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The Model

A dyadic interval is an interval from % to OJQ—JSl,

where s is a nonnegative integer and a is an
integer with 0 < a < 2°.

A dyadic rectangle is a region with dimen-
sions

a a-+1 b b+1
R=1o5 5| X |3t 2

where s,t and a, b are integers with 0 < a < 2°
and 0 < b < 20,

An n-tiling of the unit square is a set of
2" dyadic rectangles, each of area 27" (whose
union is the unit square).




Examples:

A tiling has a vertical fault line if the line
T = % cuts through none of its rectangles. Sim-

ilarly, horizontal fault line.

Theorem: Every tiling has either a vertical

fault line or a horizontal fault line. (It may have
both.)




A Recurrence for Dyadic Tilings:

Let 7). be the set of k—tilings and let A;. be
the number.

Ag =1,
Ay =2,
Ay =T,
Az = 82,
Ay = 11047,
As = 198860242,
Ag = 64197955389505447, ...

Theorem: [CLSW, LSV| Forn > 2,
Ap =242 [ — AL




This follows from the observation that the left
half of a tiling in T}, with a vertical cut can be
to a tiling of T},_1:

The asymptotic behavior of A, is
Ap ~ ¢_1p2n

where p = 1.84454757 - - -
and ¢ = (1 +/5)/2 = 1.6180--- is the
golden ratio.



Local Moves

Dyadic Tilings and Rotations

Domino Tilings and Rotations



Questions:
1. How can we sample from 7,,7

2. What does a random sample in 7T}, look like?

3. What does T}, look like?

QOutline:

Combinatorial structures:
The height function

Tree representations
|. Recursive sampling algorithms
[I. Dynamic sampling algorithms

[Il. Properties of random tilings



The Lattice of Tilings

Define the height /(%) of a dyadic 27% x 27/ rectangle ¢
with area 27" to be £ =n — L.

Let the total height H(T') of a tiling 7" to be the sum
of the heights of all rectangles in it.

o 0< H(T)<n2", TEcT,
o H(T) = 2" [, 1o h(T)(p) dp.

Partial order
Let T1 "_< T2 if ]’L(Tl(p)> S h(TQ(p>) for all p € [O, 1]2




Theorem: The partial order on 7,, defines a distributive
lattice.

The join Ty, VT, is {max(Ti(p), To(p)) : p € [0,1]*},
where max (77 (p), T>(p)) is the tile with larger height.
The meet T A Ty is {min(Ti(p), T5(p)) : p € [0, 1]°}.

e There are unique highest and lowest elements in 7,,:
the highest tiling is the all vertical tiling and the lowest
is the all horizontal tiling

e The meet and join always yield valid tilings.

e [ he lattice is distributive.



More on the Height Function

Let 7}, denote the special tiling with
27H x ghmn

rectangles, £ = 0,...,n; thus Tk has height function
constant k.

So T, is the lowest tiling and T, is the highest.

Theorem: An n-tiling 7" has a horizontal cut iff 7" =
T, 1.

(It has a vertical cut iff T = Tl)

Proof: 7' has a horizontal cut iff it contains no 27" x 1
rectangle, i.e. if and only if A(7")(p) < n — 1 for every
p € [0,1]% O

Theorem: Suppose that 7}, 7} are n-tilings with n > 2.
If 77 <15, T} has a horizontal cut and 75 has a vertical
cut, then there exists a tiling 75 with both vertical and
horizontal cuts such that 77 <75 < T5.




Let G, be the (oriented) graph which connect tilings that
differ by an elementary rotation changing one edge.

Theorem: Let 77,75 € 7,. Then 177 =< T, iff there
exists an oriented path from 77 to 75 in the directed graph
G, Every such path has length  H(T5) — LH(T}).




Tree Representations: HV-Trees

A complete binary tree of height n whose 2" — 1 nodes
are labeled H or V' defines an n-tiling by the following
procedure:

Algorithm (HV-Tree — Tiling):
1. If the tree is empty (n = 0) then Exit.

2. If the root is labeled H, make a horizontal cut.

If the root is labeled V', make a vertical cut.

3. Continue recursively with the two halves separately,
using the left and right subtrees.
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Conversely, every n-tiling is produced in this way by some
labeled complete binary tree.

The tree is in general not unique!!!



Definition: A complete binary tree whose nodes are
labeled H or V is an HV/ -tree if there is no node labeled
H which has two children labeled V.

(l.e., we take the vertical cut if possible!!)

Theorem: There is a bijection between 77" (the set
of HV -trees of height n) and 7,,.




l. Recursive Algorithms for Sampling

Probabilities at the root:

p, = P(a random tiling in 7, has a vertical cut)
A
== >

(The prob. of a horizontal cut is the same.)
We have pg =0, p1 = 1/2, po =4/7, ....

we find:

From A, =242 | — A2

n—21

Note: It follows easily that p,, increases to the smallest
1

positive root of = = ——, i.e.

P ¢ t=¢—1=(5-1)/2, as n — 00.



