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Abstract

We study the mixing time of a Markov chain Mnn on per-

mutations that performs nearest neighbor transpositions in

the non-uniform setting, a problem arising in the context of

self-organizing lists. We are given “positively biased” prob-

abilities {pi,j ≥ 1/2} for all i < j and let pj,i = 1− pi,j . In

each step, the chain Mnn chooses two adjacent elements k,

and ` and exchanges their positions with probability p`,k.

Here we define two general classes and give the first proofs

that the chain is rapidly mixing for both. In the first case

we are given constants r1, . . . rn−1 with 1/2 ≤ ri ≤ 1 for all i

and we set pi,j = ri for all i < j. In the second we are given

a binary tree with n leaves labeled 1, . . . n and constants

q1, . . . qn−1 associated with all of the internal vertices, and we

let pi,j = qi∧j for all i < j. Our bounds on the mixing time

of Mnn rely on bijections between permutations, inversion

tables and asymmetric simple exclusion processes (ASEPs)

that allow us to express moves of the chain in the context

of these other combinatorial families. We also demonstrate

that the chain is not always rapidly mixing by constructing

an example requiring exponential time to converge to equi-

librium. This proof relies on a reduction to biased lattice

paths in Z2.

1 Introduction

Sampling from the permutation group Sn is one of the
most fundamental problems in probability theory. A
natural Markov chain that has been studied extensively
is a symmetric chain, Mnn, that iteratively makes
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nearest neighbor transpositions on adjacent elements.
We are given a set of input probabilities P = {pi,j}
for all 1 ≤ i, j ≤ n with pi,j = 1 − pj,i. At each
step, the Markov chain Mnn uniformly chooses a pair
of adjacent elements, i and j, and puts i ahead of j
with probability pi,j , and j ahead of i with probability
pj,i = 1 − pi,j . The problem of biased permutations
arises naturally from the Move-Ahead-One list update
algorithm and was considered by Fill [8, 9]. In the
MA1 protocol, elements are chosen according to some
underlying distribution and they move up by one in
a linked list after each request is serviced, if possible.
Thus, the most frequently requested elements will move
toward the front of the list and will require less access
time. The transposition rates vary depending on i and j
and we are always more likely to put things in order (of
their request frequencies) than out of order. Fill asked
for which P = {pi,j} the chain is rapidly mixing.

Despite the simplicity of the model, only a few
special cases are known. Wilson [18] showed that in
the unbiased case when pi,j = 1/2 for all i, j the mixing
time is Θ(n3 log n), with upper and lower bounds within
a factor of two. Subsequently Benjamini et al. [1]
considered a constant bias version of this chain, where
we are given a fixed parameter 0 ≤ p ≤ 1 such that p 6=
1/2 and pi,j = p for all i < j and pi,j = 1− p for i > j.
They relate this biased shuffling Markov chain to a chain
on an asymmetric simple exclusion process (ASEP)
and showed that they both converge in Θ(n2) time.
These bounds were matched by Greenberg et al. [10]
who also generalized the result on ASEPs to sampling
biased surfaces in two and higher dimensions in optimal
Θ(nd) time. Note that when the bias is a constant for
all i < j there are other methods for sampling from
the stationary distribution, but studying the Markov
chain Mnn is of independent interest, partly because
of the connection to ASEPs and other combinatorial
structures. Finally, we also have polynomial bounds
on the mixing time when each of the pi,j for i < j is
equal to 1/2 or 1; in this case we are sampling linear
extensions of a partial order over the set {1 . . . n}, and
the chain Mnn was shown by Bubley and Dyer [3] to
mix in O(n3 log n) time.



It is easy to see that Mnn is not always rapidly
mixing. Consider, for example, n elements 1 . . . n such
that pi,j = 1 for all 1 ≤ i < j ≤ n − 1, pn,i = .9 for
j ≤ n/2 and pi,n = .9 for j > n/2. Then the first n− 1
elements will stay in order once they become ordered.
All n places where the last element can be placed have
nonzero stationary probability, but the configurations
that have this last element at the beginning or end of the
permutation will have exponentially larger stationary
probability than the configuration that has this last
element near the middle of the permutation. This
defines an exponentially small cut in the state space and
we can conclude that the nearest neighbor transposition
chain must be slowly mixing for this choice of P.

