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Abstract. Colloids are binary mixtures of molecules with one type of
molecule suspended in another. It is believed that at low density typical
configurations will be well-mixed throughout, while at high density they
will separate into clusters. We characterize the high and low density
phases for a general family of discrete interfering binary mixtures by
showing that they exhibit a “clustering property” at high density and
not at low density. The clustering property states that there will be a
region that has very high area to perimeter ratio and very high density of
one type of molecule. A special case is mixtures of squares and diamonds
on Z2 which corresond to the Ising model at fixed magnetization.

Keywords: discrete colloids, Ising model, phase separation, Peierls ar-
gument, equilibrium distribution.

1 Introduction

Colloids are mixtures of two types of molecules in suspension where all non-
overlapping arrangements are equally likely. When the density of each type of
molecule is low, the mixtures are homogeneous and consequently exhibit prop-
erties that make them suitable for many industrial applications, including fogs,
gels, foods, paints, and photographic emulsions (see, e.g., [1], [11]). In contrast,
when the density is high, the two types of molecules separate whereby one type
appears to cluster together. Although this behavior is similar to phase transitions
that occur in other discrete models, such as the Ising and Potts models, here the
two types of molecules do not possess any enthalpic forces causing like particles
to attract or disparate particles to repel. In contrast, the behavior of colloids
is purely entropic — the only restriction is a “hard-core” constraint requiring
objects to remain in non-overlapping positions, and clustering occurs at high
density because the overwhelming majority of configurations in the stationary
distribution are believed to exhibit such a separation. While the experimental
study of colloids is pervasive in surface chemistry, material science, physics, and
nanotechnology, there has been little rigorous work explaining their behavior.
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Even running simulations has been challenging because local algorithms will be
slow to converge at high density. Dress and Krauth [7] introduced an algorithm
to try to overcome this obstacle, but this too was shown to require time exponen-
tial in the number of molecules in some cases [14]. Nonetheless, their algorithm
seems to be well-behaved in practice, and Buhot and Krauth [3] provided simu-
lations showing strong heuristic evidence of the presence of two distinct phases
in colloid models consisting of different sized squares.

Frenkel and Louis [9] studied an interesting discrete model of colloids whose
behavior can be related to the Ising model, a standard model of ferromagnetism.
Their model consists of mixtures of unit squares in a region of Z2 and diamonds
of area 1/2 that sit on lattice edges (see Fig. 1). They show that this colloid
model, which we call Model 1, corresponds to an Ising model, where the density
of squares fixes the magnetization and the density of diamonds determines the
temperature (see Section 2.1). The Ising model at low temperature is known
to exhibit clustering of positive spins. In fact the precise limiting shape of the
cluster known as the Wulff shape has been extensively studied using sophisticated
techniques (see, e.g. [5], or the references therein). Model 1 then inherits the
phase transition arising in the Ising model which shows there will be clustering at
high densities [13]. In this paper we study clustering using elementary methods
that apply to a large class of natural colloid models. We characterize clustering
directly in terms of the parameters arising from the model to distinguish between
the high and low phases and understand the role the density of each type of
molecule plays.

Fig. 1. Model 1, squares and diamonds on the n × n grid Ln

We consider a class of interfering binary mixtures. Let (ΛA,ΛB) be a pair
of planar lattices such that a face of ΛA and a face of ΛB are either disjoint,
intersect at a single vertex, or intersect at a simply-connected region that is
isomorphic to a fixed shape s with nonzero area. For example, in Model 1, ΛA

is the Cartesian lattice Z2 and ΛB is the set of diamonds bisected by edges in Z2;
then s is an isosceles triangle with unit base and height 1/2 (Fig. 1). We consider
the intersection of these lattices with some finite region L, where LA = ΛA ∩ L
and LB = ΛB ∩ L. We are given a set of tiles; A-tiles lie on the faces of LA and
B-tiles lie on the faces of LB with the additional requirement that tiles must not
overlap. In Section 5, we will give examples of other interfering binary mixtures,
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including independent sets, that arise naturally in combinatorics and statistical
physics and contrast these with a non-interfering binary mixture that provably
does not exhibit clustering.