A Recursive Construction

The type of a node in a HV -tree is one of the four sym-
bols V', Hyy, Hyy, Hyp, chosen according to the fol-
lowing rules:

e |f the node is labeled V, its type is V.

o |f the node is labeled H and it is not a leaf, its type is
H,,, where z and y are the labels of its children.

o If the node is labeled H and it is a leaf, its type is
HHH-



The number of trees of type V' is A% | (i.e., no constraints
on subtrees T} and T5).

The total number of trees of the other typesis A, — A2 .

Therefore, the distribution 7" for labels at the root are:

Vo Ai_l = A,
Hyp: (Ano1— A; )7 = pa(l = pai)’Ay
Hyy: A, 5(Ani— A7 ) = pupn1(1 — pooi1)An
Hypg: A, 5(Ani— A} 5) = papna(1 — poo1) Ay



Recursive Generation of Random Tilings

Probabilities at all other nodes:

Let 7(") denote a random type 7 € {V.Hyy, Hgy, Hy g }
with the distribution given by

P(T(n) f— V) f— pn,
P(r™ = Hyy) = pu(1 — pp_1)?,

P(r™ = Hyy) = P(r™ = Hyy) = pppn-1(1 — pa_).

We also need conditional probabilities:

Let Tgl) denote 7" conditioned on 7" # V:
P(ryy = Hynr) = (1= paa)/(1+ puca)

P(ri) = Hav) = P(r\)) = Hyir) = pu1/(1 + pu_1).



Recursively Generating Tilings

Recursive Algorithm:

1. Select randomly a type for the root with the distribu-
tion 7).

2. Recursively assign types to all other nodes such that if
a node of height k, 1 < k < n, is assigned a type T,
then its left and right child get types 7 and 7, selected
as follows:

7 = V': Choose 71 and 79, independently, both with
the distribution of 7" %),

7 = Hy: Choose 71 and 79, independently, both

with the distribution of T}}L_k).

7 = Hpyy: Choose 71 with the distribution of T[(JL_H

and let = V.

T = Hyp: Let 71 = V and choose 75 with the
C . n—k)
distribution of 7, .

3. All vertices with type V' are labeled V'; the others are
labeled H.



Generating Asymptotic Tilings

P(r™=V) =¢'=¢-1,

P(r'™) = Hyp) = ¢7° =54 — 8,

P(r™) = Hyy) = ¢4 =5— 3¢,

P(r'™ = Hyy) = ¢~ =5—39¢,

P(ry” =V) =0,

P(r;" = Hyy) = ¢ =2¢ -3,
(

)
(" =Hpy) = ¢2=2—¢,
P(TIEIOO) — HVH) - ¢_2 =2 — q5

Recursive Asymptotic Algorithm:

This is the same as the Recursive Algorithm, but using
the distributions 7(°°) and TI({OO).



Il. Dynamic Sampling Algorithms

Markov chain 1 (Rotations):

Repeat:
e Choose a dyadic rectangle within the square of any size

e Choose a direction d € {0°,90°, 180°, 270°}.
e “Rotate” the subtiling within this rectangle by d, if possible.




Consider complete binary trees with the labels A (agree)
or D (disagree) using relative orientation of a cut rel-
ative to its parent.

Algorithm:

1. Initialize by defining the parent cut to be the square's
left edge.

2. If the tree is empty (n = 0) then Exit.

3. If the root is labeled A, make a cut parallel to the
parent cut.

If the root is labeled D, make a cut orthogonal to the
parent.

4. Continue recursively (from Step 2) with the two halves
(setting the parent cut equal to the cut just made).
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But note that:

D A
= <— A "badly labeled
VANEEERVAN

4 subtree

Definition: A complete binary tree whose nodes are
labeled A or D is an AD-tree if there is no node labeled
A which has two children labeled D.

Theorem: There is a bijection between 77 (the set
of AD-trees) and 7,,.




Markov chain 2

This MC is motivated by the AD-tree representation of
tilings.
Repeat:

e Choose a node v in the AD-tree.

e Choose a label b € {A, D}.

e Relabel v with b with prob. 1/2 — unless it creates a
badly labeled subtree!



Analysis of MC 2 on AD-Trees

Let ®(z,y) be the Hamming distance between trees x
and y. (l.e., the number of vertices which are assigned
different labels.)

Lemma: Let 2,y € 7.4” be any two configurations.
Then there is a sequence of states 2z, 21, . . ., 24 such that
20 =, 29 =y, d = ®(x,y) and for all 0 < 7 < d,
(I)(Zz', Zz'—l—l) = 1.

Corollary: The Markov chain M, is ergodic and con-
verges to the uniform distribution on 747,

Q: How quickly??



Bounding the Mixing Rate (for MC 2)

The variation distance is:

Adft) =53 1P (ey) — (o)l

The mixing time of a Markov chain is:

7(€) = maxmin{t : A,(t') < e forall t' > t}.

