expected change in the absolute value of the distance
is proportional to the current distance, and with this condition the mixing time is polynomially
bounded. We apply this new theorem to the biased Markov chain M ′

B in Section 4.1.

Theorem 3.4. Let φ be a metric defined on �×� which takes finitely many values in {0} ∪
[1, B]. Let U be a subset of �×� such that for all (Xt , Yt) ∈�×� there exists a path Xt =
Z0, Z1, . . . , Zr = Yt such that (Zi, Zi+1) ∈U for 0� i< r and

∑r−1
i=0 φ(Zi, Zi+1)= φ(Xt , Yt).

LetM be a Markov chain on� and let (Xt , Yt) be a coupling ofM , with φt = φ(Xt , Yt). Suppose
there exists β � 1 such that, for all (Xt , Yt) ∈U,

E[φt+1]� βφt .

(1) If β < 1, then the mixing time satisfies

τ (ε)� ln (Bε−1)
1− β

.

(2) If, for all pairs (Xt , Yt) ∈�×� with Xt �= Yt, there exists κ , η ∈ (0, 1) such that P[|φt+1 −
φt|� ηφt]� κ for all t, then

τ (ε)=O
(
ln2 B ln ε−1

κ ln2 (1+ η)

)
.

There are two important differences between Theorem 3.3 and Theorem 3.4. The first is that
Theorem 3.4 allows for non-integer metrics (provided that for all X, Y ∈�, φ(X, Y)< 1 implies
φ(X, Y)= 0). This is a minor restructuring of the proof of Theorem 3.3 [13], and follows exactly
from their method. The second is that β may equal 1 while B is exponentially large; this is the case
in which both parts of Theorem 3.3 are insufficient to prove rapid mixing. This second case can
also be shown with a slight modification of the original proof, essentially replacing the original
distance φ(Xt , Yt) with ln (φ(Xt , Yt)). There are some technical details concerning the expectation
and variance of the logarithm, but the novelty of Theorem 3.4 is more in the statement of the
result than a new method of proof.

Note that including this case of β = 1 and exponential B requires a strong bound on the vari-
ance of φt . Without this bound on variance, Theorem 3.4 is not true; if φ0 = 2n and φt+1 = φt − 1
for all t� 1, then clearly it will take time exponential in n for φt = 0.
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In order to prove Theorem 3.4 permitting exponential metrics, we define a new variable ψ ,
which is essentially ln (φ). However, if we hope to prove rapid mixing by looking at ln (φ), we
need to bound the time to reach ln (0)= −∞, and the expected time could be unbounded. In
particular, in order to prove rapid mixing, we need the sequence {ψt} to have bounded differences.
The technical fix that we make relies on the assumption that φt /∈ (0, 1), so we need only bound
the time until we reach a negative value for ln (φt). Hence we define

ψt =
{
ln (φt) if φt > 0,

−2 ln 2 if φt = 0.

This means that ψt ∈ [− 2 ln 2, ln B]. The particular value at zero is chosen so that if the expected
distance φt is non-decreasing, then the expected value of ψt is non-decreasing, and that if the
variance of φt is at least a linear factor, then the variance of ψt is at least a constant.

The following Martingale Lemma follows the proof of Lemma 6 in [13].

Lemma 3.5. Given any bounded function φ(t), with φ(t)�M for some M ∈R and for all t� 0,
and a stopping value q, let T =min{t : φ(t)� q}. If, for all t� 0, we have E[φ(t + 1)− φ(t)]� 0
and E[(φ(t + 1)− φ(t))2]�Q for some Q> 0, then

E[T]� (M − q)2

Q
.

Proof. Define the process Z(t) := (M − φ(t))2 −Qt. Examining the expected difference between
Z(t) and Z(t + 1), we have

E[Z(t + 1)− Z(t)]=E[(M − φ(t + 1))2 − (M − φ(t))2]−Q

=E[− 2M(φ(t + 1)− φ(t))+ φ(t + 1)2 − φ(t)2]−Q

= 2(φ(t)−M)E[φ(t + 1)− φ(t)]+E[(φ(t + 1)− φ(t))2]−Q

� 0.

Also, since the differences Z(t + 1)− Z(t) are bounded, so {Z(t)} is a submartingale. T is a stop-
ping time for Z(t), so we may apply the Optional Stopping Theorem for submartingales to deduce
that

E[T]� 1
Q
[φ(0)(2M − φ(0))+ q2 − 2qM]

� (M − q)2

Q
.

Now we may prove the exponential metric theorem, Theorem 3.4.

Proof. (1) This case follows directly from the proof of Theorem 3.3, while allowing non-integer-
valued metrics. Since E[φt+1]� βφt for all t, it follows that

E[φ(Xt , Yt)]=E[φt]� βtφ0 = βtφ(X0, Y0)� βtB. (3.2)

Since φt is non-negative, takes values in {0} ∪ [1, B] and is equal to zero whenever Xt = Yt , we
have

E[φt]� P[φt � 1]= P[Xt �= Yt],

https://doi.org/10.1017/S0963548320000188 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000188


Combinatorics, Probability and Computing 681

by Markov’s inequality. Then, since by (3.2), E[φt]� ε whenever t� log (Bε−1)/ log (β−1), the
Coupling Lemma (Theorem 3.1) implies

τ (ε)� ln (Bε−1)/ ln (β−1).

Since ln (β−1)> 1− β , part (1) follows.

(2) For part (2), we will show that ψt satisfies the conditions of Lemma 3.5, with q= −2 ln 2,
M = ln B and Q= κ ln2 (1+ η). Note that this proves the theorem, since Theorem 3.2 implies
that

τ (ε)� �E[T]e ln ε−1��
⌈
(M − q)2

Q
e ln ε−1

⌉
=O

(
ln2 B ln ε−1

κ ln2 (1+ η)

)
.

First we show that E[φt+1 − φt]� 0 implies E[ψt+1 −ψt]� 0. We may assume φt �= 0. Given
the value of φt , let {r0, r1, r2, . . . , rN} be the possible values for φt+1, each occurring with
probability {ζ0, ζ1, ζ2, . . . , ζN}. That is, P[φt+1 = ri|φt]= ζi, with

∑N
i=0 ζi = 1. Assume r0 = 0.

Now

E[ψt+1|ψt]= ζ0(− 2 ln 2)+
N∑
i=1

ζi ln (ri)

= −(2 ln 2)ζ0 + ln
( N∏
i=1

rζii

)

�−(2 ln 2)ζ0 + (1− ζ0) ln
(∑N

i=1 ζiri
1− ζ0

)
� ln (E[φt+1|φt])− (2 ln 2)ζ0 − (1− ζ0) ln (1− ζ0)

� ln (E[φt+1|φt])
� ln φt
=ψt ,

where the first inequality is by the arithmetic–geometric mean inequality, and the third follows
from the fact that (1− ζ0) ln (1− ζ0)/ζ0 �−2 ln 2 for ζ0 � 0.