It is often useful to switch from a model where the number of tiles of each
type are fixed to a so-called grand-canonical ensemble where these are allowed to
vary. Here, however, typical configurations would have a preponderance of only
one type of tile at most high densities and the balanced configurations we are
interested in would be exponentially unlikely. Instead, we fix the number of A-
tiles and allow the B-tiles to vary stochastically. Each configuration σ has weight
proportional to λd(σ), where d(σ) is the number of B-tiles in σ. The choice of λ
controls the expected density of B-tiles.

Our goal now is to understand when clustering occurs in terms of the (ex-
pected) density of each type of tile. First we define a clustering property for con-
figurations of tiles. Informally we have clustering if there exists a dense region R
in ΛA with Ω(n2) area and O(n) perimeter. Our main theorems demonstrate
that at high density interfering binary mixtures exhibit the clustering property
while at low densities they do not. We give precise definitions of the clustering
property and state the main theorems in Section 2. In Sections 3 and 4 we prove
the two main theorems in the context of Model 1 and in Section 5 we explain
the generalization to other interfering binary mixtures.

The key tools in our proofs are careful Peierls arguments, used in statistical
physics to study uniqueness of the Gibbs state and phase transitions (see, e.g.,
[4], [6]), and in computer science to study slow mixing of Markov chains (see,
e.g., [2], [10], [15]). Peierls arguments allow you to add and remove contours
by complementing the interiors of those contours. The main challenge here is
maintaining the number of A-tiles, making the arguments considerably more
difficult. We introduce the concept of bridge systems, to handle multiple con-
tours by connecting components and make it possible to efficiently encode the
boundaries of all contours removed. The encoding is necessary to account for the
entropy/energy tradeoffs in these maps.

2 Binary Mixtures and the Clustering Property

We begin by formalizing the model, defining clustering and stating our main
theorems.

2.1 Interfering Binary Mixtures

Recall A-tiles lie on faces of LA = ΛA ∩ L and |LA| is the total number of
faces of LA. Given constants λ > 1, and 0 < b < 1/2, where b|LA| ∈ Z, define
Ω = Ω(b,λ) as the set of non-overlapping packings of L with b|LA| A-tiles and
any number of B-tiles (where a tile can only be placed on a face of its type).
We wish to study the distribution π(ρ) = λd(ρ)/Z, where d(ρ) is the number of
B-tiles in ρ and Z =

∑
ρ∈Ω λd(ρ) is a normalizing constant. Our goal is to deter-

mine whether a configuration chosen according to π is likely to have clusters of
A-tiles.



Clustering in Interfering Binary Mixtures 655

In Sections 2 - 4, we study Model 1, and in Section 5, we generalize the tech-
niques to other models of interfering binary mixtures. We start by defining the
Ising model on the n×n grid Ln and explaining the equivalence with Model 1.
Let G = (V , E) be the dual lattice region to Ln and let ρ ∈ {+,−}V be an
assignment of spins to each of the vertices in V (i.e., the faces in V ). The weight
of a configuration is π(ρ) = eβ|Ed(ρ)|/Z, where Ed(ρ) ⊆ E is the set of edges in
G whose endpoints have different spins in ρ, β is inverse temperature and Z is
the normalizing constant.

For Model 1, given a configuration ρ in Ω, let the square structure Γ (ρ) be
the configuration σ obtained from ρ by removing all of its B-tiles (diamonds). We
consider the set Ω̂ of all such square structures with bn2 A-tiles (squares). Let π̂
be the induced distribution on Ω̂; that is, for σ ∈ Ω̂, let π̂(σ) =

∑
ρ∈Γ−1(σ) π(ρ).

