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Abstract

Colloids are mixtures of two different types of molecules.

The model has a hard-core constraint forcing all the

molecules to occupy non-overlapping positions, but there

are no additional interactions between molecules; all non-

overlapping arrangements are equally likely. It is believed

that colloids undergo a phase transition whereby at low

density the two types of molecules will be uniformly inter-

spersed, while at high density large clusters will form and

the two types of molecules will effectively separate. While

local algorithms are not believed to work at or beyond the

critical point, an algorithm due to Dress and Krauth [3] of-

fers an alternative approach to sampling potentially beyond

the critical point where clusters begin to form. We study the

DK algorithm on a colloid model consisting of long bars and

small diamonds on the periodic lattice Z2
n. We show that

if we restrict the model to allow at most one bar in each

column of the lattice region, then local algorithms are slow,

but the DK algorithm is provably efficient (if the bars are

long enough). However, we show that when we allow any

number of bars per column, the DK algorithm also requires

exponential time to reach equilibrium.

1 Introduction

Colloids are binary mixtures of substances that separate
into clusters at sufficiently high density. When the den-
sity of each substance in the suspension is low, the mix-
ture looks well-mixed and each substance looks evenly
dispersed within the other. In contrast, when the den-
sity of each is high, the two substances separate whereby
particles of one type join together to form large clusters
sitting in a sea of molecules of the other type. Although
this behavior is similar to other discrete models, such
as the ferro-magnetic Ising model, here the two types
of particles do not possess any enthalpic forces causing
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like particles to attract or disparate particles to repel.
In contrast, the behavior of colloids is purely entropic
— the only restriction is a “hard-core” constraint re-
quiring objects to remain in non-overlapping positions,
and clustering occurs at high density because the over-
whelming majority of configurations in the stationary
distribution are believed to exhibit such a separation.

While the emperical study of colloids is pervasive
in surface chemistry, material science, physics, and
nanotechnology, there has been little rigorous work
explaining their behavior. In 1992, Frenkel and Louis [4]
defined a discrete model that packs unit squares in a
region of Z2 along with “specks” or diamonds of area
1/2 that sit on lattice edges. They show that this colloid
model corresponds precisely to the Ising model, where
the density of squares fixes the magnetization of the
Ising magnet and the density of specks determines the
temperature. The colloid model then inherits the phase
transition arising in the Ising model, showing that as
the density of specks increases, effectively lowering the
temperature in the Ising model, there will be a point
beyond which the predicted clusters will form in the
colloid model. However, this reduction does not readily
generalize to any other models of colloids.

Given the dearth of rigorous analysis characterizing
the distributions at high and low density, one would ex-
pect that sampling would be an invaluable experimental
tool. However, designing rigorous sampling algorithms
has proven equally challenging: intuitively, at low den-
sity standard approaches to sampling can be used to
illustrate heterogeneous mixtures of particles, but sam-
pling algorithms based on local updates are no longer
efficient at high density – precisely because we expect
large clusters reminiscent of the low temperature Ising
model to form. In 1995 Dress and Krauth [3] intro-
duced a clever non-local algorithm that they believed
would be efficient at intermediate densities, even beyond
the phase transition, and in 1998 Buhot and Krauth [2]
provided simulations finally demonstrating heuristic ev-
idence of the presence of two distinct phases in colloid
models consisting of different sized squares.

Informally, the DK algorithm, which requires the
colloid model to lie on a torus, operates as follows.
In each step, a pivot on the torus is chosen and a
dual image, formed by rotating the configuration 180 o



around the pivot, is superimposed on top of the primal
(original) configuration. For each component consisting
of overlapping primal and dual clusters, one or the other
is chosen; note that the complementary choice must
be made for the corresponding (dual) component (see
Figure 2). The DK algorithm potentially allows large
parts of the configuration to be updated in one move
which seems necessary at high density.

In fact, the DK algorithm can be generalized to a
large class of hard-core models with symmetry, includ-
ing independent sets on periodic lattices, although the
efficiency of such an algorithm is not yet understood.
This approach is compelling because various cluster al-
gorithms have been used extensively to sample from the
Gibbs (or Boltzmann) distribution for other fundamen-
tal models, such as the Ising and Potts models from sta-
tistical physics. While the Swendsen-Wang algorithm is
used widely in practice to sample Ising configurations
below the critical temperature when local algorithms
fail to converge quickly, careful analysis of the algorithm
revealed that it is not efficient at the critical point where
it requires exponential time to reach equilibrium [5].
Likewise, approaches such as parallel and simulated
tempering that try to circumvent obstacles causing slow
mixing at low temperature by enlarging the state space
are known to work in certain circumstances [1, 15], but
further anlaysis has revealed that they can also require
exponential time to converge [1, 14]. The rigorous anal-
ysis of these chains has helped us understand when these
algorithms are sufficient for sampling and when alterna-
tive approaches are necessary.

1.1 Our results. We study the DK cluster algorithm
on hard-core mixtures of “bars,” or long, thin axis-
aligned rectangles, and specks on the n × n torus Tn
in Z2. Bars have width 1 and length L = c1n for any
constant 0 < c1 < 1, so we should think of them as
being microscopic in one dimension and macroscopic
in the other. Specks are diamonds with height and
width one that are bisected by edges of the lattice.
When studying colloids, specks are a convenient choice
because they cannot overlap; this is the same reason
that Frenkel and Louis [4] use specks as the medium
of suspension in their model that corresponds to the
Ising model. We use bars for the second substance
because models where both dimensions are microscopic
include notoriously challenging sampling problems such
as the Ising model (squares and specks) and independent
sets (specks centered at odd vs. even lattice sites).
By allowing one dimension to be large, we are able
to derive rigorous bounds on the mixing time of the
DK and local Markov chain algorithms at high density.
In Section 3 we show that for the restricted model,

when each column can have at most one bar, the DK
algorithm is efficient. However, we show in Section 4
that for the unrestricted model, when a column can
have any number of bars, the DK Markov chain can
take exponential time to converge. In addition, we show
that the local algorithm that only moves one object at
a time is slow in both of the above settings. Thus, our
results on the restricted model demonstrate that the DK
cluster algorithm can be fast in the exact setting where
the local algorithm is slow, as conjectured. However, for
the unrestricted model we find that the DK algorithm is
very sensitive to the specific problem being solved and
can require exponential time with only minor changes
to the definition of the state space.

1.2 Techniques. For all of the proofs we rely criti-
cally on a decomposition theorem for Markov chains [9,
10]. The theorem considers a partition of the state space
Ω of any Markov chain into sets, and relates the mix-
ing time of the original chain to the mixing time of the
chain restricted to each set, as well as the mixing time of
a projection chain capturing the flow between the sets.
We define a partition according to the position of all
of the bars (which we call the bar structure). The pro-
jection has state space Ω̂ consisting of all possible bar
structures. The stationary distribution of the projection
is not uniform over Ω̂, but rather each configuration σ
has weight proportional to µκ(σ) where µ is a parameter
related to the density and κ(σ) is the total length of the
perimeter of the bars in σ or the total contour length.

This transformation is significant because Markov
chains on contour models have been extensively studied.
For example, the Ising model can also be interpreted as
a contour model where contours are edges in the dual,
separating sites assigned + and -, and the weight of a
configuration τ is proportional to µκ(τ) where µ is a
parameter related to temperature and κ(τ) is the total
length of the contours. A special case of our contour
model when there is one connected component where
the first and last bars are at the same height is almost
identical to the solid-on-solid model recently analyzed
by Martinelli and Sinclair [11].

Bounding the convergence time of algorithms for
sampling that make large changes to a configuration
in one move is always challenging. Our analysis of
the DK algorithm in the restricted setting relies on
a complex canonical paths argument enabling us to
encode information while preserving perimeter. The
proof that the DK algorithm is slow in the unrestricted
setting requires a combinatorial mapping argument to
reveal a small cut in the state space.



2 Colloids and mixing times

We begin by formally defining our colloid model and the
two Markov chains we will study. We also present some
background on Markov chains and the main techniques
used in our proofs.