To avoid such situations, we restrict our attention
to the positively biased setting where for all i < j,
we have 1/2 ≤ pi,j ≤ 1. Note that any transposition
that puts elements in the proper order has probability
at least 1/2, so starting at any permutation, we can
always perform a series of transpositions to move to the
ordered permutation 1, 2, . . . , n without ever decreasing
the stationary probabilty. It is also worth noting
that the classes for which the chain is known to mix
rapidly are all positively biased. Fill [8, 9] conjectured
that when P is positively biased and also satisfies a
monotonicity condition where pi,j ≤ pi,j+1 and pi,j ≥
pi+1,j for all 1 ≤ i < j ≤ n, then the chain is always
rapidly mixing. In fact, he conjectured that the spectral
gap is minimized when pi,j = 1/2 for all i, j, a problem
he refers to as the “gap problem.” Fill verified the
conjecture for n = 4 and gave experimental evidence
for slightly larger n.

In this paper, we make progress on the question of
determining for which values of P the chain Mnn is
rapidly mixing. First, we show that restricting P to be
positively biased is not sufficient to guarantee fast con-
vergence to equilibrium. Our example uses a reduction
to ASEPs and biased lattice paths. The construction is
motivated by models in statistical physics that exhibit
a phase transition arising from a “disordered phase” of
high entropy and low energy, an “ordered phase” of high
energy and low entropy, and a bad cut separating them
that is both low energy and entropy. We note that this
example does not satisfy the monotonicity condition of
Fill, thus leaving his conjecture open, but does give in-
sight into why bounding the mixing rate of the chain in
more general settings has proven quite challenging.

In addition, we identify two new classes of input
probabilities P for which we can prove that the chain
is rapidly mixing. It is important to note that these
classes are not necessarily monotone. The first, which
we refer to as “Choose Your Weapon,” we are given
a set of input parameters 1/2 ≤ r1, . . . , rn−1 ≤ 1

representing each player’s ability to win a duel with his
or her weapon of choice. When a pair of neighboring
players are chosen to compete, the dominant player
gets to choose the weapon, thus determining his or her
probability of winning the match. In other words, we
set pi,j = ri when i < j. We show that the nearest
neighbor transposition chainMnn is rapidly mixing for
any choice of {ri}. The second class, which we refer to as
“League Hierarchies,” is defined by a binary tree with n
leaves labeled 1, . . . n. We are given q1, . . . qn−1 with
1/2 ≤ qi ≤ 1 for all i, each associated with a distinct
internal node in the tree. We then set pi,j = qi∧j for
all i < j. We imagine that the two subtrees under the
root represent two different leagues, where each player
from one league have a fixed advantage over each player
from the other. Moreover, each league is subdivided
into two sub-leagues, and each player from one has a
fixed advantage over a player from the other, and so
on recursively. We prove that there is a Markov
chain based on transpositions (not necessarily nearest
neighbors) that is always rapidly mixing for positively
biased P defined as League Hierarchies. Moreover,
if the {qi} additionally satisfy “weak monotonicity”
(i.e., pi,j ≤ pi,j+1 if j > i) then the nearest neighbor
chain Mnn is also rapidly mixing. Note that both the
choose-your-weapon and the tree-hierarchy classes are
generalizations of the constant bias setting, which can
be seen by taking all parameters ri or qi to be constant.

Our proofs rely on various combinatorial represen-
tations of permutations, including Inversion Tables and
families of ASEPs. In each case there is a natural
Markov chain based on (non necessarily adjacent) trans-
positions for which we can more easily bound the mix-
ing time in the new context. We then interpret these
new moves in terms of the original permutations in or-
der to derive bounds on the mixing rate of the nearest
neighbor transposition via comparison methods. These
new chains that allow additional, but not necessarily
all, transpositions are also interesting in the context of
permutations and these related combinatorial families.
Finally, we note that the choose-your-weapon class is
actually a special case of the league-hierarchy class, but
the proofs bounding the mixing rate of Mnn are sim-
pler and yield faster mixing times, so we present these
proofs separately in Sections 4 and 5.