For σ in Ω or Ω̂, define the perimeter of σ to be the edges that belong to exactly
one A-tile in σ, and define κ(σ) as the length of the perimeter of σ. Let e(σ) be
the number of edges that are not incident to any A-tile in σ. We find that

π̂(σ) =
e(σ)∑

k=0

λk

Z

(
e(σ)
k

)
=

1
Z

(1 + λ)e(σ) = (1 + λ)2n2−2bn2 µκ(σ)

Z
, (1)

where µ = (1+λ)− 1
2 . Thus, the total perimeter of the square structure completely

determines the probability that it will show up in Ω. This directly implies the
equivalence with the Ising Model: give a face f of Ln a positive spin if there is an
A-tile on f and a negative spin otherwise. Since the weight of a configuration is
determined exactly by the number of edges with opposite spins in Ln, this is the
Ising model with a fixed number of positive spins for some λ that is a function
of β, known as fixed magnetization.

2.2 The Clustering Property

The goal of this paper is to show that when the density of B-tiles is high, in-
terfering binary mixtures cluster, while at low density they do not. First, we
characterize clustering in this context. Intuitively, a configuration has the clus-
tering property if there is a large region densely filled with A-tiles. More precisely,
let a region R be any set of faces in Ln. Its perimeter, κ(R) is the number of
edges adjacent to a face in R and a face in R = Ln \ R. Let c = min

{
b
2 , 1

100

}
.

Definition 1. We say that a configuration σ ∈ Ω (or Γ (σ) ∈ Ω̂) has the clus-
tering property if it contains a region R which satisfies the following properties:

1. R contains at least (b − c)n2 A-tiles,
2. the perimeter of R is at most 8

√
b n, and

3. the density of A-tiles in R is at least 1 − c and in R is at most c.

If a configuration has the clustering property, we show that it contains an n1/3×
n1/3 window with high density and one with low density, demonstrating the
heterogeneity of the configuration. In Section 5.2 we contrast this with Model 4,
related to bond percolation, which remains homogeneous at all densities.
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2.3 Main Results

We show that at high density interfering binary mixtures have the clustering
property while at low densities they do not. Specifically, we prove the following
theorems in the context of Model 1 on the n × n region Ln with bn2 A-tiles
and the density of B-tiles determined by λ. In Section 5, we show they also hold
for other interfering binary mixtures.

Theorem 1. For 0 < b ≤ 1/2, there exist constants λ∗ = λ∗(b) > 1, γ1 < 1 and
n1 = n1(b) such that for all n > n1, λ ≥ λ∗ a random sample from Ω will have
the clustering property with probability at least (1 − γ1

n).

Theorem 2. For 0 < b < 1/2, there exist constants λ∗ = λ∗(b) > 0, γ2 < 1 and
n2 = n2(b) such that for all n > n2, λ ≤ λ∗ a random sample from Ω will not
have the clustering property with probability at least (1 − γ2

n).

Furthermore, it follows from the proofs that at low density if a dense region R′

has area Ω(n2) then it must have perimeter Ω(n2). Notice that in the case
b > 1/2 we can obtain comparable results by the symmetry of the A-tiles to
the empty space. Indeed, in this case if λ is sufficiently high we will see empty
cells clustering within a sea of A-tiles and for low density the empty cells will be
well-distributed.

Note that since clustering is just a property of the A-tiles, it suffices to prove
Theorems 1 and 2 for weighted square structures Ω̂, involving just the A-tiles.
From this point we focus on Ω̂, and we refer to A-tiles just as tiles.

3 High Density of B-tiles

We concentrate first on interfering binary mixtures at high density to prove
Theorem 1. Define Ψ ⊂ Ω̂ to be the set of configurations that have the clustering
property; then we show that π̂(Ω̂ \ Ψ) ≤ γn

1 π̂(Ψ) for some constant γ1 < 1. To
achieve this, we apply a Peierls argument, in which we define a map f : Ω̂\Ψ → Ψ
and show that for all τ ∈ Ψ ,

∑

σ∈f−1(τ)

π̂(σ) ≤ γn
1 π̂(τ). (2)

Given a configuration σ ∈ Ω̂\Ψ , the map f removes a large set T of tiles in σ and
reassembles them in a single large component in f(σ). This decreases the total
perimeter of the configuration significantly, and therefore π̂(f(σ)) is exponen-
tially larger than π̂(σ). The challenge is to bound the number of configurations
that map to a given τ ∈ Ψ by carefully encoding the preimages of τ .

