Random Dyadic Tilings of the Unit Square

Svante Janson

Dana Randall

and Joel Spencer

The Model

A <u>dyadic interval</u> is an interval from $\frac{a}{2^s}$ to $\frac{a+1}{2^s}$, where s is a nonnegative integer and a is an integer with $0 \le a < 2^s$.

A <u>dyadic rectangle</u> is a region with dimensions

$$R = \left\lceil \frac{a}{2^s} , \frac{a+1}{2^s} \right\rceil \times \left\lceil \frac{b}{2^t} , \frac{b+1}{2^t} \right\rceil$$

where s, t and a, b are integers with $0 \le a < 2^s$ and $0 \le b < 2^t$.

An <u>n-tiling of the unit square</u> is a set of 2^n dyadic rectangles, each of area 2^{-n} (whose union is the unit square).

Examples:

A tiling has a vertical fault line if the line $x = \frac{1}{2}$ cuts through none of its rectangles. Similarly, horizontal fault line.

Theorem: Every tiling has either a vertical fault line or a horizontal fault line. (It may have both.)

A Recurrence for Dyadic Tilings:

Let T_k be the set of k-tilings and let A_k be the number.

$$A_0 = 1,$$
 $A_1 = 2,$
 $A_2 = 7,$
 $A_3 = 82,$
 $A_4 = 11047,$
 $A_5 = 198860242,$
 $A_6 = 64197955389505447,...$

Theorem: [CLSW, LSV] For
$$n \ge 2$$
, $A_n = 2A_{n-1}^2 - A_{n-2}^4$.

This follows from the observation that the left half of a tiling in T_n with a vertical cut can be dilated to a tiling of T_{n-1} :

The asymptotic behavior of A_n is

$$A_n \sim \phi^{-1} \rho^{2^n}$$

where $\rho=1.84454757\cdots$ and $\phi=(1+\sqrt{5})/2=1.6180\cdots$ is the golden ratio.

Local Moves

Dyadic Tilings and Rotations

Domino Tilings and Rotations

Questions:

- 1. How can we sample from T_n ?
- 2. What does a random sample in T_n look like?
- 3. What does T_{∞} look like?

Outline:

Combinatorial structures:

The height function

Tree representations

- I. Recursive sampling algorithms
- II. Dynamic sampling algorithms
- III. Properties of random tilings

The Lattice of Tilings

Define the <u>height</u> h(t) of a dyadic $2^{-k} \times 2^{-l}$ rectangle t with area 2^{-n} to be k = n - l.

Let the <u>total height</u> H(T) of a tiling T to be the sum of the heights of all rectangles in it.

- $0 \le H(T) \le n2^n$, $T \in \mathcal{T}_n$.
- $H(T) = 2^n \int_{[0,1]^2} h(T)(p) dp$.

Partial order

Let $T_1 \preceq T_2$ if $h(T_1(p)) \leq h(T_2(p))$ for all $p \in [0,1]^2$.

Theorem: The partial order on \mathcal{T}_n defines a distributive lattice.

```
The join T_1 \vee T_2 is \{\max(T_1(p), T_2(p)) : p \in [0, 1]^2\}, where \max(T_1(p), T_2(p)) is the tile with larger height. The meet T_1 \wedge T_2 is \{\min(T_1(p), T_2(p)) : p \in [0, 1]^2\}.
```

- There are unique highest and lowest elements in \mathcal{T}_n : the highest tiling is the all vertical tiling and the lowest is the all horizontal tiling
- The meet and join always yield valid tilings.
- The lattice is distributive.

More on the Height Function

Let \widetilde{T}_k denote the special tiling with

$$2^{-k} \times 2^{k-n}$$

rectangles, $k=0,\ldots,n$; thus \widetilde{T}_k has height function constant k.

So \widetilde{T}_0 is the lowest tiling and \widetilde{T}_n is the highest.

Theorem: An n-tiling T has a horizontal cut iff $T \leq \widetilde{T}_{n-1}$.

(It has a vertical cut iff $T \succeq \widetilde{T}_1$.)

Proof: T has a horizontal cut iff it contains no $2^{-n} \times 1$ rectangle, i.e. if and only if $h(T)(p) \leq n-1$ for every $p \in [0,1]^2$.