Next we prove that if there exist constants κ , η ∈ (0, 1) such that P[|φt+1 − φt|� ηφt]� κ for
φt �= 0, then

E[|ψt+1 −ψt|]� ( ln (1+ η))κ + ln 2P[φt+1 = 0].

Let ζ0 = P[φt+1 = 0]. Then

κ � P[|φt+1 − φt|� ηφt]= 1 · ζ0 + P[|φt+1 − φt|� ηφt|φt+1 �= 0](1− ζ0).

Now because, by definition, ψt+1 = ln (φt+1) when φt+1 �= 0, we have

P[|φt+1 − φt|� ηφt|φt+1 �= 0]

= P

[
φt+1
φt

− 1� η|φt+1 �= 0
]

+ P

[
φt+1
φt

− 1�−η|φt+1 �= 0
]

= P[ψt+1 −ψt � ln (1+ η)|φt+1 �= 0]+ P[ψt+1 −ψt � ln (1− η)|φt+1 �= 0]

� P[|ψt+1 −ψt|� ln (1+ η)|φt+1 �= 0].
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Since φt � 1, we have ψt � 0, so | − 2 ln 2−ψt|� 2 ln 2. Note that m := ln2 (1+ η)< ln2 (2),
since η < 1. This yields

E[(ψt+1 −ψt)2]= (− 2 ln 2−ψt)2ζ0 +
∑

�∈�,� �=0
( ln (�)− ln φt)2P[φt+1 = �]

� (2 ln 2)2ζ0 +mP[|ψt+1 −ψt|�√
m|φt+1 �= 0](1− ζ0)

� (2 ln 2)2ζ0 +m
(
κ − ζ0
1− ζ0

)
(1− ζ0)

= ((2 ln 2)2 −m)ζ0 +mκ

�mκ + 3ζ0 ln2 2.

Hence we have Q= κ ln2 (1+ η)<E[(ψt+1 −ψt)2], as desired.

4. Fast mixing of the uniform bias Markov chain
We start by looking at the biased Markov chain MB when the biases are uniform. We use the
exponential metric introduced in Section 3 to show that MB is rapidly mixing whenever λ� d2
for arbitrary dimension d, and for all λ> 1 when d = 2. In Section 4.3 we present a simple hitting
time argument that proves the biased chain converges in polynomial time, as long as theminimum
bias is at least d and the region is a d-dimensional hypercube. We conjecture that the chain is
rapidly mixing for all values of a uniform bias λ> 1 in all dimensions d� 2, but do not yet have a
proof for small values of λ in dimensions higher than two.

4.1 Exponential metric for the uniform bias chain
First, we use our exponential distance metric to analyse M ′

B. We show that in two dimensions,
the biased chain is rapidly mixing for any uniform bias, even when the bias is arbitrarily close
to one. Our proof is significantly simpler than the arguments in [2], while achieving the same
optimal bounds on the mixing time for square regions when the bias is constant. In fact, our
analysis extends the optimal bounds to all rectangular h×w regions of Z2. Specifically, we prove
the following theorem for rectangular regions.

Theorem 4.1. Let R be a rectangular h×w region in Z
2 with uniform bias λ� 1. Let χ =

λ−1/2 − 1.

(1) If χ > 0, then the mixing time of MB satisfies τ (ε)=O((hw/χ2)( ln λ+ ln ε−1)).
(2) If χ � 0, then τ (ε)=O(hw4 ln2 λ ln ε−1).

If λ> 1 is a constant, then part (1) of this theorem applies and gives a bound of O(n), where
n= hw is the area of the region. On the other hand, for λ very close to 1, part (2) provides a poly-
nomial bound on the mixing time. We prove similar bounds for all nice regions, to be defined in
Section 4.2; essentially, these regions are simply connected and have no holes. In higher dimen-
sions, we show that the chain is rapidly mixing on d-dimensional lattice regions provided the bias
λ� d2.

For clarity of explanation, we will first handle the simple case when R is a rectangular region
in Z

2. These ideas generalize easily to more complex regions and higher dimensions, but require
some extra terminology, which we define in Section 4.2.
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(a) (b)

Figure 5. Path coupling with an exponential distance metric. Two cases where σt = ρt ∪ {x}.

4.1.1 Rectangular regions in two dimensions

We return to the coupling introduced in Section 3 to bound the mixing time of M ′
B, proving

Theorem 4.1. The coupling of (σt , ρt) simply supplies the same diagonal D and bit b to both σt
and ρt . We let U be the set of pairs of downsets that differ on a single cube. However, instead of
the Hamming distance, we use the distance metric given in equation (3.1):

φ(σ , ρ)=μw+h
∑

x∈σ⊕ρ
μ−‖x‖1 ,

where μ= √
λ� 1. We will show that this distance metric satisfies non-negative contraction in

φt , which is one of the requirements for Theorem 3.4. However, before we can prove that the
distances decrease on average, we examine the moves which can increase the distance.

For a pair (σt , ρt) ∈U, there are two different ways the distance can increase in (σt+1, ρt+1). If
σt = ρt ∪ {x}, we can increase the distance by attempting to add a cube v that succeeds in σt but
fails in ρt , as in Figure 5(a). This occurs when v= x+ ui for some i, so v is ‘supported’ in σt but
not ρt . Notice that the distance metric φ gives these bad moves weight that isμ times smaller than
the weight of the two good moves (adding or removing x), counteracting their higher probability.
The other way to increase the distance between σt and ρt is to remove a v that succeeds in ρt but
not in σt . This occurs when v= x− ui for some i, as the move creates a valid downset in ρt but
not in σt , as in Figure 5(b). In this case, the distance metric φ gives these bad moves weight that is
μ times larger than the weight of the two good moves, but for small enough μ, they will still not
outweigh the good moves, since the bad moves are less likely to occur than the good moves in this
case. We may now prove Theorem 4.1.

Proof. Suppose without loss of generality that h�w. As described in Section 2, it is sufficient
to analyse M ′

B. We will show that the distance metric φ defined above satisfies the conditions of
the Path Coupling Theorem for exponential metrics, Theorem 3.4. First we want to show that the
expected change in φ is negative. There are at most two choices of (D, b) that can increase φt . We
claim that each of these has an expected increase of at most φt/

√
λ. To see this, consider a move

of the form v= x+ ui for some i. Then the increase in distance is (
√
λ)w+h−‖v‖1 = φt/

√
λ. If the

move is of the form v= x− ui for some i, then the increase in distance is (
√
λ)−‖v‖1 = φt

√
λ, and

the probability of performing the move is 1/λ. Therefore the expected increase is at most φt/
√
λ.