Some definitions will be helpful. We say two tiles are adjacent if their borders
share an edge. A component is a maximal connected set of tiles, and maximal
connected segments of the perimeter of σ are contours. The set T of tiles we
remove will be a union of components, which we identify using a system of
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“bridges” connecting these components (Fig. 2). The key is that the number
of edges in the bridges is at most a constant times the total perimeter of the
components bridged. Then if E is the set of all edges in bridges or along contours
bridged, we can bound |f−1(τ)| by the number of ways that those E edges could
be distributed in σ. Finally, we show that there is a sparse, roughly square region
in the resulting configuration where we can add the T tiles. We complement that
region to obtain f(σ).

→

Fig. 2. A configuration σ ∈ Ω̂ \ Ψ and the image f(σ) of σ in Ψ

Building Bridges. Given a region R, let C(R) be the set of contours fully
contained within the interior of R and define the outer contours to be those
in C(R) that are not contained in the interior of other contours in C(R). The
interior of the outer contours of components are called holes and the interior of
the outer contours of holes are called islands.

Consider first the case in which there are no components with holes. Sup-
pose B is a set of edges of Ln connecting some subset S of the contours to the
boundary of Ln. We call B a set of bridges and S a set of bridged contours. A
cell in Ln or a tile is called unbridged if it is not bounded by a bridged contour.
Then (B, S) is a c-bridge system for σ ∈ Ω̂ if the number of unbridged tiles
is at most c times the number of unbridged cells, and |B| ≤ (1 − c)/(2c)κ(S).
If σ has components with holes, then first construct a c-bridge system (B, S)
for σ′, obtained from σ by filling all the holes. Next for each bridged contour X
in σ, construct a c-bridge system for the region bounded by X (treating tiles as
empty cells and empty cells as tiles). Recurse until you obtain c-bridge systems
for each bridged contour at every level of the recursion. We call this a c-bridge
system of σ. We defer the details to the full version of the paper.

Lemma 1. There exists a c-bridge system for any configuration σ ∈ Ω̂.

Proof. We may assume that σ has no holes, since otherwise we recurse as de-
scribed above. Now we use induction on the number of contours in R. If there are
no contours, then clearly (∅, ∅) is a c-bridge system for R. Otherwise, define t(R)
to be the tiles in R, and x(R) is the number of empty cells in R. Let H be the
set of horizontal lines through R. For every H ∈ H, if |t(R)∩H | < c|R∩H | then
we are done, since then (∅, ∅) is a c−bridge system for R. Otherwise there exists
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a horizontal line H such that |t(R) ∩ H | ≥ c|R ∩ H |. Then let B be the set of
bottom edges of every outer cell in H ∩R. See Fig. 3, where the dark black edges
along the line H are the new bridges. Let S be the set of contours connected in
this step. We know that κ(S) ≥ 2|t(R)∩H | ≥ 2c |R∩H | ≥ 2c/(1−c)|x(R)∩H |,
so |B| ≤ (1 − c)/(2c)κ(S). We obtain R′ from R by removing the cells bounded
by a contour in S, as in Fig. 3. Then by induction, there exists a c−bridge system
(B′, S′) of R′. Then B̂ := B ∪ B′ is a set of bridges connecting the contours in
Ŝ = S ∪ S′ to each other and to the boundary of R. Moreover, |B̂| ≤ 1−c

2c κ(Ŝ)
and the number of unbridged tiles is at most c times the number of unbridged
cells. Hence (B̂, Ŝ) is a c-bridge system for R. -.

H →

Fig. 3. Before and after one step of the construction of a c-bridge system for a region
R; the solid lighter grey area is exterior to R

Once we have a c-bridge system, we can apply a map in which we complement
an entire region of cells, making tiled cells empty and vice versa. This map sig-
nificantly reduces the perimeter, but can dramatically change the total number
of tiles. Recall we must maintain the total number of tiles, so we may need to
supplement by adding extra tiles from another region or we may have extra tiles,
which we will put in our “bank” for later. At the end of the process we will find
a roughly square region that we can again complement using the bank of extra
tiles so that the total number of tiles is restored to bn2 at minimal cost.

Finding a Sparse Box. We now show that after removing all but cn2 tiles,
there exists a region of low density where we can place the tiles in our bank.