Theorem: Suppose that T_1, T_2 are n-tilings with $n \geq 2$. If $T_1 \leq T_2$, T_1 has a horizontal cut and T_2 has a vertical cut, then there exists a tiling T_3 with both vertical and horizontal cuts such that $T_1 \leq T_3 \leq T_2$.

Let G_n be the (oriented) graph which connect tilings that differ by an <u>elementary rotation</u> changing one edge.

Theorem: Let $T_1, T_2 \in \mathcal{T}_n$. Then $T_1 \leq T_2$ iff there exists an oriented path from T_1 to T_2 in the directed graph G_n . Every such path has length $\frac{1}{2}H(T_2) - \frac{1}{2}H(T_1)$.

Tree Representations: HV-Trees

A complete binary tree of height n whose 2^n-1 nodes are labeled H or V defines an n-tiling by the following procedure:

Algorithm (HV-Tree \rightarrow Tiling):

- 1. If the tree is empty (n = 0) then Exit.
- 2. If the root is labeled H, make a horizontal cut. If the root is labeled V, make a vertical cut.
- 3. Continue recursively with the two halves separately, using the left and right subtrees.

Conversely, every n-tiling is produced in this way by some labeled complete binary tree.

The tree is in general not unique!!!

Definition: A complete binary tree whose nodes are labeled H or V is an HV-tree if there is no node labeled H which has two children labeled V.

(I.e., we take the vertical cut if possible!!)

Theorem: There is a bijection between \mathcal{T}_n^{HV} (the set of HV-trees of height n) and \mathcal{T}_n .

I. Recursive Algorithms for Sampling

Probabilities at the root:

 $p_n = \mathbf{P}(\mathsf{a} \; \mathsf{random} \; \mathsf{tiling} \; \mathsf{in} \; \mathcal{T}_n \; \mathsf{has} \; \mathsf{a} \; \mathsf{vertical} \; \mathsf{cut})$

$$=\frac{A_{n-1}^2}{A_n}, \qquad n \ge 0.$$

(The prob. of a horizontal cut is the same.)

We have
$$p_0 = 0$$
, $p_1 = 1/2$, $p_2 = 4/7$,

From $A_n = 2A_{n-1}^2 - A_{n-2}^4$, we find:

$$p_n = \frac{1}{2 - p_{n-1}^2}, \qquad n \ge 1.$$

<u>Note:</u> It follows easily that p_n increases to the smallest positive root of $x = \frac{1}{2-x^2}$, i.e.

$$p_n \to \phi^{-1} = \phi - 1 = (\sqrt{5} - 1)/2,$$
 as $n \to \infty$.

A Recursive Construction

The *type* of a node in a HV-tree is one of the four symbols V, H_{HH} , H_{HV} , H_{VH} , chosen according to the following rules:

- ullet If the node is labeled V, its type is V.
- If the node is labeled H and it is not a leaf, its type is H_{xy} , where x and y are the labels of its children.
- ullet If the node is labeled H and it is a leaf, its type is H_{HH} .

The number of trees of type V is A_{n-1}^2 (i.e., no constraints on subtrees T_1 and T_2).

The total number of trees of the other types is $A_n - A_{n-1}^2$.

Therefore, the distribution $\tau^{(n)}$ for labels at the root are:

 $V : A_{n-1}^2 = p_n A_n$

 $H_{HH}: (A_{n-1} - A_{n-2}^2)^2 = p_n(1 - p_{n-1})^2 A_n$

 $H_{HV}: A_{n-2}^2(A_{n-1}-A_{n-2}^2) = p_n p_{n-1}(1-p_{n-1})A_n$

 $H_{VH}: A_{n-2}^2(A_{n-1} - A_{n-2}^2) = p_n p_{n-1}(1 - p_{n-1})A_n$

Recursive Generation of Random Tilings

Probabilities at all other nodes:

Let $au^{(n)}$ denote a random type $au \in \{V, H_{HH}, H_{HV}, H_{VH}\}$ with the distribution given by

$$\mathbf{P}(au^{(n)}=V)=p_n$$
 ,

$$\mathbf{P}(au^{(n)} = H_{HH}) = p_n(1-p_{n-1})^2$$
,

$$\mathbf{P}(\tau^{(n)} = H_{HV}) = \mathbf{P}(\tau^{(n)} = H_{VH}) = p_n p_{n-1} (1 - p_{n-1}).$$

We also need conditional probabilities:

Let $\tau_H^{(n)}$ denote $\tau^{(n)}$ conditioned on $\tau^{(n)} \neq V$:

$$\mathbf{P}(\tau_H^{(n)} = H_{HH}) = (1 - p_{n-1})/(1 + p_{n-1})$$

$$\mathbf{P}(au_H^{(n)} = H_{HV}) = \mathbf{P}(au_H^{(n)} = H_{VH}) = p_{n-1}/(1 + p_{n-1}).$$

Recursively Generating Tilings

Recursive Algorithm:

- 1. Select randomly a type for the root with the distribution $\tau^{(n)}$.
- 2. Recursively assign types to all other nodes such that if a node of height k, $1 \le k < n$, is assigned a type τ , then its left and right child get types τ_1 and τ_2 selected as follows:

 $\tau = V$: Choose τ_1 and τ_2 , independently, both with the distribution of $\tau^{(n-k)}$.

 $au=H_{HH}$: Choose au_1 and au_2 , independently, both with the distribution of $au_H^{(n-k)}$.

 $au = H_{HV}$: Choose au_1 with the distribution of $au_H^{(n-k)}$ and let $au_2 = V$.

 $au=H_{VH}$: Let $au_1=V$ and choose au_2 with the distribution of $au_H^{(n-k)}$.

3. All vertices with type V are labeled V; the others are labeled H.

Generating Asymptotic Tilings

$$\mathbf{P}(\tau^{(\infty)} = V) = \phi^{-1} = \phi - 1,
\mathbf{P}(\tau^{(\infty)} = H_{HH}) = \phi^{-5} = 5\phi - 8,
\mathbf{P}(\tau^{(\infty)} = H_{HV}) = \phi^{-4} = 5 - 3\phi,
\mathbf{P}(\tau^{(\infty)} = H_{VH}) = \phi^{-4} = 5 - 3\phi,
\mathbf{P}(\tau_H^{(\infty)} = V) = 0,
\mathbf{P}(\tau_H^{(\infty)} = H_{HH}) = \phi^{-3} = 2\phi - 3,
\mathbf{P}(\tau_H^{(\infty)} = H_{HV}) = \phi^{-2} = 2 - \phi,
\mathbf{P}(\tau_H^{(\infty)} = H_{VH}) = \phi^{-2} = 2 - \phi.$$

Recursive Asymptotic Algorithm:

This is the same as the Recursive Algorithm, but using the distributions $\tau^{(\infty)}$ and $\tau_H^{(\infty)}$.

II. Dynamic Sampling Algorithms

Markov chain 1 (Rotations):

Repeat:

- Choose a dyadic rectangle within the square of any size
- ullet Choose a direction $d \in \{0^o, 90^o, 180^o, 270^o\}$.
- "Rotate" the subtiling within this rectangle by d, if possible.

AD-Trees

Consider complete binary trees with the labels A (agree) or D (disagree) using relative orientation of a cut relative to its parent.

Algorithm:

- 1. Initialize by defining the parent cut to be the square's left edge.
- 2. If the tree is empty (n = 0) then Exit.
- 3. If the root is labeled A, make a cut parallel to the parent cut.
 - If the root is labeled D, make a cut orthogonal to the parent.
- 4. Continue recursively (from Step 2) with the two halves (setting the parent cut equal to the cut just made).

But note that:

$$\int_{D}^{D} = \int_{D}^{A} \leftarrow A \text{ "badly labeled subtree"}$$

Definition: A complete binary tree whose nodes are labeled A or D is an AD-tree if there is no node labeled A which has two children labeled D.

Theorem: There is a bijection between \mathcal{T}_n^{AD} (the set of AD-trees) and \mathcal{T}_n .

Markov chain 2 (on AD-trees):

This MC is motivated by the AD-tree representation of tilings.

Repeat:

- Choose a node v in the AD-tree.
- Choose a label $b \in \{A, D\}$.
- Relabel v with b with prob. 1/2 unless it creates a $badly\ labeled\ subtree!$

Analysis of MC 2 on AD-Trees

Let $\Phi(x,y)$ be the Hamming distance between trees x and y. (l.e., the number of vertices which are assigned different labels.)

Lemma: Let $x,y \in \mathcal{T}_n^{AD}$ be any two configurations. Then there is a sequence of states z_0,z_1,\ldots,z_d such that $z_0=x$, $z_d=y$, $d=\Phi(x,y)$ and for all $0\leq i< d$, $\Phi(z_i,z_{i+1})=1$.