2.1 The model. Consider the n×n discrete torus Tn
and embedded graph G = (V,E) with vertex set
V = {(x, y) : x, y ∈ Zn} and edge set E, where
((x1, y1), (x2, y2)) ∈ E if |x1 − x2| + |y1 − y2| = 1.
We study the set of all non-overlapping packings of Tn
of vertical bars on the faces of G and specks on the
edges of G with a fixed density of each type of tile (bars
and specks). Recall that when the density of bars and
specks is high, we expect the bars to cluster together
and the specks to be dispersed around them. One goal
would be to sample from the uniform distribution over
this set. We make a simplifying assumption allowing
the number of specks to vary, and we sample from a
weighted distribution where a configuration σ with d
specks is given weight π(σ) = λd/Z for constant λ > 1
and normalizing constant Z. The choice of λ effectively
determines the density and this model can be shown to
be stochastically equivalent to the original model where
the density of both types of tiles is fixed. Moreover,
by adding separate parameters for the density of bars
and the expected density of specks, we can better
understand the effect of each on the mixing time.

Given constants λ > 1, 0 < c1 < 1, and 0 < c2 < 1,
where c1n, c2n ∈ Z, let L = c1n and b = c2n. Define
Ω = Ω(b, L, λ) to be the set of non-overlapping packings
of Tn with b (1 × L) bars on faces and any number of
specks (diamonds with height and width 1) on edges.
We wish to sample according to the distribution

π(σ) = λd(σ)/Z,

where d(σ) is the number of specks in σ and Z =∑
σ∈Ω λ

d(σ) is a normalizing constant. See Figure 1.
Define Ω′ ⊂ Ω to be the set of configurations with
the restriction that every column of Tn has at most
one bar in it, and let π′ be its restricted distribution
with normalizing constant Z ′ =

∑
σ∈Ω′ λ

d(σ). Define a
component of σ to be a maximal set of adjacent columns
each containing at least one bar. The requirement
that c2 < 1, which implies b ≤ n − 1, is a useful
simplification that prevents connected components of
bars from wrapping around the torus.

2.2 Markov chains for colloids. As we are inter-
ested in sampling from the distribution π in order to
determine whether clusters are forming, it is natural to
design a Markov chain whose state space is Ω and whose
stationary distribution is π (or Ω′ and π′). There are
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Figure 1: b bars on the n× n torus with specks.

many ways to do this. The simplest is the local al-
gorithm that moves one speck or bar at a time. The
DK algorithm is an alternative approach that has the
same state space and limiting distribution, but poten-
tially moves many tiles in one move. We will see rigor-
ously how in some circumstances the DK algorithm is
able to get around the obstacles to rapid mixing which
the local algorithm encounters.

The local Markov chain MLocal

Starting at any σ0, iterate the following:

• With prob. 1/2, pick a bar t and an offset
u ∈ {−1, 0, 1} × {−1, 0, 1} u.a.r. (uniformly
at random).

– Shift the top left corner of t by u
(mod n), if possible.

• With prob. 1/2, pick an edge e ∈ E u.a.r.

– If e is not incident to a bar or a
speck then add a speck at e.

– Otherwise, if e is incident to a
speck, then remove the speck with
prob. λ−1.

This Markov chain clearly connects the state space,
since it can remove all specks and then move the bars
one at a time, e.g., to form a square in the top left cor-
ner. SinceMLocal is also aperiodic (i.e., for all σ, ρ ∈ Ω,
g.c.d.{t ≥ 1 : P t(σ, ρ) > 0} = 1), MLocal converges
to a unique stationary distribution (see, e.g., Chapter
2 of [13]). Moreover, since MLocal is reversible with
respect to the distribution π over state space Ω (i.e.,
π(σ)PLocal(σ, ρ) = π(ρ)PLocal(ρ, σ) for all σ, ρ ∈ Ω), it
follows that π is the unique stationary distribution of
MLocal over Ω [13]. Analogously, π′ is the stationary
distribution ofMLocal over Ω′. We will see in Section 3



that this Markov chain takes exponential time to con-
verge to the stationary distribution π′ since if MLocal

tries to move a bar, it will fail whenever the new lo-
cation contains any specks. The idea behind the DK
Algorithm is to avoid simply rejecting these moves by
allowing a bar to trigger a larger action causing every-
thing it overlaps to move out of the way. This is achieved
by pivoting the whole configuration σ around a pivot
point p on the torus Tn to create a new configuration ρ,
and superimposing σ and ρ to obtain ξ. See Figure 2.
We say that two tiles are DK-adjacent if they overlap in
this double configuration. These DK-adjacencies define
DK-components, which are maximal DK-connected sets
of tiles in ξ. For each DK-component C, there is a dual
DK-component C ′ which is its 180◦ rotation around p
(where C might equal C ′). We will define an operator
Λ(σ, ρ) which uniformly at random selects from ξ one of
its DK-components C that contains a bar, and moves
all the tiles in C and C ′ to their ρ positions. If we re-
strict to Ω′, where there is at most one bar per column,
then MDK is rapidly mixing. However, as we will see
in Section 4, the Markov chainMDK is inefficient on Ω.

We now define PDK(P ′DK), the transition matrix of
MDK over the state space Ω (Ω′). Let Hn be the set of
half-integers k

2 , where 0 ≤ k < 2n is an integer.

The DK Markov chain MDK

Starting at any σ0, iterate the following:

• With prob. 1/8, pick a pivot position p ∈
Hn ×Hn u.a.r.

– Rotate σt by 180◦ around the pivot p.
Call this configuration ρ.

– Let σt+1 = Λ(σt, ρ).

• With prob. 1/8, pick k ∈ Hn u.a.r.

– Reflect σt across the horizontal line
y = k. Call this configuration ρ.

– Let σt+1 = Λ(σt, ρ).

• With prob. 1/8, pick an edge e ∈ E u.a.r.

– If e is not incident to a bar or a
speck then add a speck at e.

– Otherwise, if e contains a speck, then
remove its speck with prob. 1/λ.

• With prob. 1/8, pick a position p ∈ V
u.a.r. Translate the entire configuration
to set p = (0, 0). Otherwise, σt+1 = σt.

• Otherwise, do nothing.

(a) (b)

(c) (d)

Figure 2: The DK Algorithm (a) σ ∈ Ω′. (b) ρ obtained
from σ by rotating around the marked pivot. (c) ξ
obtained by superimposing σ and ρ. (d) Λ(σ, ρ). In this
case MDK chose the component with two bars; notice
that the leftmost bar of σ is not in this component since
there is no speck from ρ along its shared border with the
middle bar.

Since we allowMDK to pivot on any half-integer, it can
make any move that is possible usingMLocal; it follows
that MDK is also connected. Again, by connectivity
and sinceMDK is aperiodic and reversible with respect
to π over Ω, π is the (unique) stationary distribution
of MDK (similarly for π′ and Ω′). While this Markov
chain achieves the desired stationary distribution, it is
not useful if it converges slowly to equilibrium. This is
especially relevant since this algorithm has been used
in practice, where samples are taken after running the
algorithm for a relatively short (polynomial) number of
steps. If the algorithm does not converge quickly this
data will not be chosen from the predicted distribution
and conclusions are not reliable. Therefore, our goal for
the remainder of the paper is to examine the efficiency
of these algorithms, known as the mixing time.

2.3 Mixing time. The time a Markov chain takes
to converge to its stationary distribution is measured in
terms of the distance between the distribution at time t
and the stationary distribution. The total variation



distance at time t is

‖Pt, π‖tv = max
x∈Ω

1
2

∑
y∈Ω

|Pt(x, y)− π(y)|,

where Pt(x, y) is the t-step transition probability. For
all ε > 0, the mixing time τ(ε) of M is defined as

τ(ε) = min{t : ‖Pt
′
, π‖tv ≤ ε,∀t′ ≥ t}.

We say that a Markov chain is rapidly mixing if the
mixing time is bounded above by a polynomial in n
and log(ε−1), where n is the size of each configuration
in Ω. It is well-known from probability theory that
the eigenvalue gap of the transition matrix of a Markov
chain provides a good bound on the mixing time of the
chain. We let Gap(P) = 1 − |λ1| denote the spectral
gap, where λ0, λ1, . . . , λ|Ω|−1 are the eigenvalues of the
transition matrix P and 1 = λ0 > |λ1| ≥ |λi| for all
i ≥ 2. The following result relates the spectral gap with
the mixing time of the chain (see, e.g., [13]):

Theorem 2.1. Let π∗ = minx∈Ω π(x). For all ε > 0
we have

(a) τ(ε) ≤ 1
1− |λ1|

log
(

1
π∗ε

)
.

(b) τ(ε) ≥ |λ1|
2(1− |λ1|)

log
(

1
2ε

)
.