Lemma 2. For (b − c)n2 ≤ a < bn2, there exists a constant n3 = n3(b) such
that for all n ≥ n3, if ρ is a configuration with at most cn2 tiles then ρ contains
a roughly square region R′ such that complementing R′ requires a additional tiles
and the change in total perimeter is at most 5

√
a.

Proof. Given a region R, let d(R) denote the number of tiles needed to comple-
ment R; this is exactly the area of R minus twice the number of tiles in R. Let
l = /

√
8a/70. First we show that there exists a square l × l region R such that

d(R) ≥ a. Assume that such a square does not exist. Divide the grid into
⌊

n
l

⌋2

disjoint squares with side length l and consider any square. Let t be the number
of tiles in the square. The empty volume is at least l2 − t. By assumption each
square satisfies l2−t < t+a, and so t > l2−a

2 . In particular, 8a/7 ≤ l2 < a+2cn2,
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so we may assume that a < 14cn2. This implies that l ≤
√

8a/7+1 ≤ 1+4
√

cn.
However, if T is the total number of tiles,

cn2 ≥ T >
⌊n

l

⌋2 l2 − a

2
≥ n2

2

(
1 − l

n

)2 (
1 − a

l2

)
>

n2
(
1 − 1

n − 4
√

c
)2

16
≥ cn2,

since c ≤ 1
65 and n ≥ n3, a contradiction. Therefore there exists an l× l square R

such that d(R) ≥ a. Remove cells from R one at a time, starting with the bottom
row of R and moving across, until we obtain a region R′ ⊆ R with d(R′) = a.
This can be done because removing one cell at a time changes d by at most 1.
This region R′ is roughly square and has perimeter at most 4

√
8a/7 < 5

√
a. -.

The Proof of Theorem 1. Finally we can prove Theorem 1, showing that
for large λ a typical configuration will have the clustering property.

Fig. 4. A c-bridge system for σ ∈ Ω̂ \ Ψ ; the image f1(σ); and f(σ) = f2 ◦ f1(σ)

Proof of Theorem 1. Let σ ∈ Ω̂ \ Ψ . Construct a c-bridge system (B, S) for Ln

as described in Lemma 1. That is, (B, S) is a set of bridges in Ln connecting
some of the components, some of the holes within those components, some of
the islands within those holes, etc. For any bridged contour X , let r(X) be the
region bounded by X . If r(X) is a component with holes, then we remove all
outer tiles of r(X) and complement all unbridged holes in X , using a subset
of the tiles removed to fill in the holes. If r(X) is a hole with islands, then we
leave all of the unbridged islands alone. At this point, after complementing some
number of regions, we have a bank of extra tiles; let a be the number of tiles in
the bank. Notice that by the definition of a c-bridge system, the density of tiles
remaining is at most c, so a ≥ (b − c)n2.

Let f1(σ) be obtained from σ by removing the bridged components and com-
plementing as described above. Let F1 be the image of f1 on Ω̂ \ Ψ ; note that
F1 1⊂ Ω̂ since the configurations in F1 have too few tiles. Let κ be the total
perimeter of all contours bridged. Then for any ρ ∈ F1, we claim that the num-
ber of preimages of ρ whose bridged contours have total perimeter κ is at most
5c3 for c3 = (1 + 1−c

2c + 1
c2

)κ. Consider the c-bridge system obtained above for
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Ln. Let V denote the leftmost vertical edges of the region. Let S′ = S ∪ V . We
perform what is essentially a depth-first-search traversal of the bridge system
on S′, starting at the top left corner of Ln. As we traverse an edge we record
what type of edge it was using five bits that represent forward, left, right, bridge
east, or bridge west (see full version for details). Given the encoded information,
there is a unique way to distribute the contours. Hence for all perimeters κ ≥ c2n
the number of preimages of ρ whose bridged contours have total perimeter κ is
at most 5|B|+κ+n ≤ 5c3 . Therefore |f−1

1 (ρ)| ≤
∑

κ≥c2n 5c3.