<u>Corollary:</u> The Markov chain $\widetilde{\mathcal{M}}_n$ is ergodic and converges to the uniform distribution on \mathcal{T}_n^{AD} .

Q: How quickly??

Bounding the Mixing Rate (for MC 2)

The variation distance is:

$$\Delta_x(t) = \frac{1}{2} \sum_{y \in \Omega} |P^t(x, y) - \pi(y)|.$$

The mixing time of a Markov chain is:

$$\tau(\epsilon) = \max_{x} \min\{t : \ \Delta_x(t') \le \epsilon \text{ for all } t' \ge t\}.$$

If $\tau(\epsilon)$ is polylogarithmic in the size of Ω , for fixed ϵ , then we say that the Markov chain is <u>rapidly mixing</u>.

* Recall that Ω is doubly exponential in n, so $\tau(\epsilon)$ will be exponential in n.

...it takes $O(2^n)$ time just to write down a configuration!!

Path Coupling:

- ullet Let Φ be a metric on $\Omega \times \Omega$ taking values in $\{0, \dots, B\}$.
- Let $U \subseteq \Omega \times \Omega$ such that:
 - 1. for all x_t, y_t there exists a path $x_t = z_0, z_1, \ldots, z_r = y_t$ between x_t and y_t such that $(z_i, z_{i+1}) \in U$
 - 2. $\sum_{i=0}^{r-1} \Phi(z_i, z_{i+1}) = \Phi(x_t, y_t).$
- ullet $\mathbf{E}(\Delta\Phi(x_t,y_t))\leq 0$ for all $(x_t,y_t)\in U$,
- $\mathbf{P}[\Phi(x_{t+1},y_{t+1}) \neq \Phi(x_t,y_t)] \geq \alpha \ (>0)$ whenever $x_t \neq y_t$.

Theorem: [Bubley, Dyer, Greenhill] The mixing time satisfies:

$$\tau(\epsilon) \le \left\lceil \frac{eB^2}{\alpha} \right\rceil \lceil \ln \epsilon^{-1} \rceil.$$

Our coupling for Alg 2:

To couple: Choose the **same vertex** and the **same** label b.

We have:

Path: Recall the Hamming distance Φ has the path property.

Diameter: $B \le n2^n$. **Variance:** $\alpha \ge 2^{-n}$.

So it suffices to show:

Expected change:

 $\mathbf{E}(\Delta\Phi(x_t,y_t)) \leq 0$ for all $(x_t,y_t) \in U$.

Showing that $\mathbf{E}(\Delta\Phi(x_t,y_t)) \leq 0$

Let x_t, y_t have distance $\Phi(x_t, y_t) = 1$ and differ at vertex w.

Good Case:

1. v = w: then $x_{t+1} = y_{t+1}$ for either choice of b.

(Potentially) Bad Cases:

1.
$$v = p(w)$$
 (parent):

2.
$$v = s(w)$$
 (sibling):

3.
$$v = l(w)$$
 (left child):

4.
$$v = r(w)$$
 (right child):

However: bad cases 1 and 2 cannot simultaneously occur! Nor can cases 3 and 4!

So there are:

- \bullet at most 2 bad cases, with relative weight 1/2,
- and 1 good case, with relative weight 1.

Theorem: The mixing time of the Markov chain satisfies

$$\tau(\epsilon) \le 2^{3n} \mathrm{e} \lceil \ln \epsilon^{-1} \rceil.$$

The Natural MC on Tilings (MC 1)

The number b_n of subrectangles with area at least $2 \cdot 2^{-n}$ is:

$$b_n = \sum_{i=1}^{n-1} (k+1)2^k = (n-1)2^n.$$

The transition probabilities $P_n(\cdot)$ of our MC 1 are:

$$P_n(T_1, T_2) =$$

$$\begin{cases} 1/4b_n & \text{if } T_1,T_2 \text{ differ by rotating a} \\ & \text{subtiling by } \pm 90^\circ \text{ or } 180^\circ; \\ 1-\sum_{T'\neq T_1}P_n(T_1,T') & \text{if } T_1=T_2 \\ 0 & \text{o.w.}. \end{cases}$$

Comparison of Markov Chains

We know \widetilde{P} (on AD-trees) is rapidly mixing. We want to know about P (rotations on dyadic tilings).