If 7(€) is polylogarithmic in the size of €2, for fixed €, then
we say that the Markov chain is rapidly mixing.

* Recall that € is doubly exponential in n, so 7(€) will be
exponential in n.

..it takes O(2") time just to write down a configuration!!



Path Coupling:

o Let ® be a metric on 2 x (2 taking valuesin {0, ..., B}.
o Let U C () x () such that:

1. forall x4, y; there exists a path z; = 29,21, ..., 2, =
1; between x; and y; such that (z;, z;,1) € U

2. 30T (21, 2i1) = Bz, ).
o E(AD(xy,1,)) <O forall (x,y;) € U,

e Pd(xyi1,yir1) # Pz, )] > a (> 0) whenever
Tt 7 Y-

Theorem: The mixing time
satisfies:




Our coupling for Alg 2:

To couple: Choose the same vertex and the same
label b.

We have:

Path: Recall the Hamming distance ® has the path
property.

Diameter: B < n2".

Variance: o > 27".

So it suffices to show:
Expected change:

E(A®(x, 1)) <0 forall (z;,1y,) € U.



Showing that E(A(I)(Cljt, yt)) <0

Let x;, y; have distance ®(x;,y;) = 1 and differ at vertex
w.

Good Case:

1.v =w: then x;,1 = ys41 for either choice of b.

(Potentially) Bad Cases:

1. v = p(w) (parent): D D
/N /N
D A D D
2. v = s(w) (sibling): A A
/N /N
A A A D
3. v =1l(w) (left child): A D
/N /N
A D A D
4. v =r(w) (right child): A D



However: bad cases 1 and 2 cannot simultaneously oc-
cur! Nor can cases 3 and 4!

So there are:
e at most 2 bad cases, with relative weight 1/2,

e and 1 good case, with relative weight 1.

Theorem: The mixing time of the Markov chain satisfies

7(€) < 2%"e[lne!].



The Natural MC on Tilings (MC 1)

The number b,, of subrectangles with area at least 2-27"

IS.
n—1

b= (k+1)2F=(n—1)2".

i=1
The transition probabilities P,(-) of our MC 1 are:
P(Th,Ty) =
(1/4b, if Ty, T, differ by rotating a
subtiling by +-90° or 180°;
1= g P, T) Ty =T

0 0O.W..

\



Comparison of Markov Chains

We know P (on AD-trees) is rapidly mixing.
We want to know about P (rotations on dyadic tilings).

Theorem: [Diaconis, Saloff-Coste] Let (P, ,(2) and
(P,m,C)) be two reversible Markov chains such that

~

P(z,y) # 0 implies P(x,y) # 0 for all z,y € Q. Let
e = Mingeq m(x). Then, for 0 < e < 1/2,

4In(1/(ems)) , -
m(e) < In(1/2¢) ),

where




Back to Tilings and AD-Trees

Let x # y € Q be tilings s.t. P(x,y) > 0.
We find

~

Plz,y)  @V))™

P(z,y)  (4b,)™"

B 4(n—1)2"
2(2n — 1)
< 2n.
Also,
nt < 22",
Hence:

~

7(€) < c(e)n 2" 7(e),

for some constant c(¢),

* Thus MC 1 is also rapidly mixing.



l1l. What do Random Dyadic Tilings
Look Like?

Total Height:

The normalized height function is
H(T)=2"H(T)-n/2, TEeT,.

S

This gives us that —n/2 < H(T) < n/2.
By symmetry, E H, = 0.

~

Theorem: There exists a sym. r.v. H s.t.

~

o As n — 00, Hniﬁloo.
e For any real ¢,

E exp(tH,) < exp(1¢*t?), 1 <n<oo.
e For any a > 0,
P(H, >a) <exp(—¢~"a?), 1<n<oo.
e Var H,, = E H2 = (6¢ — 2)/11

— (35 +1)/11 = 0.7007458 - - - .



For the unnormalized height (in {0,...,n}), if heights
were independent, the variance would be at most n%2".

Here we find: i
Var H,, = 2" Var H,,

~ 2" Var H,, = 22"(3v/5+1)/11

Hence there is very high correlation.

Long thin rectangles force lots of other long thin rectan-
gles!



“Struts”

A subrectangle of the unit square is a strut if it spans the
unit square vertically (i.e., its height is n).

Let S,,(7") be the number of struts in a random tiling T’
of 7,,.

What is the distribution of .S,,(T")??



e I’ has a horizontal cut iff there are no struts, i.e. if
Sp(T) = 0. Hence,

P(S,=0)=p, = ¢~ L.

e Tiles are struts iff in the HV -tree all nodes on the
path are labeled V' (and this produces two struts).

Thus S,, equals twice the number of such paths in a
random HV -tree.

Theorem: S,/(v/5 — 1) % Z as n — oo, for some
random variable Z such that:

e P(Z =0)=Ilim, .. P(S,=0)=¢— 1.
e EZ =3 and Var Z = 2¢3%,
where 0 = [[°2,(pn) = 0.702845 - - -