Let ρ ∈ F1 with bn2 − a tiles. Lemma 2 shows how to find a region S′ in ρ
to complement using the a tiles from the bank to obtain τ in such a way that
κ(τ)− κ(ρ) ≤ 5

√
a. Let f2(ρ) = τ and f = f2 ◦ f1. We can encode the boundary

of S′ with n23κ(S′) ≤ n235
√

a information. Hence for any τ ∈ Ψ ,

|f−1(τ)| ≤ n235
√

a max
ρ∈f−1

2 (τ)
|f−1

1 (ρ)|.

Let σ ∈ Ω̂ \ Ψ , and as above let κ be the total perimeter of components
bridged in σ (recall κ(σ) is the total perimeter of all contours in σ). If κ ≤ 8

√
a,

then σ ∈ Ψ , a contradiction. To see this, define the parity of a cell to be 1
if it is contained within an odd number of bridged contours and 0 otherwise,
and let R be the set of cells with parity 1. Then R has density at least 1 − c,
perimeter at most 8

√
a and a ≥ (b − c)n2 tiles. Moreover, R has density at

most c. Thus R is the region we require, and so σ ∈ Ψ . This implies κ > 8
√

a.
We have shown that κ(σ) − κ(f(σ)) > κ − 5

√
a > κ/4. Let τ ∈ Ψ and

define f−1
κ (τ) ≤ n2

(
3

1
2
√

7 51+ 1−c
2c + 1

16
√

b

)κ
to be the set of configurations with

perimeter κ that map to τ . Then

π(τ)−1
∑

σ∈f−1(τ)

π(σ) ≤
∑

σ∈f−1(τ)

µκ(σ)−κ(f(σ)) ≤
2n2∑

κ=8
√

a

µκ/4|f−1
κ (τ)| ≤ γn

1 ,

for some γ1 < 1, if µ ≤ µ∗ <
(
3

1
2
√

7 51+ 1−c
2c + 1

16
√

b

)−4
. Thus the theorem holds if

λ ≥ λ∗ = µ∗−2 − 1. -.

As a corollary, we find that if a configuration has the clustering property then
there exists an n1/3 × n1/3 window with high density and one with low density.
We defer this straightforward proof to the full version of the paper.

Corollary 1. For 0 < b ≤ 1/2 there exists a constant n4 = n4(b) such that for
all n > n4, if σ satisfies the clustering property then σ contains square n1/3×n1/3

windows W1 and W2 such that the density of tiles in W1 is at least .99(1 − c)
and the density of tiles in W2 is at most 2.1c.

4 Low Density of B-tiles

We now examine the low density case and prove Theorem 2, stating that typical
configurations will not have the clustering property. For small enough λ, the
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A-tiles will be well-distributed throughout Ln, in the following sense. Any large
dense region must have perimeter on the order of n2.

Proof of Theorem 2. Define δ = ((1 − c)/(b − c))b−c. Let Ψ ′ ⊂ Ω̂ be the set of
configurations with a region R that have density at least 1− c, at least (b− c)n2

tiles, and perimeter less than αn2, where α satisfies 0 < α < (ln(δ)−b ln 2)/((1+
1/c) ln 5). We will show π̂(Ψ ′) is exponentially small. Clearly Ψ ⊂ Ψ ′, so this
implies that the clustering property is exponentially unlikely to occur.

For each σ ∈ Ψ ′, construct a c-bridge system for σ. As in the proof of Theo-
rem 1, we complement all bridged components and all non-bridged holes within
those components. We obtain f1(σ), which has tσ ≤ cn2 tiles, and a bank
of aσ ≥ (b − c)n2 tiles. Next we define N(σ) to be the set of all configura-
tions obtained from f1(σ) by adding aσ tiles back at any empty location; then
|N(σ)| =

(n2−tσ

aσ

)
. For each τ ∈ Ω̂, we need to bound the number of configura-

tions σ such that τ ∈ N(σ). As before, we can reconstruct the bridge system
for σ with 5(1+ 1−c

2c )κ+n information and we can recover the original with 2bn2

information by recording whether each tile moved. Hence the number of σ that
map to τ is at most 5(1+ 1−c

2c )αn2+n2bn2 ≤ (2bδ)n2/2 for large enough n.
Finally, we define a weighted bipartite graph G(Ψ ′, Ω̂, E) with an edge of

weight π(σ) between σ ∈ Ψ ′ and τ ∈ Ω̂ if τ ∈ N(σ). The total weight of edges is

∑

σ∈Ψ ′

π(σ)|N(σ)| ≥
∑

σ∈Ψ ′

π(σ)
(

n2 − (bn2 − aσ)
aσ

)
≥ π(Ψ ′)δ−n2

.