An essential tool we will use to derive both upper
and lower bounds on the mixing time of our Markov
chains is conductance. The conductance of an ergodic
Markov chain M with stationary distribution π is

ΦM = min
S⊆Ω

π(S)≤1/2

φS ,

where φS = φ
(M)
S is the conductance of a set S ⊂ Ω,

defined by

φS =
1

π(S)

∑
s1∈S,s2∈S

π(s1)P(s1, s2).

The following relates conductance and spectral gap [6].

Theorem 2.2. For any Markov chain with conduc-
tance Φ and eigenvalue gap Gap(P) = 1− |λ1|, we have

Φ2

2
≤ Gap(P) ≤ 2Φ.

It is sometimes convenient to analyze the square
of a Markov chain M rather than the original. Each
step (x, z) of M2 occurs with probability P2(x, z) :=∑
y∈Ω P(x, y)P(y, z). Not surprisingly, if P2 has large

conductance, then so does P.

Lemma 2.1. If M is ergodic and reversible, then
ΦM2 ≤ 2ΦM.

Proof. For any set S ⊂ Ω,

φ
(M2)
S π(S) =

∑
x∈S
z∈S

π(x)P2(x, z)

=
∑
x,y∈S
z∈S

π(x)P(x, y)P(y, z) +
∑
x∈S
y,z∈S

π(x)P(x, y)P(y, z)

=
∑
x,y∈S
z∈S

π(y)P(y, x)P(y, z) +
∑
x∈S
y,z∈S

π(x)P(x, y)P(y, z)

≤
∑
y∈S
z∈S

π(y)P(y, z) +
∑
x∈S
y∈S

π(x)P(x, y) = 2φMS π(S).

Thus ΦM2 ≤ 2ΦM. �

Another tool used throughout our proofs is the
decomposition method [9, 10]. Let Ω = ∪mi=1Ωi be a
partition of the statespace into m disjoint pieces. For
each i = 1, . . . ,m, define Pi = P(Ωi) as the restriction
of P to Ωi which rejects moves that leave Ωi. In
particular, the restriction to Ωi is a Markov chain, Mi

with state space Ωi, where the transition matrix Pi
is defined as follows: If x 6= y and x, y ∈ Ωi then
Pi(x, y) = P(x, y); if x ∈ Ωi then Pi(x, x) = 1 −∑
y∈Ωi,y 6=x Pi(x, y). Let πi be the normalized restriction

of π to Ωi, i.e., πi(A) = π(A∩Ωi)
π(Ωi)

. Define P̂ to be
the following aggregated transition matrix on the state
space {1, . . . ,m}:

P̂(i, j) =
1

π(Ωi)

∑
x∈Ωi,
y∈Ωj

π(x)P(x, y).

We then have the following [10].

Theorem 2.3. Let Pi = P(Ωi) and P̂ be as above.
Then

Gap(P) ≥ 1
2
Gap(P̂) min

i=1,...,m
Gap(Pi).

In our case, each Ωi will contain all elements of Ω with
a particular bar structure X.

3 The restricted model (≤ 1 bar per column)

In this section we will see that on Ω′, the restricted
state space containing configurations with at most one
bar per column, the local algorithm takes exponential
time while the DK algorithm converges in polynomial
time.



3.1 The local algorithm mixes slowly. We begin
with a straightforward proof that any local Markov
chain MLocal that moves a single bar or speck in
each step will take exponential time to converge to
stationarity. The idea is that in order to change which
columns contain bars, the algorithm must take a bar
and move it to a column i that currently has no bars.
It can only do this if there is a consecutive set of L+ 1
(horizontal) edges in column i, that are all free of specks,
but since L = Ω(n) this is exponentially unlikely.

Theorem 3.1. There exist constants c3 and c4 such
that the mixing time of MLocal on Ω′ satisfies

τ(ε) ≥ (c3λc4n/n2) log(1/2ε).

Proof. Recall from Theorem 2.2 that to show the chain
is slowly mixing, it is sufficient to demonstrate a
cut in Ω′ for which the conductance is exponentially
small. Our cut will partition configurations according
to whether or not they have a bar in the first column.

Define A to be the set of all configurations in Ω
that do not have a bar in column 0. Next, define
K ⊆ A to be the set of configurations with L + 1
consecutive (horizontal) edges in column 0 that do not
have any specks present. Clearly if σ ∈ A, ρ ∈ A and
PLocal(σ, ρ) > 0, then σ ∈ K. First we will show that
π′(K) is exponentially smaller than π′(A). Specifically,

(3.1) π′(K) ≤ n

λL+1
π′(A).

We define a function f : K → A as follows.
For σ ∈ K, let i be the smallest integer such
that edges ((0, i), (1, i)), ((0, i + 1 mod n), (1, i + 1
mod n)), . . . ., ((0, i+L mod n), (1, i+L mod n)) con-
tain no specks. Add a speck to each of these edges,
to create f(σ). Since we have added L + 1 specks,
π′(σ) = λ−L−1π′(f(σ)). For each configuration ρ ∈ A,
there are at most n configurations σ ∈ K such that
f(σ) = ρ; corresponding to the (at most n) possible
choices for the first (horizontal) edge in ρ to start re-
moving specks. It follows that

π′(K) =
∑
ρ∈A

∑
σ∈K:
f(σ)=ρ

π′(σ) =
∑
ρ∈A

∑
σ∈K:
f(σ)=ρ

λ−L−1π′(ρ)

≤
∑
ρ∈A

n

λL+1
π′(ρ) =

n

λL+1
π′(A).

Using Equation 3.1 we can upper bound the conduc-

tance of MLocal as follows. If π′(A) ≤ 1/2,

ΦMLocal
≤ π′(A)−1

∑
σ∈A,ρ/∈A

π′(σ)PLocal(σ, ρ)

= π′(A)−1
∑
σ∈K

π′(σ)
∑
ρ/∈A

PLocal(σ, ρ)

≤ π′(A)−1
∑
σ∈K

π′(σ) ≤ n

λL+1
.

Next, in order to handle the case where π′(A) > 1/2,
we relate A and A by

(3.2) π′(A) ≤ nπ′(A).

We will define a function g : A→ A. For any σ ∈ A, let i
be the first column in σ that contains a bar. Translate
the configuration so that column i maps onto column 0
to create g(σ). Notice that for any configuration ρ ∈ A,
there are at most n configurations σ such that g(σ) = ρ.
These n configurations correspond to the n possible
ways to translate ρ. Combining these observations
shows the following.

π′(A) =
∑
ρ∈A

∑
σ∈A:
g(σ)=ρ

π′(σ)

=
∑
ρ∈A

∑
σ∈A:
g(σ)=ρ

π′(ρ)

≤
∑
ρ∈A

nπ′(ρ) = nπ′(A).

If π′(A) > 1/2, by the reversibility of MLocal and
Equation 3.2,

ΦMLocal
≤ π′(A)−1

∑
ρ∈A,σ∈A

π′(ρ)PLocal(ρ, σ)

= π′(A)−1
∑

ρ∈A,σ∈A

π′(σ)PLocal(σ, ρ)

≤
(
π′(A)
π′(A)

)( n

λL+1

)
≤ n2

λL+1
.

Applying Theorem 2.2 and Theorem 2.1 gives us
that the mixing time of MLocal satisfies τ(ε) ≥(
λc1n+1

4n2 − 1
2

)
log
(

1
2ε

)
. �

Remark 1. Notice that this proof also holds for Ω, the
unrestricted model. Moreover, even a non-local chain
that is allowed to move a bar to any empty position in a
single move will also be exponentially slow for the exact
same reasons the local algorithm is slow.



3.2 The DK algorithm mixes rapidly. The DK
algorithm was introduced to allow moves even when
there is a collision precisely to overcome the main
obstacles causing the local algorithm to be slow. We
will see that the DK Algorithm provides an exponential
speedup in the mixing time over the local algorithm
on Ω′, where we restrict to having at most one bar
per column. The DK Algorithm potentially makes
huge global moves that can change a configuration
significantly in a single step. Such Markov chains have
proven to be difficult to analyze. However, in this case,
we are able to exploit our decomposition of the state
space Ω′ to simplify the analysis. The projection chain
arising emphasizes the dependence on total perimeter
to determine the conditions under which the algorithm
is efficient. If we restrict to having at most one bar per
column of T , then MDK is rapidly mixing. However,
we will see in Section 4 that without this restriction the
Markov chain is inefficient.