There are also two choices of (D, b) that decrease φt , corresponding to adding x and removing x.
These each decrease φt by φt , and succeed with probability 1 and 1/λ, respectively. Let α = h+w;
this is the number of choices of diagonals D. The expected change in distance satisfies

E[φt+1 − φt]�
1
2α

(
2 · φt√

λ
−

(
1+ 1

λ

)
φt

)
= φt

2α

(
2√
λ

− 1− 1
λ

)
�−φtχ

2

2α
.
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Next, we check the other conditions of Theorem 3.4. For arbitrary σ , ρ ∈�mon, if x ∈ σ ⊕ ρ

for some x, then φ(σ , ρ)�
√
λ
h+w−‖x‖1 � 1. Therefore, if φ(σ , ρ)< 1, φ(σ , ρ)= 0. Recall that U

is the set of pairs of downsets that differ on a single vector. For arbitrary σ , ρ ∈�mon, we can
connect σ to ρ by simply adding or removing the vectors in σ ⊕ ρ one by one, and φ(σ , ρ) is the
sum of the distances. Since the volume of R is n, there are at most n possible cubes in σ ⊕ ρ. Each
has weight at most μα , so the intermediate distances each contribute at most this amount to the
sum. Therefore φ(σ , ρ)� nλα/2 for all σ , ρ. Thus the B in Theorem 3.4 satisfies B� nλα/2, and
ln B=O( ln n+ α ln λ)=O(w ln λ).

We consider two cases. If χ > 0, then E[φt+1]� βφt , where β = 1− χ2/α. Thus, by
Theorem 3.4, we have that the mixing time of M ′

B is

τ ′(ε)=O(χ−2α(w ln λ+ ln ε−1))=O(αw/χ2( ln λ+ ln ε−1)).

Multiplying by h/α, we get that the mixing time of MB is τ (ε)=O(hw/χ2( ln λ+ ln ε−1)),
as desired. On the other hand, if λ− 1> 0, but less than any constant, then we get a better
result using part (2) of Theorem 3.4. For any pair of σ , ρ, M ′

B can always add a vector v∗ in
their difference that maximizes ‖v‖1. This would change φt by an additive μα−‖v∗‖1 . Moreover,
φt � nμα−‖v∗‖1 , so the change in φt is at least φt/n. The appropriate v∗ is chosen with proba-
bility at least 1/α and the appropriate b is chosen with probability 1/2 (and every p succeeds
when adding). Therefore there is a 1/(2α) chance of changing φt by φt/(2α), i.e. P(|φt+1 − φt|�
φt/(2α))� 1/(2α). Hence, in this case, the mixing time of M ′

B satisfies

τ ′(ε)=O
(

ln2 (B)
1/(2α) ln2 (1+ 1/α)

ln ε−1
)

=O(α3(w ln λ)2 ln ε−1)=O(w5 ln2 λ ln ε−1),

and therefore the mixing time of MB is τ (ε)=O(hw4 ln2 λ ln ε−1).

4.2 More complex regions and higher dimensions
The results of Section 4.1 extend to higher dimensions and more general regions. We need to be a
bit more formal, so we begin with several definitions.

Given a simply connected region R̂ in R
d that is a union of unit cubes on the integer lat-

tice, we associate to it a point set R= R̂∩Z
d. In this case we say that R is simply connected.

In three dimensions, a monotonic surface in R is the union of two-dimensional faces such that
any cross-section along an axis-aligned plane is a two-dimensional monotonic surface. Such a
surface is illustrated in Figure 1(b) when R is a 2× 2× 2 region. In general, given a hypercu-
bic region R⊂Z

d composed of unit hyper-cubes, a d-dimensional monotonic surface is a set of
(d − 1)-dimensional faces, such that any cross-section along an axis-aligned (d − 1)-dimensional
hyper-plane is a (d − 1)-dimensional monotonic surface.

We will restrict our focus to a family of simply connected regions that have favourable proper-
ties for the purposes of sampling monotonic surfaces. In order to define this family, we need a few
preliminaries.

Definition Let u∗ = (1, 1, . . . , 1) ∈Z
d. For v ∈Z

d, we define r̂(v)= {v+ ku∗ : k ∈R}, and we
define the ray r(v) to be the set

r(v)= r̂(v)
⋂

Z
d.

Definition A d-dimensional simply connected region R̂⊂R
d is nice if, for all v ∈ R̂, R̂

⋂
r̂(v) is

connected. We call its associated point set R a nice region.
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A nice region R̂ has no holes, and in particular all monotonic surfaces in R̂ are the upper
boundary of a subset of cubes in R̂. Note that all hyper-rectangular regions are nice.

Let ui be the unit vector in the ith direction. Given a nice region R, we let
RL = {v ∈ R : v− u∗ /∈ R}

be the lower envelope of the region.

Definition Let R⊂Z
d be a nice region. A downset is a subset σ ⊆ R, with RL ⊆ σ , such that for

any i, if v ∈ σ and v− ui ∈ R, then v− ui ∈ σ .

For a nice region R, we define the state space �mon to be the set of all downsets of R. We will
represent a downset by its upper boundary.

Definition Let R be any nice region and let σ be any downset of R. We say the upper boundary of
σ is ∂(σ )= {v ∈ σ : v+ u∗ /∈ σ }.

The upper boundary is a monotonic surface in bijection with the downset that defines it. It
is important to notice that for any downset σ and point v /∈ σ , if σ ∪ v is a valid downset, then
|∂(σ )| = |∂(σ ∪ v)|. This is because ∂(σ ∪ v)= ∂(σ )∪ {v} \ {v− u∗}. It follows that for any nice
region R, the size of the boundary of a valid downset is fixed. This observation motivates the
following definition, which will be convenient when we state themixing time of ourMarkov chain.

Definition The span of a nice region R is α = |∂(σ )| for any downset σ of R.

Suppose, for example, that R is an h× · · · × h region in Z
d. Then the span is α = dhd−1.

The Markov chain M ′
B operates as follows. Starting at an arbitrary downset, for example, let

σ0 = RL, where RL is the empty downset, and repeat the following steps. If we are at a downset σt at
time t, pick a point v ∈ ∂(σ ) and an integer b ∈ ±1 uniformly at random. If b= +1, let σt+1 = σt ∪
(v+ u∗) if this is a valid downset. If b= −1, let σt+1 = σt \ {v} if this is a valid downset; however,
in the biased case we will do this move with the appropriate Metropolis–Hastings probabilities. In
all other cases, keep σt unchanged so that σt+1 = σt .

The biased Markov chain M ′
B

Starting at any σ0, iterate the following.