2 The Markov Chains Mnn and Mtr

We begin by formalizing the nearest neighbor and
transposition Markov chains. Let Ω = Sn be the set
of all permutations σ = (σ(1), . . . , σ(n)) of n integers.
We consider Markov chains on Ω whose transitions
transpose two elements of the permutation. Recall we
are given a set P, consisting of pi,j ∈ [0, 1] for each



1 ≤ i 6= j ≤ n, where for any i < j, pi,j ≥ 1/2 and
pj,i = 1 − pi,j . The Markov chain Mnn will sample
elements from Ω as follows.

The Nearest Neighbor Markov chain Mnn

Starting at any permutation σ0, repeat:

• At time t, select index i ∈ [n− 1] uniformly

at random (u.a.r).

– Exchange the elements σt(i) and σt(i+ 1)
with probability pσt(i+1),σt(i) to

obtain σt+1.

– With probability pσt(i),σt(i+1) do

nothing so that σt+1 = σt.

The chain Mnn connects the state space, since ev-
ery permutation σ can move to the ordered permu-
tation (1, 2, . . . , n) (and back) using the bubble sort
algorithm. Since Mnn is also aperiodic, this implies
that Mnn is ergodic. For an ergodic Markov chain
with transition probabilities P, if some assignment of
probabilities π satisfies the detailed balance condition
π(σ)P(σ, τ) = π(τ)P(τ, σ) for every σ, τ ∈ Ω, then π
is the stationary distribution of the Markov chain [13].
It is easy to see that for Mnn, the distribution π(σ) =∏

(i<j) pσ(i),σ(j)/Z, where Z is the normalizing constant∑
σ∈Ω

∏
(i<j) pσ(i),σ(j), satisfies detailed balance, and is

thus the stationary distribution.
The Markov chainMtr can make any transposition

at each step, while maintaining the stationary distribu-
tion π. The transition probabilities ofMtr can be quite
complicated, since swapping two distant elements in the
permutation consists of many transitions of Mnn, each
with different probabilities. In the following sections,
we will introduce two other Markov chains whose tran-
sitions are a subset of those of Mtr, but for which we
can describe the transition probabilities succinctly.

The relevant measure of the number of times we
need to repeat steps of a Markov chain M so that we
are close (within total variation distance ε of stationar-
ity) is the mixing time τ(ε). The total variation distance
between the stationary distribution π and the distribu-
tion of the Markov Chain at time t is

‖Pt, π‖tv = max
x∈Ω

1

2

∑
y∈Ω

|Pt(x, y)− π(y)|,

where Pt(x, y) is the t-step transition probability. For
all ε > 0, we define

τ(ε) = min{t : ‖Pt
′
, π‖tv ≤ ε,∀t′ ≥ t}.

We say that a Markov chain is rapidly mixing if there
exists a polynomial p such that τε = O(p(n, log(ε−1)))
where n is the size of each configuration in Ω.

3 A Positively Biased P that is Slowly Mixing

We begin by presenting an example that is positively
biased yet takes exponential time to mix. In particular,
we show that there are positively biased P for which the
chains Mnn and even Mtr require exponential time to
converge to equilibrium. This example was discovered
by two of the authors as a result of their previous work
studying tile-based self-assembly models [14] and is of
independent interest in this setting. We use a reduction
from biased permutations to multiple particle ASEP
configurations with n zeros and n ones. The resulting
ASEPs are in bijection with staircase walks [10], which
are paths on the Cartesian lattice from (0, n) to (n, 0)
that always go to the right or down (see Figure 1b).
In [10], Greenberg et al. examined the Markov chain
which attempts to swap a neighboring (0, 1) pair, which
essentially adds or removes a unit square from the
region below the walk, with probability depending on
the position of that unit square. The probability of
each walk w is proportional to