Theorem 3.2. If λ ≥ 4c
−1
1 , then there exists a constant

c5 such that the mixing time of MDK on Ω′ satisfies

τ(ε) ≤ c5n14(n2 + log ε).

It will be useful to introduce some terminology.
Given a configuration σ in Ω or Ω′, define the bar
structure Γ(σ) as the configuration x obtained from σ
by removing all of its specks. We consider the set of all
such bar structures Ω̂′ of b bars of length L. Let π̂′ be
the induced distribution on Ω̂′; that is, for x ∈ Ω̂′, let

π̂′(x) =
∑

σ∈Γ−1(x)

π′(σ).

Let e(σ) be the number of edges that are not
incident to any bar in σ and define κ(σ) = |{e ∈
E : e is incident with exactly one bar}|, which we will
call the total perimeter of the bars in σ. In equation 3.3,
we find that each bar structure has weight proportional
to µκ(X), where µ = (1+λ)−

1
2 . In other words, the total

perimeter of the bar structure completely determines
the probability that it will show up as the bar structure
of some configuration in Ω′. Specifically,

π̂′(x) =
e(x)∑
k=0

λk

Z ′

(
e(x)
k

)
=

1
Z ′

(1 + λ)e(x)

= Z ′−1(1 + λ)2n2−2bLµκ(x).(3.3)

In order to prove Theorem 3.2, we will explicitly use
the projection Ω̂′ as a decomposition of the state space
to prove that MDK is rapidly mixing. First, we have

to show that the Markov chain is rapidly mixing within
each set of configurations in Ω′ that have the same bar
structure (the restrictions); then we will show that the
projection Markov chain that reduces each bar structure
to a single configuration with the appropriate weighting
is also rapidly mixing.

Definition 3.1. Define the projection Markov chain
M̂DK on Ω̂′ by the following transitions: for x, y ∈ Ω̂′,

P̂ ′DK(x, y) =
1

π′(Γ−1(x))

∑
σ∈Γ−1(x)
ρ∈Γ−1(y)

π′(σ)P ′DK(σ, ρ).

The main step of the proof of Theorem 3.2 is to
show that the projection Markov chain M̂DK is rapidly
mixing. We achieve this using canonical paths; see,
e.g., [6]. Between every pair I, F ∈ Ω̂′ we define
a canonical path γI,F consisting of transitions of the
Markov chain, ensuring that the weight of these paths
is evenly distributed among edges of the Markov chain.
Each path γI,F routes a flow of π̂′(I)π̂′(F ) along its
edges, ensuring that the total flow each edge (xi, xi+1)
receives is within a polynomial factor of its capacity,
which is defined to be π̂′(xi)P̂ ′DK(xi, xi+1). Generally it
is sufficient to define a complementary point x′ ∈ Ω̂′ for
each edge e = (xi, xi+1) in γI,F and to show that there
is only a polynomial number of pairs I, F ∈ Ω̂′ that
use transition e with complementary point x′. We will
identify this complementary point x′ by describing the
reverse path γF,I ; for the ith edge (xi, xi+1) of the path
γI,F , the complementary point is x′i, where (x′i, x

′
i+1) is

the ith edge of γF,I . The novelty of this proof lies in the
choice of γI,F , which provides an encoding of the relative
heights of the bars while maintaining the perimeter.
This is important because the perimeter determines the
weight of a configuration, and the edges of the path need
to happen with high enough probability.

A key component of the proof is an operator called
a bar shift, which we now explain. For σ∈ Ω̂′ and a bar
a, let h(a) = hσ(a) denote the height in the torus of a
in σ, defined as the y-coordinate of the top left corner
of a. Assume that q and r are bars such that there are
no bars in the columns immediately to the left of q and
the right of r. Let j be the column containing r. For any
integer −n ≤ d ≤ n, bar shift (q, r, d) is a transition of
M̂2

DK that moves bar q to column j+1 at height h(r)+d
with probability at least (1/(64n6)) min{1, µ∆κ}, where
∆κ is the change in perimeter of the move. Depending
on the configuration, this may be achieved in a single
step or a sequence of two steps.

For technical reasons the formal definition of the
bar shift operator requires some case analysis to ensure
that such a move is always possible with high enough



probability. Let q′ be the bar to the right of q, if it
exists, let t = h(q)− h(q′), and let l be the set of edges
between columns j and j + 1. If q′ does not exist, then
M̂2

DK rotates q to height h(r) + d in column j + 1 in
one step, and the next step does nothing. Otherwise,
there are two cases to consider. Assume first that t ≥ 0.
Consider the move of M̂DK that rotates q to column
j + 1 at height h(r) + d. In order for q to be in its own
DK-component, there must be no specks on the vertical
edges hit by the shared border of q and q′, that is, on the
edges in l in the interval [h(r)+d−(L− t), h(r)+d]. By
the location of bar r, there must be no specks on l in the
interval [h(r)−L, h(r)]. Thus, if d ≤ 0 then the number
of edges that may have specks is max{0,−d− t}. Hence
if −d − t < 0 then the move happens with probability
at least 1/(8n3) and otherwise with probability at least
(1 + λ)d+t/(8n3) = µ∆κ/(8n3). Thus in this case bar
shift (q, r, d) performs this rotation and then does
nothing in the second move. However, if d ≥ 0, then
the probability of this rotation succeeding (that is, q
moving independently of q′) depends on d, not on ∆κ
as required, and indeed may be quite unlikely to happen.
Instead, bar shift (q, r, d) first rotates q to column j+1
at height h(r)−t. Notice that when q and q′ are rotated
to this position, their shared border cannot hit any
specks (as r completely overlaps q′, and thus prevents
specks in those positions). Thus q is in its own DK-
component and so this move happens with probability
at least 1/(8n3). Then M̂DK reflects q within column
j + 1 to height h(r) + d. In order for q to be in its own
DK-component, there must be no specks on the edges in
l in [h(r)+d−L, h(r)+d−t]. There are no specks on l in
[h(r)− L, h(r)] by the location of r; hence, the number
of edges on which there may be specks is min(0, d− t).
If d < t then this move happens with probability at
least 1/(8n3)2. Otherwise, it happens with probability
at least (1 + λ)−(d−t) = µ∆κ/(64n6). The other case,
where t < 0 is similar. In this case, if d < 0 then bar
shift rotates q first to height h(r)− t and then reflects
it to height h(r) + d. Otherwise, bar shift rotates q
directly to height h(r) + d and then does nothing.

We may now prove Theorem 3.2.

Proof of Theorem 3.2: As described above, we will
prove that the restriction of MDK to each Ω′i and
the projection chain M̂DK are all rapidly mixing. For
the restrictions the bar structure is fixed and we focus
on moves that add or remove a speck (there may be
other moves in the restrictions, but ignoring them can
only decrease the spectral gap). Since each speck is
independent of the other specks, this is equivalent to a
biased walk on the hypercube on e(x) vertices. Thus
the spectral gap of the restriction with bar structure x

is 1/e(x) ≥ 1/(2n2) (see, e.g., [8] p. 163).
To show that M̂DK is rapidly mixing, we consider

instead the square of this Markov chain M̂2
DK and

apply Lemma 2.1. We will use canonical paths to show
that M̂2

DK has high conductance, which will imply that
M̂DK does as well. Consider any set S ⊂ Ω̂′. For
any pair I, F of configurations in Ω′ we will define a
path γI,F = {I = x0, x1, x2, . . . xt = F} of transitions
(xi, xi+1) ofM2

DK between them. For I ∈ S and F ∈ S,
define f(I, F ) to be the first edge (xi, xi+1) of γI,F that
crosses the cut; that is, xi ∈ S, xi+1 ∈ S. We will show
that for any x ∈ S, y ∈ S,

(3.4)
∑

I∈S,F∈S:
f(I,F )=(x,y)

π̂′(I)π̂′(F ) ≤ 29n6π̂′(x)P̂ ′2DK(x, y),

which means that the weight over the paths γI,F
through (x, y) is not too high. This is the heart of the
argument, and given (3.4), the rest is simple; it proceeds
as follows. For every S ⊂ Ω̂′ with π̂′(S) ≤ 1

2 , we have

φS =
1

π̂′(S)

∑
x∈S,y∈S

π̂′(x)P̂ ′2DK(x, y)

≥ 1
2π̂′(S)π̂′(S)

∑
x∈S,y∈S

π̂′(x)P̂ ′2DK(x, y)

≥ 1
2π̂′(S)π̂′(S)

∑
x∈S,y∈S

∑
I∈S,F∈S:

f(I,F )=(x,y)

π̂′(I)π̂′(F )
29n6

=
1

210n6π̂′(S)π̂′(S)

∑
I∈S,F∈S

π̂′(I)π̂′(F )

= 1 / (210n6) .