• Choose (v, b, p) uniformly at random from ∂(σt)× {+1,−1} × (0, 1).
• If b= +1, let σt+1 = σ ∪ {v+ u∗} if it is a valid downset.
• If b= −1 and p� λv−1, let σt+1 = σ \ {v} if it is a valid downset.
• Otherwise let σt+1 = σt .

Observe that the chain M ′
B connects the state space. To see this, let σ be any downset and let

vmax be any point in σ such that
∑

i vmax
i is maximized. We can always remove vmax and move to

σ ′ = σ \ vmax without violating the downset condition. Thus, from any valid downset σ we can
always remove points and get to the ‘lowest’ downset RL. Also, such a sequence of steps can be
reversed to move from RL to any other downset ρ. Moreover, the biased Markov chains MB and
M ′

B converge to the correct distribution on�mon by the detailed balance condition.
The following bounds the mixing rate of the chain MB when the bias is large enough.

Theorem 4.2. Let R be any nice d-dimensional region with volume n, span α, and uniform bias λ.
Let λ̂= (d + √

d2 − 4)/2. Define χ = λ̂− λ−1/2.
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(a) (b)

Figure 6. A pair of downsets σt (a) and ρt (b) where
ρt = σt ∪ {(0, 0, 0)}. These downsets differ on x= (0, 0, 0), where
MB can increase φt by adding x+ ui , for any i.

(1) If χ > 0, then the mixing time of M ′
B satisfies τ ′(ε)=O(χ−2α(α ln λ+ ln n+ ln ε−1)).

(2) If χ � 0, then τ (ε)=O(n2α(α ln λ+ ln n)2 ln ε−1).

In particular, if λ� d2 then χ2 � 1/d2, so τ (ε)=O(d2α(α ln λ+ ln n+ ln ε−1)).

Note that for all nice regions, α < n, so the mixing time ofMB is always polynomially bounded
for the given biases. When R is an h× h× · · · × h hypercube, the span of R is α = dhd−1. Hence
we get τ ′(ε)=O(d2h2(d−1) ln ε−1) whenever 1/χ is a constant.

Next we define the exponential metric we need to prove Theorem 4.2. Let x0 be any vector
in R with maximal L1-norm. We return to the coupling of (σt , ρt) that simply supplies the same
(v∗, b, p) to both σt and ρt . Again, we let U be the set of downsets that differ on a single cube and
we use the distance metric

φ(σ , ρ)=
∑

x∈σ⊕ρ
(
√
λ)‖x0‖1−‖x‖1 ,

where x0 is any vector in R with maximal L1-norm. We will show that this distance metric satis-
fies non-negative contraction in φt , which is one of the requirements for Theorem 3.4. First, we
examine the moves which can increase the distance.

For a pair (σt , ρt) ∈U, there are two different ways the distance can increase in (σt+1, ρt+1). If
σt = ρt ∪ {x}, we can increase the distance by attempting to add a v that succeeds in σt but fails
in ρt . This occurs when v= x+ ui for some i, so v is ‘supported’ in σt but not ρt . The other way
to increase the distance between σt and ρt is to remove a v that succeeds in ρt but not in σt . This
occurs when v= x− ui for some i, as the move creates a valid downset in ρ but not in σ . The
following lemma bounds the number of such increases in distance.

Lemma 4.3. For σt = ρt ∪ {x}, there are at most d choices of (v∗, b) such that φt increases.

Proof. We prove the lemma by claiming that for dimensions i �= j, if MB can increase the dis-
tance by choosing v= x+ ui, then it cannot increase the distance by choosing v= x− uj. This
follows from a proof by contradiction. If MB can increase the distance with x+ ui, then it is
because ρt+1 = ρt ∪ {x+ ui} is a valid downset. That means x+ ui − uj ∈ ρt . On the other hand,
if MB can increase the distance with x− uj, it is because σt+1 = σt\{x− uj} is a valid downset,
which is only true if x− uj + ui �∈ σt . But this contradicts the fact σt ⊕ ρt = {x}, justifying our
claim.

This implies that, to increase the distance, MB may add vectors of the form x+ ui for various
dimensions i as in Figure 6, or it may remove vectors of the form x− ui for various dimensions
i, or it may add x+ ui and remove x− ui in a single dimension i, as in Figure 7. In each of these
cases, there are at most d choices of v that increase the distance.
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(a) (b)

Figure 7. Downsets that differ on x, whereMB increases φt by
adding the vector above x or removing the vector below x.

Wemay now prove Theorem 4.2.

Proof of Theorem 4.2. We will show that the distance metric φ defined above satisfies the condi-
tions of the Path Coupling Theorem for exponential metrics, Theorem 3.4. First we want to show
that the expected change in φ is negative. By Lemma 4.3, there are at most d choices of (v∗, b)
that can increase φt . We claim that each of these has an expected increase of at most φt/

√
λ.

To see this, consider a move of the form v= x+ ui for some i. Then the increase in distance is
(
√
λ)‖x0‖1−‖v‖1 = φt/

√
λ. If the move is of the form v= x− ui for some i, then the increase in

distance is λ−‖v‖1/2 = φt
√
λ, but the chance of choosing an appropriate p is 1/λ. Therefore the

expected increase is at most φt/
√
λ.

There are also two choices of (v∗, b) that decrease φt , corresponding to adding x and remov-
ing x. These each decrease φt by φt , and succeed with probability 1 and 1/λ, respectively. Therefore
the expected change in distance satisfies

E[φt+1 − φt]�
1
2α

(
d · φt√

λ
−

(
1+ 1

λ

)
φt

)
= φt

2α

(
d√
λ

− 1− 1
λ

)

= − φt
2α

(
1√
λ

− d + √
d2 − 4
2

)(
1√
λ

− d − √
d2 − 4
2

)
�−φtχ

2

2α
.

Next we check the other conditions of Theorem 3.4. For arbitrary σ , ρ ∈�mon, if x ∈ σ ⊕ ρ for
some x, then φ(σ , ρ)�

√
λ

‖x0‖1−‖x‖1 � 1. Therefore, if φ(σ , ρ)< 1, φ(σ , ρ)= 0. Recall U is the
set of pairs of downsets that differ on a single vector. For arbitrary σ , ρ ∈�mon, we can connect
σ to ρ by simply adding or removing the vectors in σ ⊕ ρ one by one, and φ(σ , ρ) is the sum of
the distances. Since the volume of R̂ is n, there are at most n possible vectors in σ ⊕ ρ. Each has
weight at most μα , so the intermediate distances each contribute at most this amount to the sum.
Therefore φ(σ , ρ)� nμα = nλα/2 for all σ , ρ. Thus the B in Theorem 3.4 satisfies B� nλα/2, and
ln B=O( ln n+ α ln λ).