∏
xy<w λxy, where the

bias λxy ≥ 1/2 is assigned to the square at (x, y) and
xy < w whenever the square at (x, y) lies underneath
the walk w. We show that there are settings of the {λxy}
which cause the chain to be slowly mixing from any
starting configuration (or walk). In particular, we show
that at stationarity the most likely configurations will
be concentrated near the diagonal from (0, n) to (n, 0)
(the high entropy, low energy states) or they will extend
close to the point (n, n) (the high energy, low entropy
states) but it will be unlikely to move between these sets
of states because there is a bottleneck that has both low
energy and low entropy. Finally, we use the reduction
from biased permutations to biased lattice paths to
produce a positively biased set of probabilities P for
which Mnn also requires exponential time to mix.

Suppose, for ease of notation, that we are sampling
permutations with 2n entries (having an odd number of
elements will not cause qualitatively different behavior).
Let M = 2n2/3, 0 < δ < 1

2 be a constant, ε = 1/n2. For
i < j ≤ n or n < i < j, pi,j = 1, ensuring that once
the elements 1, 2, . . . , n get in order, they stay in order
(and similarly for the elements n + 1, n + 2, . . . , 2n).
The pi,j values for i ≤ n < j are defined as follows (see
Figure 1a):

pi,j =

{
1− δ if i+ 2n− j + 1 ≥ n+M ;
1
2 + ε otherwise.

We identify sets S1, S2, S3 such that π(S2) is ex-
ponentially smaller than both π(S1) and π(S3), but
to get between S1 and S3, Mnn and Mtr must pass
through S2, the cut. Since the smallest (largest) n
elements of the biased permutation never change or-



1
2 + ε

1− δ

M n −M

Figure 1: (a) Fluctuating bias with exponential mixing
time. (b) Staircase walks in S1, S2, and S3.

der once they get put into increasing order, permuta-
tions with these elements out of order have zero sta-
tionary probability. Hence they do not contribute to
π(S1), π(S2), or π(S3). Hence we can represent the
smallest n numbers as ones and the largest n numbers as
zeros, assuming that within each class the elements are
in increasing order. Given a permutation σ, let f(σ)
be a sequence of ones and zeros, where f(σ)i = 1 if
i ≤ n and 0 otherwise. Then if σ is such that ele-
ments 1, 2, . . . , n and elements n + 1, n + 2, . . . , 2n are
each in order, f(σ) maps σ uniquely to a staircase walk.
For example, the permutation σ = (5, 1, 7, 8, 4, 3, 6, 2)
maps to f(σ) = (0, 1, 0, 0, 1, 1, 0, 1). The probability
that an adjacent 1 and a 0 swap in Mnn then depends
on how many ones and zeros occur before that point in
the permutation. Specifically, if element i is a 0 and
element i+ 1 is a 1 then we swap them with probability
1
2 + ε if the number of ones occurring before position x
plus the number of zeros occurring after i + 1 is less
than n + M − 1. Otherwise, they swap with probabil-
ity 1− δ. Equivalently, the probability of adding a unit
square at position v = (x, y), which is called the bias at
v = (x, y), is 1

2 + ε if x + y ≤ n + M , and 1 − δ other-
wise; see Figure 1b. We will show that in this case, the
Markov chain is slow. The idea is that in the station-
ary distribution, there is a good chance that the ones
and zeros will be well-mixed, since this is a high entropy
situation. However, the identity permutation also has
high weight, and the parameters are chosen so that the
entropy of the well-mixed permutations balances with
the energy of the maximum (identity) permutation, and
that to get between them is not very likely (low entropy
and low energy). We prove that for the set P defined
above,Mnn andMtr have a bad cut. Then we use the
conductance to proveMnn andMtr are slowly mixing.
For an ergodic Markov chain with distribution π, the

conductance is defined as

Φ = min
S⊆Ω

π(S)≤1/2

∑
s1∈S,s2∈S̄

π(s1)P(s1, s2)/π(S).