Therefore the conductance of M̂DK satisfies Φ cMDK
≥

1
2Φ cM2

DK
≥ 1/(211n6). By Theorem 2.2 the spectral gap

satisfies Gap(P̂ ′DK) ≥ 1
2Φ2cMDK

≥ 1/(221n12). Finally,
by the Decomposition Theorem 2.3,

Gap(P ′DK) ≥ 1
222n12

(
1

2n2

)
≥ 1

223n14
.

In order to apply Theorem 2.1, we note that the
minimum weight configuration has no diamonds and
weight 1/Z ′ and the normalizing constant Z ′ ≤ n2b(1 +
λ)n

2
, so for any ε > 0, log(Z

′

ε ) ≤ 2 log(1 + λ)n2 −
log(ε−1). Therefore by Theorem 2.1 we find that for
all ε > 0,

τ(ε) ≤ 223n14
(
2n2 log(1 + λ) + log ε

)
.

We now focus on establishing (3.4) for the remain-
der of the proof. First consider the case where I and F



each have a single component, as this is the key piece of
the analysis. The general idea is that each edge of γI,F
will move a bar from the left side of I’s component to
the right side, lining up these bars with an offset that
agrees with the offsets in F . Thus, after every bar has
been wrapped around to the right, the resulting config-
uration FT is just a translation of F . The final step of
the path γI,F is a translation that takes FT to F .
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Figure 3: (a) Initial configuration I. (b) Final configu-
ration F . (c) This transition (x, y) is the third step of
γI,F that takes bar q3 to the right side at the same rela-
tive height with q2 as r4 was to r3. Notice that q4, q5, q6

remain unchanged from I; however, q6, q1, q2, q3 match
the first four bars of F (up to translation). (d) (x′, y′)
is the third step of γF,I ; r4, r5, r6 remain unchanged
from F while r6, r1, r2, r3 record the first four bars of I.

Finally, we are ready to describe γI,F when I and F
each have a single component. Let C1 be the unique
component in I and let C2 be the unique component
in F . Label the bars of C1 by q1, q2, . . . , qb = q0

from left to right (beginning from the leftmost bar) and
similarly label the bars of C2 with r1, r2, . . . , rb = r0.
Assume without loss of generality that q1 and r1 are in
column 1. In each step of γI,F , we wrap qi to column
b + i at the same relative height to qi−1 as ri+1 is
to ri; meanwhile, each step of γF,I moves ri to column
b + i at the same relative height to ri−1 as qi+1 is to
qi. Let ti = h(qi) − h(qi+1) and t′i = h(ri) − h(ri+1).
Then the ith step of γI,F is (x, y) which performs bar

shift (qi, qi−1,−t′i). Similarly, the ith step of γF,I ,
which is (x′, y′), performs bar shift (ri, ri−1,−ti). See
Figure 3.2. Notice that in x, the offsets of the bars
that have been moved so far agree with F , and the
offsets of the bars that have not moved yet agree with
I. In x′ the reverse is true. That is, the bars that
have been moved so far agree with I, and the bars that
have not moved yet agree with F. Thus, given (x, y)
and x′ we can recover I and F uniquely. Moreover,
π̂′(y)π̂′(y′) = π̂′(x)π̂′(x′) = π̂′(I)π̂′(F ). Suppose that
π̂′(x) ≤ π̂′(y); the other case is similar. In this case,
P̂ ′2DK(x, y) ≥ 1/(64n6). Let S1 (respectively S1) be the
set of configurations in S (S) with a single component.
Then we have∑
I∈S1,F∈S1:
f(I,F )=(x,y)

π̂′(I)π̂′(F ) =
∑

I∈S1,F∈S1
f(I,F )=(x,y)

π̂′(x)π̂′(x′)

≤ π̂′(x)
∑
x′∈Ω′

π̂′(x′)

≤ π̂′(x) ≤ π̂′(x)P̂ ′2DK(x, y)64n6.(3.5)

The final edge of γI,F is a simple translation that moves
FT to F . Recall FT has a single component, and suppose
its leftmost bar is in position (w, h). Suppose also that
the leftmost bar of F is in position (w′, h′). M̂DK will
perform a translation move that takes the component
of FT to position (w′, h′). The next move will do
nothing with probability at least 1/2. This happens
with probability (P̂ ′DK)2(FT , F ) ≥ 1/(16n2). Clearly,
given (FT , F ), we can identify F , so∑

I∈S1,F∈S1:
f(I,F )=(FT ,F )

π̂′(I)π̂′(F ) ≤
∑
I∈S1

π̂′(I)π̂′(F )

≤ π̂′(F )

≤ 16n2π̂′(FT )P̂ ′2DK(FT , F ).(3.6)

For the case when I and/or F have multiple
components we construct I ′ from I and F ′ from F so
that I ′ and F ′ each have one component. The path
γI,F has three parts. In the first part we combine the
components together until we reach I ′ which has a sin-
gle component. If F contains several components, then
the last part will be to break these components back
up; that is, we will show how to take F and combine its
components to create F ′ which has a single component,
and the last part will be to undo these moves to go
from F ′ back to F . The second part is precisely γI′,F ′ .
We will formally define each part of the path and
bound for all transitions (x, y) the maximum number
of paths γI,F that can use (x, y) in each part. From
the formal defintions of the path it will be clear that
any transition (x, y) can be used in at most one part of



a path. Thus, it is sufficient to prove (3.4) for each part.

Part 1: Let C and C ′ be two components in I,
where C ′ is the component immediately to the right
of C. In this part, we combine C and C ′ by moving
the bars of C ′, one at a time, to the right side of C,
maintaining perimeter and relative heights of bars at
every step until the last bar of C ′ is moved to fully align
with the penultimate bar, for a loss in perimeter of 2L.
This loss in perimeter corresponds to an exponential
gain in weight and there is only a polynomial number
of places where C ′ could have been originally, so we can
bound the weight of the configurations whose canonical
path uses one of these transitions.

Let j1 be the leftmost column of I containing a bar.
If I has a single component, let I ′ = I and proceed to
Part 2. Otherwise, let C1 be the component that begins
in column j1 and let r be the rightmost bar of C1. Let
C ′ be the first component to the right of C. Label the
bars of C ′ by q1, q2, . . . , qt from left to right. Suppose
1≤ i≤ t − 1 (set q0 = r) and we have already moved
q1, q2, . . . , qi−1 over to C. Let ti = h(qi)−h(qi+1). Move
qi to column j + i to exactly align the shared border of
qi and qi+1 with the new shared border of qi−1 and qi
by performing bar shift (qi, qi−1,−ti). This results in
no change in perimeter and encodes the relative height
ti. If i = t then qt is rotated over to fully align with
qt−1, for a loss of perimeter of 2L. The second step of
M̂2

DK does nothing. These moves are performed with
probability at least 1/(64n6).

For a transition (x, y), how many paths γI,F use
(x, y) in Part 1? For this part we will let F be our
complementary point x′. Given (x, y), in order to
reconstruct I, we just need to remember where the other
components used to be. Suppose that along γI,F up to
(x, y), M̂2

DK has combined k components, so that x
has k fewer components than I. Then there are at
most n3k ways to break these components back up, and
π̂′(x) ≥ π̂′(I)µ−2Lk. Hence for any F ∈ S,∑

I∈S:
f(I,F )=(x,y)

π̂′(I) ≤
n−2∑
k=0

n3kπ̂′(x)µ2Lk ≤ 2π̂′(x),

since, for λ ≥ 4c
−1
1 and any n ≥ 1, we have

(3.7) n3µ2L = n3(1 + λ)−c1n ≤ n3

4n
≤ 1

2
We will return to this bound each time we need to push
two components together. Finally,∑
I∈S,F∈S:

f(I,F )=(x,y)

π̂′(I)π̂′(F ) ≤
∑
F∈S

π̂′(F )2π̂′(x)

≤ 2π̂′(x) ≤ 27n6P̂ ′2DK(x, y)π̂′(x).

This proves (3.4) for transitions (x, y) in Part 1.