Theorem: [Diaconis, Saloff-Coste] Let (P,π,Ω) and $(\widetilde{P},\pi,\Omega)$ be two reversible Markov chains such that $\widetilde{P}(x,y) \neq 0$ implies $P(x,y) \neq 0$ for all $x,y \in \Omega$. Let $\pi_* = \min_{x \in \Omega} \pi(x)$. Then, for $0 < \epsilon < 1/2$,

$$\tau(\epsilon) \le \frac{4\ln(1/(\epsilon\pi_*))}{\ln(1/2\epsilon)} A \widetilde{\tau}(\epsilon),$$

where

$$A = \max_{x \neq y, \widetilde{P}(x,y) > 0} \frac{\widetilde{P}(x,y)}{P(x,y)}.$$

Back to Tilings and AD-Trees

Let $x \neq y \in \Omega$ be tilings s.t. P(x,y) > 0. We find

$$\frac{\widetilde{P}(x,y)}{P(x,y)} = \frac{(2|V_n|)^{-1}}{(4b_n)^{-1}}$$
$$= \frac{4(n-1)2^n}{2(2^n-1)}$$
$$\leq 2n.$$

Also,

$$\pi_*^{-1} \le 2^{2^n}$$
.

Hence:

$$\tau(\epsilon) \le c(\epsilon) n \, 2^n \, \widetilde{\tau}(\epsilon),$$

for some constant $c(\epsilon)$,

* Thus MC 1 is also rapidly mixing.

III. What do Random Dyadic Tilings Look Like?

Total Height:

The normalized height function is

$$\tilde{H}(T) = 2^{-n}H(T) - n/2, \qquad T \in \mathcal{T}_n.$$

This gives us that $-n/2 \leq \tilde{H}(T) \leq n/2$.

By symmetry, $\mathbf{E} \, \tilde{H}_n = 0$.

Theorem: There exists a sym. r.v. \tilde{H}_{∞} s.t.

- ullet As $n o\infty$, $ilde{H}_n\stackrel{d}{ o} ilde{H}_\infty$.
- ullet For any real t,

$$\mathbf{E}\exp(t\tilde{H}_n) \le \exp(\frac{1}{4}\phi^4t^2), \qquad 1 \le n \le \infty.$$

• For any $a \ge 0$,

$$\mathbf{P}(\tilde{H}_n \ge a) \le \exp(-\phi^{-4}a^2), \qquad 1 \le n \le \infty.$$

• Var
$$\tilde{H}_{\infty} = \mathbf{E} \, \tilde{H}_{\infty}^2 = (6\phi - 2)/11$$

= $(3\sqrt{5} + 1)/11 = 0.7007458 \cdots$.

For the unnormalized height (in $\{0, \ldots, n\}$), if heights were independent, the variance would be at most $n^2 2^n$.

Here we find:

$$\mathbf{Var} H_n = 2^{2n} \mathbf{Var} \tilde{H}_n$$

$$\sim 2^{2n} \mathbf{Var} \tilde{H}_{\infty} = 2^{2n} (3\sqrt{5} + 1)/11$$

Hence there is very high correlation.

Long thin rectangles force lots of other long thin rectangles!

"Struts"

A subrectangle of the unit square is a **strut** if it spans the unit square vertically (i.e., its height is n).

Let $S_n(T)$ be the number of struts in a random tiling T of \mathcal{T}_n .

What is the distribution of $S_n(T)$??

ullet T has a horizontal cut iff there are no struts, i.e. if $S_n(T)=0.$ Hence,

$$\mathbf{P}(S_n = 0) = p_n \to \phi - 1.$$

ullet Tiles are struts iff in the HV-tree all nodes on the path are labeled V (and this produces two struts).

Thus S_n equals twice the number of such paths in a random HV-tree.

Theorem: $S_n/(\sqrt{5}-1)^n \stackrel{d}{\to} Z$ as $n \to \infty$, for some random variable Z such that:

- $\mathbf{P}(Z=0) = \lim_{n\to\infty} \mathbf{P}(S_n=0) = \phi 1.$
- ullet $\mathbf{E}\,Z=eta$ and $\mathbf{Var}\,Z=2\phieta^2$, where $eta=\prod_{n=1}^\infty(p_n\phi)=0.702845\cdots$.