We consider two cases. If χ > 0, then E[φt+1]� βφt , where β = 1− χ2/(2α). Thus, by
Theorem 3.4, the mixing time of M ′

B satisfies τ ′(ε)=O(χ−2α(α ln λ+ ln n+ ln ε−1)). On the
other hand, if χ � 0, but less than any constant, then we use part (2) of Theorem 3.4. For any pair
of σ , ρ,MB can always add a vector v∗ in their difference that maximizes ‖v‖1. This would change
φt by (

√
λ)α−‖v∗‖1 . As φt � n(

√
λ)α−‖v∗‖1 , the change in φt is at least φt/n. The appropriate v∗ is

chosen with probability at least 1/α and the appropriate b is chosen with probability 1/2 (and
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X

F ′

F(a)

Yt

Xt

Ft

(b)

Figure 8. (a) A staircase walk with seven peaks and six valleys. (b) Ft ⊆ Xt and Ft ⊆ Yt for all t.

every p succeeds when adding). Therefore there is a 1/(2α) chance of changing φt by φt/(2n), i.e.
P(|φt+1 − φt|� φt/n)� 1/(2α). Hence in this case the mixing time of M ′

B is

τ ′(ε)=O
(

ln2 (B)
ln2 (1+ 1/n)1/(2α)

ln ε−1
)

=O(n2α(α ln λ+ ln n)2 ln ε−1).

4.3 Hitting time to the maximal tiling
Wenow introduce a second technique that allows us to get improved bounds for themixing rate of
the uniform bias Markov chain M ′

B whenever λ� d and the region is an h× h× · · · h hypercube
of volume n= hd. Specifically, we prove the following.

Theorem 4.4. Let R⊂Z
d be the h× h× · · · × h hypercube of volume n= hd and bias λ� d. Then

the mixing time of M ′
B satisfies τ (ε)=O(h2d−1 ln ε−1). In general, this is o(n2 ln ε−1), or in two

dimensions, O(n
√
n ln ε−1).

The proof relies on the monotonicity ofMB with respect to the trivial coupling. In other words,
if (Xt , Yt) are coupled and Xt ⊆ Yt , then after one step of the coupling, Xt+1 ⊆ Yt+1. This implies
that the coupling time is bounded by the time to hit the full cube F starting from the empty cube F′,
and we can show that this will happen quickly because the distance to F is always non-increasing
in expectation (see Figure 8(b)).

We begin by proving that a monotone Markov chain with non-negative drift will mix rapidly.
Call a Markov chain M on � monotone if � is a distributive lattice with partial order � and
there exists a coupling (Xt , Yt) such that if Xt � Yt , then Xt+1 � Yt+1. For Xt ∈�, let P≺(Xt)=
P[Xt+1 �= Xt and Xt+1 � Xt] and let P�(Xt)= P[Xt+1 �= Xt and Xt � Xt+1].

Theorem 4.5. Given a monotone Markov chain M on � with maximal element F and minimal
element F′, let h(X, Y) be the Hamming distance between X and Y and let H =maxX,Y∈�{h(X, Y)}.
Assume that, for all X �= F ∈�,

P�(X)− P≺(X)� κ � 0.
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(1) If κ > 0 then the mixing time is

τ (ε)�
⌈
eH lnH
κ

⌉
�ln (ε−1)�.

(2) If κ = 0 and for all t� 0, P[X′ �= X]�Q then the mixing time satisfies

τ (ε)�
⌈
2eH2

Q

⌉
�ln (ε−1)�.

Proof. First we notice that the coupling time

Tx,y =E[ min{t : Xt = Yt|X0 = x, Y0 = y}]
is bounded by the hitting time to reach F from F′. Define Tx

F =E[ min{t : Xt = F|X0 = x}] to be
the hitting time to reach F from x. Let F0 = F′, and couple the moves of {Ft} together with the
moves of {Xt} and {Yt}; that is, choose the same (i, b, r) for Ft as in Xt and Yt . Since the Markov
chain is monotone with respect to the given coupling, we have Ft � Xt and Ft � Yt for all t� 0.
Thus, if Ft = F, we also have Xt = Yt = F. So the coupling time for Xt and Yt is bounded by the
hitting time of Ft to F. See Figure 8(b).

Let φt = h(Xt , F). For part (1), we useE[φt]� φt − κφt−1/H � (1− κ/H)tφ0. For part (2), note
thatE[φ2t+1 + φ2t ]� φ2t � 1, so using Lemma 3.5 with q= 0 andD=H, we obtainE[T]� 2H2/Q.
Then the theorem follows from the Coupling Lemma, Theorem 3.2.

Note that since λ> 1, we expect that for any downset X0 ∈�, the sequence {Xt} should
approach the unique maximal element of �. We will show that it suffices to choose λ� d to
reach the full d-dimensional cube from an arbitrary position in polynomial time, thus achiev-
ing polynomial mixing time. In particular, we will show that M ′

B satisfies the conditions of
Theorem 4.5.

We define a peak of X to be a position where we can remove a hypercube from X and a valley of
X to be a position where we can add a hypercube to X (see Figure 8(a)). For the following lemma,
define V (D)(and, respectively, P(D)) to be the set of valleys (peaks) of a downset D.

Lemma 4.6. For any downset σ �= F ∈�,
|P(σ )|� (d − 1)|V (σ )| + 1. (4.1)

Proof of Lemma 4.6. First we notice that if σ �= F, then it has at least one valley. Furthermore, if
σ has a single valley, then the number of peaks is at most d = (d − 1)V (σ )+ 1. Now assume the
number of valleys is more than one and proceed as follows. Choose a valley v= (v1, v2, . . . , vd)
that maximizes vd. Construct σ ′ from σ by adding every hypercube lying above v in the d
dimension; that is,

σ ′ = σ ∪ {v+ ed, v+ 2ed, . . . , v+ (h− vd)ed}.
Then |P(σ ′)|� |P(σ )| − d + 1, and |V (σ ′)| = |V (σ )| − 1. Hence

|P(σ )| − (d − 1)|V (σ )|� |P(σ ′)| − (d − 1)(|V (σ ′)|.
Obtain σ̂ by iterating this operation until only a single valley remains; then we have

|P(σ )| − (d − 1)|V (σ )|� |P (̂σ )| − (d − 1)|V (̂σ )|� 1,

as desired.

Lemma 4.6 implies that if λ� d then, for all σ �= F ∈�,
|P(σ )|� (d − 1)|V (σ )| + 1� d|V (σ )|,
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and so

P�(σ )− P≺(σ )= 1
2α

(
|V (σ )| − 1

λ
|P(σ )|

)

� |V (σ )|
2α

(
1− d

λ

)
� 0.