Part 2: Let F ′ be obtained from F by the reverse
of the process of Part 1. Given I ′ from Part 1 and F ′,
let γI′,F ′ be defined as before for the case of a single
component. Then for any edge (x, y) along this path,∑
I∈S,F∈S:

f(I,F )=(x,y)

π̂′(I)π̂′(F )

≤
∑

I′∈S1,F ′∈S1:
f(I,F )=(x,y)

π̂′(I ′)π̂′(F ′)
∑
k1,k2

(
n3µ2L

)k1+k2

≤ 4
∑

I∈S1,F∈S1
f(I,F )=(x,y)

π̂′(x)π̂′(x′)

≤ π̂′(x)P̂ ′2DK(x, y)28n6,

where the second inequality follows from (3.7) and the
last inequality follows from (3.5) and (3.6). This proves
(3.4) for transitions (x, y) in Part 2.

Part 3: Let γF ′,F be the reverse sequence of the
path outlined in Part 1. For (x, y) ∈ γF ′,F , where y
has k fewer components than F , there are at most
n3k ways to break these components up, and π̂′(y) ≥
π̂′(F )µ−2Lk. Hence, as above, for any I ∈ S,∑

F∈S:
f(I,F )=(x,y)

π̂′(F ) ≤ 2π̂′(y).

Moreover,

π̂′(x)P̂ ′2DK(x, y) = π̂′(y)P̂ ′2DK(y, x) ≥ π̂′(y)/(26n6).

Therefore∑
I∈S,F∈S:

f(I,F )=(x,y)

π̂′(I)π̂′(F ) ≤
∑
I∈S

π̂′(I)2π̂′(y)

≤ 2π̂′(y)

≤ 27n6π̂′(x)P̂ ′2DK(x, y).

Given any transition (x, y), it is easy to see which
part of a path it can be used in. Therefore we have
proved (3.4) for all transitions (x, y). �

It is interesting to note that our canonical paths do
not use any DK moves that involve more than a single
bar. The only moves we require are essentially Glauber
moves on the projection chain, which are possible since
the DK algorithm moves the specks out of the way.
Finally, we point out that the lower bound on λ that
we require is just a consequence of the proof technique,
and we believe that in Ω′, MDK should be rapidly
mixing for all values of λ. Our canonical paths approach



starts by collapsing multiple components into one large
component, and λ must be large enough to compensate
for the loss of the original locations of the components.
However, this requirement is reasonable, since our goal
is to contrast the DK and local algorithms and this is
the condition under which the local algorithm is slow.

Although we have framed this section with L linear
in n, this bound on L is not necessary. In this proof,
we use the length of L to ensure a sufficient decrease
in perimeter when components are pushed together. In
the slow mixing proof above, we also use the bound on
L to argue that a bar will likely hit specks when moved
to a different column. Notice that both of these proofs
hold even when L is sublinear, as long as it is Ω(log n).

4 The unrestricted model

While the results of Section 3 provide evidence that the
DK algorithm can be useful, we now show that it is very
sensitive to the setting in which it is used. We focus now
on Ω where we remove the restriction on the number
of bars per column. The proof of Theorem 3.1 can be
extended to showMLocal also requires exponential time
to converge on Ω. In fact, we will show that, on Ω,
MDK also takes exponential time to converge to the
stationary distribution π. Specifically, we prove:

Theorem 4.1. Suppose 0 < c1 ≤ 1/4 and b ≥ 8c1n/3.
If λ ≥ 8c

−1
1 , then there exist constants c6 and c7 such

that the mixing time of MDK on Ω satisfies

τ(ε) ≥ (c6(1 + λ)c7n/n10) log(1/2ε).

As in our analysis of the local algorithm, the proof of
this theorem again relies on conductance and identifies
a bad cut in the state space. However, this slow
mixing result for the DK algorithm requires more careful
analysis than the local algorithm since there are many
more moves crossing any particular cut.

Our proof again makes use of the decomposition
method. Define Ω̂, π̂, and P̂DK analogously to Ω̂′, π̂′,
and P̂ ′DK . Similarly, let h(a) = hx(a) denote the height
in the torus of bar a in configuration x ∈ Ω̂ analogous to
the definition in Section 3.2. Throughout this section,
we examine the projection Markov chain P̂DK , since an
upper bound on the conductance of P̂DK provides an
immediate bound on PDK . Define S ⊂ Ω̂ to be the set of
configurations (bar structures) with at most one bar per
column (thus S = Γ(Ω′)). We demonstrate that there is
a bad cut in the projection chain M̂DK between S and S
as follows. Every path in M̂DK between S and S must
go through the set K ⊂ S of all configurations with at
most 2 bars per column and at least one column with

two bars. Define

(4.8) Q(S,K) :=
∑

σ∈S,ρ∈K
π̂(σ)P̂DK(σ, ρ).

We find that Q(S,K) is exponentially smaller than
π̂(S), which yields an upper bound on conductance.
Estimating (4.8) is a challenging combinatorial problem;
here we present a mapping argument between S and K
that yields our bounds on (4.8), which relies critically
on K having at most 2 bars per column. We believe
that this map is interesting in its own right. To assist
in explaining the mapping we define the shared border
length s(x, y) of two bars x and y to be the number of
common edges of x and y. We say that x and y are
adjacent if s(x, y) ≥ 0.
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Figure 4: y ∈ K and the corresponding y′ ∈ S.

Let y ∈ K. Assume that y contains a single
connected component of bars. The idea of the map is to
remove one bar from each column in y, concatenating
all of these bars on the right side of the component at
the same relative heights that they had in y. Except for
a decrease of 2L where the two rows meet, the perimeter
remains essentially unchanged between y and y′. The
crucial element of this map is that it maintains the
perimeter, and yet we can still recover the original
configuration from y′. The example shown in Figure
4 demonstrates the general approach. Notice that in y′,
bars 3 and 8 are no longer adjacent. In order to preserve
the original perimeter we increased s(3, 4) by s(3, 8).
However, knowing the original locations of bars 3 and 8
immediately tells us s(3, 8) which indicates that s(3, 4)
in y′ was increased by s(3, 8), allowing us to recover the
original position of bar 4.

In order to use the conductance φS to provide the
desired bound on the total conductance Φ cMDK

we need
that π̂(S) is at most a polynomial times π̂(S). When λ
is large, this is indeed the case.

Lemma 4.1. Assume 0 < c1 ≤ 1/4, b ≥ 8c1n/3 and
λ ≥ 4c

−1
1 . Then π̂(S) ≤ 2µ−1π̂(S).

Proof. Let Sk be the set of configurations in S with
exactly k components. It is easy to show that π̂(S) ≤



2π̂(S1). Namely, we define a map f : S → S1 as
follows. Given x ∈ S with k components, numbered
from the minimal leftmost component to the right,
for j = 2, 3, . . . , k, shift the entire jth component so
that its leftmost bar aligns fully with the rightmost
bar in the j − 1st component. As in previous proofs,
π̂(x) = µ2L(k−1)π̂(f(x)) and |f−1(f(x))| ≤ n3(k−1).
Then for λ ≥ 4c

−1
1 , by (3.7),

π̂(S) =
∑
y∈S1

b∑
k=1

∑
x∈

Sk∩f−1(y)

µ2L(k−1)π̂(y)

≤
∑
y∈S1

b∑
k=1

(
n3µ2L

)k−1
π̂(y)

≤ 2
∑
y∈S1

π̂(y) = 2π̂(S1).(4.9)

We will bound π̂(S1) by induction on b. For the
purposes of this induction, we emphasize the effect
of b by defining S1(b) to be the set S1 under the
condition that the model has b bars. Recall that the
weight of S1 = S1(b) in the projection is π̂(S1(b)) =
Z−1(1 + λ)2n2−2bL

∑
σ∈S1(b) µ

κ(σ). We define W (b) =∑
x∈S1(b) µ

κ(x). We will show that for b ≥ 2, W (b) ≤
µ

7
4 b+2Ln2. Suppose there is just one bar; then W (1) =

µ2L+2n2, since there are n2 places to put the first
bar. Given a configuration with b bars, we can add
another bar at the left side according to the following
probabilities. If the bar fully aligns with the leftmost
bar, then the change in perimeter is 2; on the other
hand, there are 2 ways to have an shared border of i for
each i ∈ [L−1], each of which has a change in perimeter
of 2L + 2 − 2i. There are n − 2L + 1 ways to have no
shared border. Hence we have

W (b+ 1)

= W (b)

(
µ2 + 2

L−1∑
i=1

µ2L+2−2i + (n− 2L+ 1)µ2L+2

)

= W (b)
(
µ2 + 2

(
µ2 − µ2L

µ−2 − 1

)
+ (n− 2L+ 1)µ2L+2

)
≤W (b)

(
µ2 +

2µ2

λ
+
µ2

2

)
≤ 2µ2W (b).