We will show that the bad cut (S1, S2, S3) implies that Φ
is exponentially small. The following theorem relates
the conductance and mixing time (see, e.g.,[11, 16]).

Theorem 3.1. For any Markov chain with conduc-
tance Φ and mixing time τ(ε), for all ε > 0 we have

τ(ε) ≥
(

1

4Φ
− 1/2

)
log

(
1

2ε

)
.

We are now ready to prove the main theorem of the
section.

Theorem 3.2. There exists a positively biased prefer-
ence set P for which the mixing time τ(ε) of the Markov
chain Mnn satisfies

τ(ε) ≥ 1

2

(
en

1/3−1 − 1
)

log

(
1

2ε

)
.

Proof. For a staircase walk σ, define the height of σi
as
∑
j≤i σj , and let max(σ) be the maximum height

of σi over all 1 ≤ i ≤ 2n. Let S1 be the set of
configurations σ such that max(σ) < n + M , S2 the
set of configurations such that max(σ) = n+M , and S3

the set of configurations such that max(σ) > n + M .
That is, S1 is the set of configurations that never reach
the dark blue diagonal in Figure 1b, S2 is the set whose
maximum peak is on the dark blue line, and S3 is the
set which crosses that line and contains squares in the
light blue triangle. Define γ = (1/2+ε)/(1/2−ε), which
is the ratio of two configurations that differ by swapping
a (0, 1) pair with probability 1

2 + ε. First we notice that
since the maximal tiling is in S3,

π(S3) ≥ 1

Z
γn

2− (n−M)2

2 (δ−1 − 1)
(n−M)2

2 .

Also, π(S1) = 1
Z

∑
σ∈S1

γA(σ), where A(σ) is the
number of unit squares below σ. We have that

π(S1) =
1

Z

∑
σ∈S1

γA(σ) ≤ 1

Z

∑
σ∈S1

γn
2− (n−M)2

2

≤ 1

Z

(
2n

n

)
γn

2− (n−M)2

2

≤ 1

Z
(2e)nγn

2− (n−M)2

2

≤ 1

Z
γn

2− (n−M)2

2 (δ−1 − 1)
(n−M)2

2

≤ π(S3)



for large enough n, since 1/δ > 2 is a constant.
Hence π(S1) ≤ π(S3). We will show that π(S2) is
exponentially small in comparison to π(S1) (and hence
also to π(S3)).

π(S2) =
1

Z

∑
σ∈S2

γA(σ) ≤ γn
2 |S2|
Z

.

We bound |S2| as follows. The unbiased Markov
chain is equivalent to a simple random walk W2n =
X1 + X2 + · · · + X2n = 0, where Xi ∈ {+1,−1} and
where a +1 represents a step to the right and a −1
represents a step down. We call this random walk
tethered since it is required to end at 0 after 2n steps.
Compare walk W2n with the untethered simple random
walk W ′2n = X ′1 +X ′2 + . . .+X ′2n.

P

(
max

1≤t≤2n
Wt ≥M

)
= P

(
max

1≤t≤2n
W ′t ≥M | W ′2n = 0

)
=
P (max1≤t≤2nW

′
t ≥M)

P (W ′2n = 0)

=
22n(
2n
n

)P ( max
1≤t≤2n

W ′t ≥M
)

≈
√
πn P

(
max

1≤t≤2n
W ′t ≥M

)
.

Since the {X ′i} are independent, we can use Chernoff
bounds to see that

P

(
max

1≤t≤2n
W ′t ≥M

)
≤ 2nP (W ′2n ≥M) ≤ 2ne

−M2

2n .

Together these show that

P

(
max

1≤t≤2n
Wt ≥M

)
< e−n

1/3

,

by definition of M . Therefore we have

π(S2) ≤ 1

Z
γn

2

|S2| ≤
1

Z

(
2n

n

)
e−n

1/3

≤ 1

Z

(
2n

n

)
e−n

1/3+1(1− e−n
1/3

)

≤ 1

Z
|S1|e−n

1/3+1

≤ e−n
1/3+1π(S1),

as desired. Thus, the conductance satisfies

Φ ≤
∑
x∈S1

π(x)

π(S1)

∑
y∈S2

P (x, y)

≤
∑
x∈S1

π(x)

π(S1)
π(S2)

≤ e−n
1/3+1π(S1) ≤ e−n

1/3+1

2
.