Hence the Markov chain M ′
B has non-negative drift towards the maximal configuration. Using

Theorem 4.5 we can show that for λ= d + δ for some δ � 0, τ (ε)=O(δ−1αn ln n ln ε−1) for δ >
0, and otherwise τ (ε)=O(αn2 ln ε−1). However, we are able to get a better bound in Theorem 4.4
by introducing another metric that gives strict additive contraction for every configuration, even
when λ= d.

Proof of Theorem 4.4. Recall from the proof of Theorem 4.5 that the coupling time is bounded by
the hitting time to reach F from F′. We will show that the expected time to hit F is small, using
Lemma 4.6. Let

S1 = {σ ∈� : P(σ )< dV (σ )} ∪ F and S2 = {σ ∈� : P(σ )= dV (σ )}.
Define the function φ(σ )=H(F, σ )+ IS2/(2d), whereH(X, Y) is the Hamming distance between
the downsets X and Y , and IS2 is the indicator function for the set S2. We will show that φ has
negative additive drift towards 0.

Note that Lemma 4.6 implies that if σ ∈ S2 then it has exactly one valley. Moreover, if σ ∈ S1
can move to S2 in a single step, then the number of possible moves to take it to S2 is at most 3. If σ
has a single valley then it must have a valley v such that for some dimension i, vi = 0; adding a cube
at this valley could move σ into S2. If σ has three valleys then it has a single hypercube c it can
remove to enter S2, and if σ has two valleys then it can enter S2 by adding cubes at either of those
valleys or removing a cube between them. Hence, if σt ∈ S1, then the probability that σt+1 ∈ S2 is
at most 3/(2α). Moreover, if σt ∈ S2, then the probability that σt+1 ∈ S1 is at least 1/(2α).

Now, conditioning on whether σt is in S1 or in S2, we have

E[φ(σt+1)− φ(σt)|σt ∈ S2]� 0− (2d)−1(2α)−1

and

E[φ(σt+1)− φ(σt)|σt ∈ S1]�
−|V (σt)| + λ−1|P(σt)|

2α
+ 3

2α

(
1
2d

)
� 1

2α
(− |V (σt)| + λ−1(d − 1)|V (σt)|)+ 3

2α

(
1
2d

)
� |V (σt)|

2α

(
−1
d

)
+ 3

2α

(
1
2d

)
� −1

4αd
.

Thus

E[φ(σt)]� σ0 − t
4αd

�
(
n+ 1

2d

)
− t

4αd
� ε

whenever t� 4dα(n+ 1/(2d)− ε). Thus the mixing time satisfies

τ (ε)O(αn ln (ε−1))=O(h2d−1 ln (ε−1))=O(n2 ln (ε−1))

https://doi.org/10.1017/S0963548320000188 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000188


Combinatorics, Probability and Computing 691

for arbitrary dimension d, but for d = 2, this implies

τ (ε)=O(h3 ln (ε−1))=O(n
√
n ln (ε−1)).

5. The fluctuating bias Markov chain
It turns out to be quite interesting to consider the case of fluctuating bias where the bias of a
tile depends on its position. This situation is more realistic, particularly in the context of self-
assembly. For instance, the probability of a tile lined with DNA attaching to the substrate depends
on the strength of the bonds along the edges of the tile as well as the relative densities of each tile.
Recall the bias at x̄ is defined as follows: if τ is formed by adding a cube at position x̄ to σ , then
λx̄ = P(σ , τ )/P(τ , σ ) is called the bias at x̄. The stationary probability of a configuration σ will be
proportional to

∏
x̄∈σ λx̄.

Most of the results from Section 4 generalize to this setting, as long as we satisfy certain bounds
on the amount the bias can fluctuate. When the minimum bias λL is large enough, we do not need
any upper bound.While the upper boundmight seem unnecessary even for small values of λL > 1,
the chain can actually take exponential time to reach equilibrium if the biases vary too much (see
Section 5.3).

5.1 Fast mixing with large enoughminimum bias
In Section 4.3 we showed that: (i) the coupling time for the Markov chainMB was bounded by the
hitting time to the maximal configuration, and (ii) the hitting time is polynomial, assuming that
the bias is large enough. Clearly, (i) still holds for the fluctuating bias Markov chain MB, and the
hitting time to the maximal configuration should only decrease if some of the biases are increased.
Therefore the following theorem is a simple consequence of Theorem 4.4.

Theorem 5.1. Let R be the d-dimensional h× h× · · · × h hypercube with volume hd = n and fluc-
tuating bias. Assume the minimum bias λL satisfies λL � d. Then the mixing time of MB satisfies
τ (ε)=O(h2d−1 ln ε−1)= o(n2 ln ε−1).

Moreover, we can use a similar argument, together with the uniform bias results above, to
obtain the following stronger result for fluctuating bias in two dimensions.

Theorem 5.2. Let R be a rectangular h×w region in Z
2 with fluctuating bias. Suppose the

minimum bias λL is a constant larger than 1. Then the mixing time of MB satisfies τ (ε)=
O(wh ln ε−1).

Again, this is optimal up to constants.

Proof of Theorem 5.2. Recall from Theorem 4.5 that the hitting time to the maximal configura-
tion is an upper bound on the coupling time. Thus it suffices to show that for uniform bias λ, where
λ> 1 is a constant, the hitting time to the maximal configuration is O(wh ln ε−1). For square
regions with area n, a bound of O(n) was proved in [2]. We wish to extend this to rectangular
regions.

It is well known that in two dimensions for uniform bias λ, where λ> 1 is a constant, the
maximal configuration has constant probability in the stationary distribution. For completeness,
we prove this next in the fluctuating bias setting.

https://doi.org/10.1017/S0963548320000188 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000188


692 S. Greenberg, D. Randall and A. P. Streib

Let p(h,w; t) denote the number of integer partitions of t into at most h parts, each of size at
most w. This is precisely the number of staircase walks in an h×w region with t squares below
the curve. Consider the generating function for p(h,w; t):

F(q)=
hw∑
t=0

p(h,w; t)qt =
(
h+w
w

)
q
,

where (
m
r

)
q
=

r∏
i=0

1− qm−i

1− qi

is the Gaussian binomial coefficient. Then the normalizing constant Z is equal to F(λ). We wish
to show that the weight of the highest configuration λhw/Z is at least a constant, independent of h
and w.

By rearranging terms, we have

F(q)=
w∏
i=1

qh+i − 1
qi − 1

�
w∏
i=1

qh+i

qi − 1
= qhw

w∏
i=1

1
1− q−i .