Therefore W (b) ≤ (2µ2)b−1µ2L+2n2 ≤ µ
7
4 b+2Ln2, since

λ ≥ 41/c1 ≥ 44, which implies 2b−1µb/4 ≤ 1.
Consider S. Let S2row be the set of configurations

with a single component of bars contained in a 2L ×
b(b + 1)/2c rectangle. Then π̂(S2row) ≥ µ4L+b+1n2.

Therefore since b ≥ 8L/3,

π̂(S)
π̂(S)

≤ 2π̂(S1)
π̂(S2row)

≤ 2µ
7
4 b+2Ln2

µ4L+2b+1n2

≤ 2µ
3
4 b−2L−1 ≤ 2

µ
,

as claimed. �

Remark 2. The careful reader might notice that the re-
cursion for W (b) obtained in this proof, which exactly
counts π̂(S1), provides a way to approximate π′(Ω′)
when λ is sufficiently large. In this case, the config-
urations in Ω′ with more than one component are ex-
ponentially suppressed. Therefore this could be used to
approximately sample from Ω′ without the use ofMDK .
However, Ω′ provides a nontrivial setting where MDK

yields an exponential speedup over the local algorithm.

We may now prove Theorem 4.1 to showMDK requires
exponential time on Ω.

Proof of Theorem 4.1: Recall that our goal is to
demonstrate that (S, S) is a bad cut in the state space
of the projection chain M̂DK . In particular, we show

φS ≤ 16n10µ2L.(4.10)

If π̂(S) ≤ 1/2 then this directly yields a bound
on Φ cMDK

, since in this case Φ cMDK
≤ φS . Suppose

not. Then by the reversibility of M̂DK and Lemma 4.1,

Φ cMDK
≤ π̂(S)−1

∑
x∈S,y/∈S

π̂(y)P̂DK(y, x)

= π̂(S)−1
∑

x∈S,y/∈S

π̂(x)P̂DK(x, y)

=
π̂(S)
π̂(S)

φS ≤ 2µ−1φS .

Thus in either case, Φ cMDK
≤ 32n10µ2L−1. It is easy to

see from the definition of conductance and Definition 3.1
that ΦMDK

≤ Φ cMDK
. Using Theorem 2.2, we find

Gap(PDK) ≤ 64n10µ2L−1, and by Theorem 2.1,

τ(ε) ≥
(

1
128n10µ2L−1

− 1
2

)
log
(

1
2ε

)
≥

(
(1 + λ)L−1

128n10
− 1

2

)
log
(

1
2ε

)
,

which serves as an exponential lower bound, as desired.
Thus it suffices to prove (4.10). Recall that if our
Markov chain M̂DK is currently at a configuration in S,



then it can only move to a configuration with at most
two bars per column. Hence

φS = π̂(S)−1
∑

x∈S,y/∈S

π̂(x)P̂DK(x, y)

= π̂(S)−1
∑

x∈S,y∈K
π̂(x)P̂DK(x, y)

= π̂(S)−1
∑

x∈S,y∈K
π̂(y)P̂DK(y, x),

where the last step follows from M̂DK being reversible.
For a configuration y ∈ K, define c(y) to be the
number of columns in y with two bars r1, r2 such that
s(r1, r2) 6= 0. Define Ψ(y) = π̂(y)µ2c(y) and Ψ(K) =∑
y∈K Ψ(y), which is the weight of K if we ignore the

shared border of two bars in the same column.
We now bound the probability of moving from

y ∈ K into S. We will show that for all y ∈ K,

(4.11)
∑
x∈S
P̂DK(y, x) ≤ n2µ2c(y).

The general idea is that in order to move from a
configuration in K to a configuration in S usingMDK ,
a pivot must be chosen that separates each pair of bars
that are vertically adjacent by rotating their shared
border to an edge without any specks. For a pivot
point p the weight of the set of configurations in Γ−1(y)
that have a possible transition to some σ′ with bar
structure in S is at most a 1/(1+λ)c(y) = µ2c(y) fraction
of the total weight of Γ−1(y).

For any y ∈ K and any pivot p, define yp to be the
configuration obtained after rotating the bars in y 180◦

around p. Let Hp(y) ⊂ E(G) be the set of horizontal
edges in the lattice graph G that are incident to two
bars in yp, and let Γ−1

Hp
(y) ⊂ Γ−1(y) be the set of

all configurations ρ ∈ Γ−1(y) that, after one move of
MDK with pivot p, can transition to a configuration
whose bar structure is in S. In order for a configuration
ρ ∈ Γ−1(y) to map to a configuration with at most
one bar per column, no edge in Hp(y) can be incident
to a tile in y. If any e ∈ Hp(y) is incident to a bar
in y then regardless of where the specks are, such a
configuration cannot transition to a configuration in S,
and so Γ−1

Hp
(y) = ∅. Otherwise, if there is a speck in

y on any edge e ∈ Hp(y), then the two bars that are
adjacent to e in yp will be in the same DK-component
and therefore stay in the same column after a transition
of MDK with pivot p. Therefore, in this case, Γ−1

Hp
(y)

is the set of all configurations in Γ−1(y) such that
there are no specks on the edges of Hp(y). Define

Γ−1
H (y) = ∪pΓ−1

Hp
(y). This implies that for any y ∈ K,

∑
x∈S
P̂DK(y, x) =

∑
x∈S

1
π(Γ−1(y))

∑
σ∈Γ−1

H
(y)

ρ∈Γ−1(x)

π(σ)PDK(σ, ρ)

≤ 1
π(Γ−1(y))

∑
σ∈Γ−1

H (y)

π(σ) ≤
π(Γ−1

H (y))
π(Γ−1(y))

.

For a configuration y ∈ Ω̂, let e(y) be the num-
ber of edges not incident to any bar in y. If
Γ−1
Hp

(y) 6= ∅ for a pivot p, then π(Γ−1
Hp

(y)) =

Z−1
∑t−i
i=0 λ

e(y)−c(y)
(
e(y)−c(y)

i

)
= Z−1(1 + λ)e(y)−c(y).

Thus∑
x∈S
P̂DK(y, x) ≤

π(Γ−1
H (y))

π(Γ−1(y))

= n2Z
−1(1 + λ)e(y)−c(y)

Z−1(1 + λ)e(y)
= n2µ2c(y).

Using (4.11) we obtain

Φ cMDK
≤ π̂(S)−1

∑
x∈S,y∈K

π̂(y)P̂DK(y, x)

≤ π̂(S)−1
∑
y∈K

π̂(y)n2µ2c(y)

= n2π̂(S)−1Ψ(K).(4.12)

Let K1 ⊂ K be the set of configurations in K with
exactly one component. It is easy to show that since
λ ≥ 4c

−1
1 , Ψ(K) ≤ 2Ψ(K1), by the same proof as in

Lemma 4.1 used to show that π̂(S) ≤ 2π̂(S1). Therefore
it suffices to consider a single component in the analysis.

Finally, we proceed to the heart of the argument,
where we show that Ψ(K1)bπ(S) ≤ 16n8µ2L. We define a
map g : K1 → S and use an information theoretic
argument to show that for any y′ ∈ S, the total weight
of configurations y such that g(y) = y′ is exponentially
small. Given y ∈ K1, the following procedure iteratively
creates g(y) ∈ S while at the same time “encoding”
sufficient information to recover y given g(y). The
encoded information gives a bound on the number of
configurations in K1 that could map to y′ ∈ S, and
the procedure carefully decreases the perimeter of the
configurations when possible, thereby ensuring that the
weight of y′ is exponentially larger than the weight of
any of its preimages. Together, this yields our bound.