Hence, by Theorem 3.1, τ(ε), the mixing time of Mnn

satisfies

τ(ε) ≥ 1

2

(
en

1/3−1 − 1
)

log

(
1

2ε

)
.

�

Figure 2: A move that swaps an arbitrary (1, 0) pair.

In fact, this proof can be extended to the more
general Markov chain where we can swap any 1 with
any 0, as long as we maintain the correct stationary
distribution. This is easy to see, because any move that
swaps a single 1 with a single 0 can only change the
maximum height by at most 2 (see Figure 2). If we
expand S2 to include all configurations with maximum
height n+M or n+M + 1, π(S2) is still exponentially
smaller than π(S1) ≤ π(S3). Hence the Markov chain
that swaps an arbitrary (1, 0) pair still takes exponential
time to converge.

4 Choose Your Weapon

Despite the slow mixing example outlined in the previ-
ous section, there are many cases for which the chain
will be rapidly mixing. We define two new classes for
which we can rigorously demonstrate this and we pro-
vide the proofs in the next two sections.

For the first class, imagine a community of n people,
each with a unique combative talent. Each member has
his or her weapon of choice, and a competition with
any other member of the community using this weapon
affords that person a fixed advantage. When two people
are chosen to compete, they each prefer using their own
weapon of choice, so we resolve this by letting the person
with the higher rank (e.g., age, seniority, etc.) choose
the weapon they both will use. At any point in time
our competitors are ordered and nearest neighbors are
randomly selected to compete, where upon the winner
is moved in front of the loser in the ordering.

To formalize the “Choose Your Weapon” scenario,
we are given 1/2 ≤ r1, r2, . . . , rn−1 ≤ 1 and the set P
satisfies pi,j = ri, if i < j and pi,j = 1 − pj,i if j < i.



The moves of the nearest neighbor Markov chain Mnn

formalize the competitions, and our goal is to bound
the mixing rate of this chain. Notice that this class
includes the constant bias case studied by Benjamini
et al. as a special case, and indeed our analysis yields an
independent and simpler proof that the nearest neighbor
Markov chain Mnn is rapidly mixing in that context.

We shall show that the chainMnn is always rapidly
mixing for probabilities P defined in this way. Our proof
relies on a bijection between permutations and Inversion
Tables [12, 17] that, for each element i, record how many
elements j > i come before i in the permutation. We
consider a Markov chain Minv that simply increments
or decrements a single element of the inversion table in
each step; using the bijection with permutations this
corresponds to transpositions of elements that are not
necessarily nearest neighbors to the Markov chainMnn.
Remarkably, this allows Minv to decompose into a
product of simple one-dimensional random walks and
bounding the convergence time is very straightforward.
Finally, we use comparison techniques [5, 15] to bound
the mixing time of the nearest neighbor chain Mnn.

4.1 The inversion table representation. The
Markov chain Minv acts on the inversion table for the
permutation [12, 17], which has an entry for each i ∈ [n]
counting the number of inversions involving i; that is,
the number of values j > i where j comes before i in the
permutation (see Figure 3). It is easy to see that the
ith element of the inversion table is an integer between 0
and n− i. In fact, the function I is a bijection between
the set of permutations and the set I of all possible in-
version tables (all sequences X = (x1, x2, . . . , xn) where
0 ≤ xi ≤ n− i for all i ∈ [n]). To see this, we will con-
struct a permutation from any inversion table X ∈ I.
Place the element 1 in the (x1 + 1)st position of the
permutation. Next, there are n − 1 slots remaining.
Among these, place the element 2 in the (x2 + 1)st po-
sition remaining (ignoring the slot already filled by 1).
Continuing, after placing i − 1 elements into the per-
mutation, there are n − i + 1 slots remaining, and we
place the element i into the (xi + 1)st position among
the remaining slots. This proves that I is a bijection
from Sn to I.