Let x= 1/λ. Then

F(λ)= qhw
w∏
i=1

1
1− xi

,

and so

ln (Zλ−hw)� ln (F(λ)λ−hw)

= −
w∑
t=1

ln (1− xt)

=
hw∑
t=1

xt + x2t

2
+ x3t

3
+ · · ·

� x+ 2x2 + 3x3 + 4x4 + · · · (5.1)

= x
(1− x)2

.

Inequality (5.1) follows because xi appears in at most i terms of the sum, each with a coefficient at
most 1. Therefore the maximum configuration has weight λhw/Z� e−x/(1−x)2 , for any h and w.

By Theorem 4.1, we know that the mixing time of the uniform bias chain with bias λL
is O(wh ln ε−1), so we expect the uniform bias chain to hit the maximal configuration in
O(wh ln ε−1) steps.

The hitting time of the fluctuating bias Markov chain is at most the hitting time of the uniform
bias chain whose bias is equal to λL. To see this, we will couple the two chains. We start with the
uniform bias chain below the fluctuating chain, for example by setting it equal to the minimal
configuration. At each step, we choose the same square to add, and whenever the fluctuating bias
chain decides to remove a square, the uniform chain does too; this is possible because the bias
of the fluctuating chain is at least the bias of the uniform bias chain at every square. Therefore
monotonicity is preserved during the coupling, so when the uniform bias chain hits the maximal
configuration, so must the fluctuating bias chain.

https://doi.org/10.1017/S0963548320000188 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000188


Combinatorics, Probability and Computing 693

5.2 Fast mixing when the fluctuations are bounded
We can also extend the exponential metric technique of Section 4 to handle fluctuating bias,
provided the biases λx for x ∈ R do not vary too much.

Theorem 5.3. Let R be any nice d-dimensional region with volume n and span α, and suppose the
bias at any point x satisfies 1<λL � λx � λU. If the maximum and minimum biases are such that

d√
λL

− 1− 1
λU

�−χ (5.2)

for some χ � 0, then we have the following.

(1) If χ > 0, then the mixing time of M ′
B satisfies τ ′(ε)=O(χ−1α(α ln λ+ ln n) ln ε−1).

(2) If χ � 0, then τ ′(ε)=O(αn2(α ln λ+ ln n)2) ln (ε−1)).

Proof. This theorem is proved nearly identically to Theorem 4.2. In this case we define the
distance metric as

φ(σ , ρ)=
∑

x∈σ⊕ρ
(
√
λL)‖x0‖1−‖x‖1 .

Given that M ′
B chose v∗ and b such that φt can increase, the expected increase is at most

φtλL−1/2. Indeed, if the move is of the form v= x+ ui for some i, then the increase in distance is
(
√
λL)‖x0‖1−‖v‖1 = φtλL−1/2. If the move is of the form v= x− ui for some i, then the increase

in distance is λ−‖v‖1/2
L = φt

√
λL, but the chance of choosing an appropriate p is 1/λv � 1/λL.

Therefore the expected increase is again at most φtλL−1/2.
This implies that the expected change in distance is negative. As before, there are at most d bad

moves, but now the two good moves happen with probability 1 and 1/λx � 1/λU , respectively.
Therefore the expected change in distance satisfies

Et[φt+1 − φt]�
1
2α

(
d · φt√

λL
−

(
1+ 1

λU

)
φt

)
�−φtχ

2α
.

The rest of the proof is identical to the proof of Theorem 4.2.

5.3 Slowmixing when the fluctuations are unbounded
Let R be an n× n square region in two dimensions. Each (x, y) ∈ R has a bias λx,y. In this section
we show that even in this simple setting, the Markov chain M ′

B can be slowly mixing when the
fluctuations are unbounded.

Note that we have restricted throughout this paper to the case that λx,y � 1 for all (x, y) ∈ R.
This restriction is necessary, or the chain might not be rapidly mixing. For example, it can be
shown that if λx,y < 1 when x+ y� n and λx,y > 1 when x+ y> n, then M ′

B requires exponential
time to converge. Indeed it will be difficult to move from a tiling that is nearly empty to one that
is nearly full, even though these each occupy a constant fraction of the stationary probability.

Suppose that for all (x, y) ∈ R, λx,y � λL > 1. We know by Theorem 4.2 that for uniform bias,
the Markov chain is rapidly mixing for all λ> 1 polynomially bounded away from 1 and the
result is in general easier to show for larger values of λ. This leads us to expect rapid mixing in
the fluctuating bias case, as long as the minimum bias λL is polynomially bounded away from 1.
However, this is not true in general.

Theorem 5.4. There exists a set of biases {λx,y} on R where λx,y > 1 for all (x, y) ∈ R and yet the
mixing time of MB is�(en/24).
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1+ e

x

M n−M(a) (b)

Figure 9. (a) Fluctuating bias with exponential mixing time. (b) Staircase walks in S1, S2, and S3.

We show that if the biases below the line x+ y= n+M (whereM = n− √
n) are all close to 1

and all other biases are some very large constant ξ , then the mixing time of MB is exponentially
large in n (see Figure 9). We identify sets S1, S2, S3 such that π(S2) is exponentially smaller than
both π(S1) and π(S3), which have equal weight, but to get between S1 and S3, Mnn and MT must
pass through S2. Thus the set S1 forms a ‘bad cut’ that prevents the Markov chain from mixing
rapidly, regardless of the initial configuration.

To formalize these ideas, we will bound the conductance of theMarkov chain. The conductance
of an ergodic Markov chain M with stationary distribution π is

�M = min
S⊆�

π(S)�1/2

φS,

where φS = φ
(M )
S is the conductance of a set S⊂�, defined by

φS = 1
π(S)

∑
s1∈S,s2∈S̄

π(s1)P(s1, s2).

Essentially, S is a bad cut if φS is exponentially small. The existence of such a set S prevents the
Markov chain from mixing rapidly [11].

Theorem 5.5. For any Markov chain with conductance�, τ � (4�)−1 − 1/2.

Proof of Theorem 5.4. We will define values {λx,y}(x,y)∈R such that the conductance of the Markov
chain M ′

B is small. Let M = n− √
n. For all (x, y) such that x+ y� n+M, define λx,y = 1+ ε,

where ε= 1/(4n). For all remaining (x, y), let λx,y = ξ , where ξ > 1 will be defined later. For a
staircase walk σ consisting of a sequence of steps σi ∈ {±1}, define the height of σi as ∑

j�i σj, and
let max (σ ) be the maximum height of σi over all 1� i� 2n. Let S1 be the set of configurations
σ such that max (σ )< n+M, S2 the set of configurations such that max (σ )= n+M, and S3 the
set of configurations such that max (σ )> n+M.