For simplicity, we will assume that column 0 con-
tains the leftmost bar in y. Let t be the number of
columns in y which contain bars. For i = 0, 1, . . . , t− 1,
we move a bar from column i to column t+ i; label this
bar qi and the remaining bar in column i will be denoted



ri, if it exists. We should think of this new configura-
tion as embedded on a 2t × n torus; it is possible that
2t > n, in which case our configuration is not actually
in Ω̂. However, by the end of the procedure we will have
created a configuration g(y) ∈ Ω̂. Note that we may cre-
ate empty columns through this process; say it results
in k components. At the end we will shift the compo-
nents together for a total loss in perimeter of 2L(k−1).
We will show how to use this change in weight to bound
the total weight of all possible preimages to g(y).

First select any bar in column 0 to label q0 and place
it anywhere in column t. Encode the original height
of q0. Let i ≥ 0 and suppose bars q0, . . . , qi have already
been moved. There are several cases, depending on the
location of the bars in y. For visual assistance, we’ve
broken the cases down in terms of how many (0,1, or 2)
bars there are in column i + 1 that are adjacent to qi.
Cases 2.1, 2.3 and 3 are the most interesting, and in fact
the other two cases are exponentially suppressed, which
is precisely why we can use our information theoretic
encoding to take care of them.

qi

qi+1

r i

r i+1

(1)

qi
qi+1

r i
r i+1

(2.1)

qi
qi+1

r i

r i+1

(2.2)

qi
qi+1

r i
r i+1

(2.3)

qi

qi+1

r i

r i+1

(3)

Figure 5: Example configurations for each case. The
dotted lines represent bars that may not be present.

Case 1: qi is adjacent to 0 bars in column i + 1.
Label any bar in column i + 1 by qi+1. Move qi+1 to
column t + i + 1 with height hg(y)(qi). We can encode
the column i + 1 and the original height of qi+1, since
this move results in a loss in perimeter of 2L, unless bar
ri exists. If ri exists but not ri+1 then column i will be
the rightmost column of a component after this move, so
when we push the components together at the end, we
will get a loss in perimeter of 2L, as desired. Otherwise,
if ri and ri+1 both exist, shift every bar in columns i+1
through t + i by the same vertical amount such that
sg(y)(ri, ri+1) = L, to get the loss in perimeter. Encode
the original height of bar ri+1.

Case 2.1: qi is adjacent to 1 bar in column i + 1
(label this bar qi+1) and either column i has only 1 bar
or s(ri, qi+1) = 0. Move qi+1 to column t + i + 1 with
height hg(y)(qi)+hy(qi)−hy(qi+1) (at the same relative
height that they had previously).

Case 2.2: qi is adjacent to 1 bar in column i +
1(label this bar qi+1), ri exists, s(ri, qi+1) 6= 0, and
if ri+1 exists, s(ri, ri+1) = 0. Move qi+1 to column
t+ i+ 1 with height hg(y)(qi). Encode the column i+ 1
and the original height of qi+1. If bar ri+1 exists, shift
every bar in columns i + 1 through t + i by the same
vertical amount such that sg(y)(ri, ri+1) = L. Encode
the original height of bar ri+1.

Case 2.3: qi is adjacent to 1 bar in column i + 1
(label this bar qi+1), ri and ri+1 exist, s(ri, qi+1) 6= 0
and s(ri, ri+1) 6= 0. Move qi+1 to column t+ i+ 1 with
height hg(y)(qi) + hy(qi) − hy(qi+1). Shift every bar in
columns i+1 through t+ i by the same vertical amount
such that sg(y)(ri, ri+1) increases by sy(ri, qi+1).

Case 3: qi is adjacent to 2 bars in column i + 1.
Since L ≤ n

4 there must be at least one bar in column
i + 1 that is only adjacent to qi in column i (label this
bar qi+1). Move qi+1 to column t + i + 1 at height
hg(y)(qi) + hy(qi) − hy(qi+1). Shift qi+1 vertically to
increase sg(y)(qi, qi+1) by sy(qi, ri+1).

After this procedure, the first t columns each con-
tain at most 1 bar and the next t columns each con-
tain exactly one bar. Assume there are k components,
numbered from the minimal leftmost component to the
right. For j = 2, 3, . . . , k, shift the entire jth compo-
nent so that its leftmost bar aligns fully with the right-
most bar in the j − 1st component; using the 2L loss in
perimeter, record where the components were originally.
Next, let j be the largest j such that rj exists. Shift all
bars q0, . . . qt vertically by the same amount such that
s(rj , q0) = L. Notice that we now have a single compo-
nent with exactly one bar per column. Finally, shift the
component horizontally so the first bar is in column 0 of
the torus. Since b < n there are at most n− 1 columns
with bars, implying g(y) is a valid configuration in Ω̂.

Next we will show that given the information en-
coded above and a configuration y′ ∈ S we can re-
cover y. First, use the information encoded to recover
the positions of the k components we pushed together.
Recall that we also recorded the location of q0 in y.
Assume that we have already recovered the location of
qi and ri; to recover the location of qi+1 and ri+1 we
must determine which case was used to move qi+1. If
qi+1 was moved using Case 1 or Case 2.2, we would
have encoded column i, the original location of qi+1,
and any amount ri+1 was shifted, so we can recover this
information. Otherwise, if s(qi, ri+1) 6= 0 then Case 3
was used. This indicates that s(qi+1, qi) was increased
by s(qi, ri+1) in y′ and so we can recover the original
s(qi+1, qi) and location. Finally, if none of these have
occurred then we have used Case 2.1 or 2.3. In either of
these cases the shared border between qi and qi+1 was
not changed so we can recover the original location of



qi+1. If in addition s(ri, qi+1) 6= 0, then we used Case
2.3 where ri+1 and all bars from columns i+ 1 to t+ i
were shifted to increase the shared border by s(ri, qi+1).
Given this, we can undo the shift and recover the origi-
nal location of ri.

It is not difficult to see that the mapping g can
be used to show that Ψ(K1) is exponentially smaller
than π̂(S); specifically, the bound obtained is

(4.13)
Ψ(K1)
π̂(S)

≤ 16n8µ2L.

For a particular y ∈ K1, consider the procedure that
determines g(y). Define f1(y) to be the number of times
Case 1 is applied except when ri exists but not ri+1,
f2(y) to be the number of times Case 2.2 is applied
when ri+1 exists, f3(y) to be the number of times Case
2.2 or Case 1 is applied when ri+1 does not exist but ri
does, and f4(y) to be k − 1 if rj and q0 are in adjacent
columns before compression and k−2 otherwise. Define
f(y) = (f1(y), f2(y), f3(y), f4(y)). Each time Case 1 or
Case 2.2 is applied the column and the original height of
one or two bars is encoded. During the final compression
step for each component shifted, the amount shifted and
the original height of each component is encoded. From
these observations, for a particular y the total amount of
information encoded is at most nF (f1(y),f2(y),f3(y),f4(y))

where F (i, j, k, l) = 2 + 3i + 3j + 2k + 3(l + 1). The
additional n2 factor is needed to encode the original
height and column of q0. Since this information suffices
to recover y such that g(y) = y′, it can be used to bound
the number of preimages for a particular y′ ∈ S. Each
time Case 1 is applied (except when ri exists but not
ri+1), Case 2.2 is applied when ri+1 exists and each time
two components are joined together in the compression
step, there is a decrease in perimeter of 2L. In addition
there is a decrease in perimeter of 2L between the two
sets of bars q, r. Combining these observations shows
that Ψ(y) ≤ µ[2L(f1(y)+f2(y)+f4(y)+1)]π̂(g(y)). Also
notice that since f3(y) counts the number of indices i
such that column i has 2 bars and column i+1 has 1 bar,
and we remove one bar from each nonempty column,
f3(y) corresponds to the number of components in the
compression step. This implies f3(y) ≤ f4(y) + 1. Since
λ ≥ 8c

−1
1 implies n5µ2L ≤ 1/2, we have

Ψ(K1) =
∑
y′∈S

∑
i,j,k,l∈
[0,n−1]

∑
y∈K1:g(y)=y′,
f(y)=(i,j,k,l)

Ψ(y)

≤
∑
y′∈S

π̂(y′)
∑
i,j,k,l∈
[0,n−1]

nF (i,j,k,l)µ2L(i+j+l+1)

≤ n5µ2L
∑
y∈S

π̂(y)
∑
i,j,k,l∈
[0,n−1]

n3i+3j+2(l+1)+3lµ2L(i+j+l)

≤ n8µ2L
∑
y∈S

π̂(y)
∑
i,j,l∈

[0,n−1]

n3i+3j+5lµ2L(i+j+l)

≤ 16n8µ2Lπ̂(S),

as desired. �
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