Given this bijection, a natural algorithm for sam-
pling permutations is the following local Markov chain
on inversion tables: select a position i ∈ [n] and attempt

σ = 8 1 5 3 7 4 6 2
I(σ) = 1 7 2 3 1 2 1 0

Figure 3: The inversion table for a permutation.

to either add one or subtract one from xi, according to
the appropriate probabilities. This amounts to adding
or removing an inversion involving i without affecting
the number of inversions involving any other integer,
and is achieved by swapping the element i with an ele-
ment j > i such that every element in between is smaller
than both i and j. If i moves ahead of j, this move hap-
pens with probability pi,j because for each k originally
between i and j, pk,i = rk = pk,j , so the net effect of the
move is neutral. The detailed balance condition ensures
that π is the correct stationary distribution. Formally,
the Markov chain Mnn is defined as follows.

The Inversion Markov chain Minv

Starting at any permutation σ0, repeat:

• Select (i, b) ∈ [n]× {−1,+1} u.a.r.

– If b = +1 let j be the first element

after i in σt such that j > i. With

probability pj,i, obtain σt+1 from σt
by swapping i and j.

– If b = −1 let j be the last element

before i in σt such that j > i. With

probability pi,j, obtain σt+1 from σt
by swapping i and j.

• Otherwise, σt+1 = σt.

This Markov chain contains the moves of Mnn (and
therefore also connects the state space). Although el-
ements can jump across several elements, it is still
fairly local compared with the general transposition
chain Mtr which has

(
n
2

)
choices at every step,

since Minv has at most 2n.

4.2 Rapid mixing of Minv. The inversion Markov
chainMinv can be viewed as a product of n independent
processes. The ith process is a one-dimensional random
walk bounded between 0 and n−i that moves up by one
with probability ri and down by one with probability
1−ri; its mixing time is O(n2 log n), unless ri is bounded
away from 1/2, in which case its mixing time is O(n).
We make moves in each chain with probability 1/n,
since we update one random walk at a time. The main
tool we use for proving rapid mixing ofMinv is the path
coupling theorem. We use the following version due to
Dyer and Greenhill [7].

Theorem 4.1. (Path Coupling) Let d be an integer-
valued metric defined on Ω × Ω which takes values in
{0, ..., B}. Let U be a subset of Ω× Ω such that for all
(Xt, Yt) ∈ Ω×Ω there exists a path Xt = Z0, Z1, ..., Zr =
Yt between Xt and Yt such that (Zi, Zi+1) ∈ U for



0 ≤ i < r and

r−1∑
i=0

d(Zi, Zi+1) = d(X0, Xt).

Let M be a Markov chain on Ω with transition matrix P
and mixing time τ(ε). Consider any random function
f : Ω → Ω such that P [f(X) = Y ] = P (X,Y ) for all
X,Y ∈ Ω, and define a coupling of the Markov chain
by (Xt, Yt) → (Xt+1, Yt+1) = (f(Xt), f(Yt)). If there
exists β < 1 such that

E[d(Xt+1, Yt+1)] ≤ βd(Xt, Yt),

for all (Xt, Yt) ∈ U, then the mixing time of M satisfies

τ(ε) ≤ ln(Bε−1)

1− β
.

Now we are ready to prove the following theorem,
bounding the mixing time of Minv.

Theorem 4.2. The mixing time of Minv on the uni-
form distribution over permutations on n elements sat-
isfies τ(ε) = O(n3 log(nε−1)).

Proof. We define a distance metric d on pairs X,Y of
inversion tables as a sum over the distances between
the entries xi and yi, where the distance between xi
and yi is defined by

∑yi−1
j=xi

φ(j) if xi ≤ yi, where

φ(j) = cos
(
π/3

(
j
n −

1
2

))
, for j = 1, 2, . . . , n − 1. The

function φ is log-concave and symmetric across n/2.
The distance d is

d(X,Y ) =

n∑
i=1

max{xi,yi}−1∑
j=min{xi,yi}

φ(j).