First we will show that π(S2) is exponentially smaller than π(S1) for all values of ξ . Let A(σ ) be
the number of tiles contained in σ . Then

π(S2)= 1
Z

∑
σ∈S2

(1+ ε)A(σ ) � (1+ ε)n2−n/2|S2|
Z

,
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since there are at most n2 − (n−M)2/2= n2 − n/2 tiles with weight 1+ ε in σ . By the definition
of ε, we have

(1+ ε)n
2−n/2 =

(
1+ 1

4n

)n2−n/2
� en/4−1/8.

Hence π(S2)� en/4−1/8|S2|/Z.
Next we will bound |S2 ∪ S3|, which in turn provides an upper bound on |S2|. The unbiased

Markov chain is equivalent to a simple random walkW2n = X1 + X2 + · · · + X2n = 0, where Xi ∈
{+1,−1} and where +1 represents a step to the right and −1 represents a step down. We call this
random walk tethered since it is required to end at 0 after 2n steps. Compare walk W2n with the
untethered simple random walkW′

2n = X′
1 + X′

2 + · · · + X′
2n:

P
(

max
1�t�2n

Wt �M
)

= P
(

max
1�t�2n

W′
t �M | W′

2n = 0
)

= P( max1�t�2n W′
t �M)

P(W′
2n = 0)

= 22n(2n
n
)P(

max
1�t�2n

W′
t �M

)
� e2

√
n

2
√
π

P
(

max
1�t�2n

W′
t �M

)
(5.3)

< 3
√
n P

(
max

1�t�2n
W′

t �M
)
,

where (5.3) follows from Stirling’s formula. Since the {X′
i} are independent, we can use Chernoff

bounds to see that

P
(

max
1�t�2n

W′
t �M

)
� 2nP(W′

2n �M)� 2ne−M2/(2n).

Note that M2/(2n)= (n− √
n)2/(2n)= (

√
n− 1)2/2� n/3 for n� 4. Together these show that

P( max1�t�2n Wt �M)� 6n3/2e−n/3. In particular,

|S2 ∪ S3|� 6
(
2n
n

)
n3/2e−n/3.

Therefore we have
π(S2)
π(S1)

�
1
Z e

n/4−1/8|S2 ∪ S3|
1
Z
((2n

n
) − |S2 ∪ S3|

)
� en/4−1/8

( (2n
n
)

|S2 ∪ S3| − 1
)−1

� en/4−1/8
( (2n

n
)

6
(2n
n
)
n3/2e−n/3

− 1
)−1

� 6en/4−1/8n3/2

en/3 − 6n3/2

< e−n/24,

for large enough n. Therefore π(S2) is exponentially smaller than π(S1) for every value of ξ .
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Our next goal is to show that there exists a value of ξ for which π(S3)= eπ(S1), which will
imply that π(S2) is also exponentially smaller than π(S3), and hence the set S1 forms a bad cut,
regardless of which state the Markov chain begins in. To find this value of ξ , we will rely on the
continuity of the function g(ξ )= Zπ(S3)− Zπ(S1) with respect to ξ . Note that Zπ(S1) is constant
with respect to ξ and

Zπ(S3)=
∑
σ∈S3

(1+ ε)Ab(σ )ξAa(σ ),

(where Ab(σ ) is the number of tiles below the diagonal M in σ and Aa(σ ) is the number of tiles
above the diagonal M in σ ) is just a polynomial in ξ . Therefore Zπ(S3) is continuous in ξ and
hence g(ξ ) is also continuous with respect to ξ . We will show that g(1+ ε)< 0 and g(4e2.5)> 0, so
by continuity we will conclude that there exists a value of ξ satisfying 1+ ε < ξ < 4e2.5 for which
g(ξ )= 0 and Zπ(S3)= eZπ(S1). Clearly this implies that for this choice of ξ , π(S3)= eπ(S1), as
desired.

First, we will show that when ξ = (1+ ε), Zπ(S3)< eZπ(S1), so g(1+ ε)< 0. This is easy to
see, as

π(S3) � 1
Z

|S3|γ n2 � 1
Z

|S3|e � 1
Z

|S1|e � eπ(S1).

Next we will show that g(4e2.5)> 0. First we notice that since the maximal tiling is in S3,

�(S3)� Z−1(1+ ε)n
2−(n−M)2/2ξ (n−M)2/2.

Also,

�(S1)= Z−1
∑
σ∈S1

(1+ ε)Aa(σ ) < Z−1
(
2n
n

)
(1+ ε)n

2−(n−M)2/2.

Therefore

eπ(S1)/π(S3)<
e
(2n
n
)

ξ (n−M)2/2
� e(2e)nξ−n/2 � 1

for n� 4, since ξ = 4e2.5. Hence g(4e2.5)= Zπ(S3)− eZπ(S1)> 0, as desired.
Finally, we may analyse the conductance:

�� φS1 �
1

π(S1)
∑
x∈S1

π(x)
∑
y∈S2

P(x, y)� 1
π(S1)

∑
x∈S1

π(x)π(S2)� e−n/24.

Hence, by Theorem 5.5, the mixing time of M ′
B satisfies

τ � (4e−n/24)−1 − 1/2� en/24/4− 1/2.

6. Conclusions
In this paper we showed that the natural local Markov chain for sampling biased monotonic sur-
faces is efficient for any uniform bias in two dimensions and for large enough bias in higher
dimensions. We also gave the first analysis of the convergence rate when we have fluctuating
bias, showing that as long as the biases do not differ by too much, the assembly is still rapid.
We have made additional contributions to the study of biased card shuffling as well, correspond-
ing to the two-dimensional case of monotone surfaces. The bound in Theorem 4.1 on the mixing
time of MB when d = 2 yields a simpler proof that the nearest-neighbour transposition chain on
biased permutations is rapidly mixing, using the bijection from [2]. In fact, we achieved the same
optimal bounds on the mixing time. Recently our improved bounds on the mixing time of MB
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for rectangular regions were used to show a tighter bound on the mixing time of the nearest-
neighbour transposition chain for a generalization of biased permutations arising in the context
of self-organizing lists [4].

More significantly, the techniques from Section 4.2 can be extended to other applications, such
as biased 3-colourings. For example, there is a well-known bijection between 3-colourings of Z2

and sets of monotonic, edge-disjoint paths (see e.g. [13]). The construction generalizes to arbitrary
dimension as well, forming (d − 1)-dimensional monotonic surfaces that are face-disjoint. There
is a Markov chain Mcol arising in the context of asynchronous cellular automata which samples
biased 3-colourings. Our technique can be used to show that as long as the bias satisfies λ� 4d2,
the mixing time of Mcol satisfies τ (ε)=O(n2 ln (ε−1)). We expect that there may be other situa-
tions where standard coupling techniques are not sufficient for which coupling with exponential
metrics will be useful.
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