However, the weight of the edges is at most
∑

τ∈Ω̂ π(τ)µ−4(b−c)n2
(2bδ)n2/2. Let

µ∗ = (2b/δ)1/(8(b−c)) and λ∗ = (µ∗)−2 − 1. Thus for all µ < µ∗,

π(Ψ ′) < µ−4(b−c)n2
(2bδ)n2/2δ−n2

< γn
2 ,

for some γ2 < 1, completing the proof. -.

5 Other Models

We conclude by considering other natural models of binary mixtures and showing
that Theorems 1 and 2 still hold for the interfering models.

5.1 Interfering Binary Mixtures

Model 2: A-tiles are squares on Ln and B-tiles are unit squares centered on
vertices of Ln, (see Fig. 5(a)). It is not hard to see that this model corre-
sponds exactly to an independent set model on the rotated grid where vertices
correspond to the centers of A-tiles and B-tiles, and the number of even vertices
is fixed. The number of odd vertices varies according to λ. Again the A-tiles
will cluster together at high enough λ, leaving large regions to fill with B-tiles.
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The weight of a configuration σ is proportional to λv, where v is the number
of vertices in σ not intersecting any A-tiles (we call these open vertices). Hence
we must argue that by removing several components and putting them together
into a single large component, the number of open vertices increases. Indeed,
the number of open vertices is proportional to the length of the perimeter, so
this can be carried out. One must be careful, however, to define a component so
that two tiles are adjacent if they share a vertex (not an edge). Otherwise, if a
region looks like a checkerboard of tiles to empty space, and we remove every
other row to create a new component, we decrease the perimeter but increase the
number of occupied vertices. This cannot happen as long as we choose maximal
connected subsets of tiles according to this definition of adjacency.

(a) (b) (c) (d)

Fig. 5. (a) Model 2 (b) Model 3 (c) Model 4 (d) Model 4 and bond percolation

Model 3: A-tiles are triangles on the triangular lattice ΛA and B-tiles are
lozenges bisected by edges of ΛA, (see Fig. 5(b)). Model 3 maps bijectively
onto an Ising Model with fixed magnetization on ΛA. In models like this, where
the A-tiles are not square, the large component we create for Theorem 1 might
not be square, but some other shape with large area to perimeter ratio, such as
a hexagon in this context. The remaining details are similar.

5.2 Noninterfering Binary Mixtures

Model 4: A-tiles are unit squares on Ln and B-tiles are squares of side length
1/2 on the half-integer lattice, (see Fig. 5(c)). This model is qualitatively
different from the previous models since the placement of the A-tiles does not
influence the number of places in which we can put the B-tiles. In fact, this
model is just bond percolation on a rotated grid with a fixed number of edges,
where we do not expect clustering at any density. To see the bijection, label a
unit square with a Northwest-Southeast diagonal if it lies on an even face and
label it with a Northeast-Southwest diagonal otherwise, as in Fig. 5(d). Notice
that these lines form a subset of the edges of a rotated grid. If we have bn2

A-tiles then each edge in the rotated grid is present with probability b. To
illustrate the difference between the behavior of Model 4 and the interfering
binary mixtures, consider an n1/3 × n1/3 window in each. In Model 4, the
probability that any n1/3×n1/3 box has density d such that d > 1.5b or d < 0.5b is
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less than γn
3 for some constant γ3 < 1 (see the full version for details). In contrast

by Corollary 1, a configuration with the clustering property has a window with
density d ≥ .99(1−c) and a window with density d ≤ 2.1c. Hence we see markedly
different behavior between interfering and non-interfering binary mixtures.
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