We use the natural coupling on inversion tables
where we choose the same element i for both X = Xt

and Y = Yt for each step t. A pair of inversion tables
(X,Y ) is in U ⊂ I × I if Y can be obtained from X
by adding or subtracting 1 from a single xi. Consider
such a pair, and without loss of generality, suppose
yi = xi + 1. We will show that the expected change
in distance after one step of Minv is always negative.
The result then follows from Theorem 4.1. Every move
happens with probability 1/(4n). Notice that there are
two moves that decrease the distance; namely, choos-
ing i and subtracting 1 from yi or adding 1 to xi, and for
each of these, the change in distance is −φ(xi). There
are also two moves that increase the distance. Adding
1 to yi results in an increase of φ(yi) = φ(xi + 1), and
subtracting 1 from xi results in a decrease of φ(xi − 1).
Notice that all other moves (those involving a different

one-dimensional process) are neutral, because they oc-
cur with the same probability in both chains. Hence
the expected change in distance is E[d(Xt+1, Yt+1) −
d(Xt, Yt)] = 1

4n (−2φ(xi) + φ(xi − 1) + φ(xi + 1)) . Us-
ing the trigonometric identity cos(α+γ) + cos(α−γ) =
2 cos(α) cos(γ), we see that

φ(xi − 1) + φ(xi + 1) = 2φ(xi) cos(π/(3n))

≤ 2φ(xi)

(
1− (π/3)2

2n2

)
,

see Wilson[18] for more details. Thus, since d(Xt, Yt) =
φ(xi) ≥ cos(π/3) = 1/2,

E[d(Xt+1, Yt+1)]

≤ d(Xt, Yt) +
1

4n
2φ(xi)

(
−1 + 1− (π/3)2

2n2

)
≤ d(Xt, Yt)

(
1− φ(xi)π

2

18n3

)
≤ d(Xt, Yt)

(
1− π2

36n3

)
.

Moreover, the largest distance between any two inver-
sion tables is

d(Xt, Yt) =

n∑
i=1

n−i−1∑
j=1

φ(j) ≤
n∑
i=1

n− i− 1 =
n(n− 3)

2
.

Hence by Theorem 4.1,

τ(ε) ≤ 36n3

π2
ln(n2ε−1) = O(n3 log(nε−1)).

�

Remark 4.1. The same proof also applies to the case
where the probability of swapping i and j depends on
the object with lower rank (i.e., we are given r2, . . . rn
and we let pi,j = rj for all i < j). This case is related
to a variant of the MA1 list update algorithm, where
if a record is requested, we try to move the associated
record x ahead of its immediate predecessor in the list,
if it exists. If it has higher rank than its predecessor,
then it always succeeds, while if its rank is lower we
move it ahead with probability fx = rx/(1 + rx) ≤ 1.

The case that some of the ri = 1/2 also mixes in time
O(n3 log n) by the same proof. However, when each ri is
bounded away from 1/2, we have the following theorem.

Theorem 4.3. Let 1/2 < r1, r2, . . . , rn−1 < 1 be con-
stants. If P = {pi,j = rmin{i,j}}, then the mixing time
of Minv satisfies

τ(ε) = O(n2 ln(nε−1)).



Proof. As above, we use path coupling. The set U is
defined in the same way, but we will use a different
distance metric d. Let αi = 1/(2(1− ri)) and define

d(X,Y ) =

n∑
i=1

max{xi,yi}−1∑
j=min{xi,yi}

αji .

Let (X,Y ) ∈ U and suppose Y is obtained from X by
adding 1 to xi. Then as before, any move of Minv

whose smaller index is not i succeeds or fails with the
same probability in X and Y . There are two moves
that decrease the distance: adding 1 to xi, which hap-
pens with probability (1− ri)/(4n), or subtracting 1
from yi, which happens with probability ri/(4n). Both
of these moves decrease the distance by αxii . On the
other hand,Minv proposes adding 1 to yi with probabil-
ity (1− ri)/(4n), which increases the distance by αxi+1

i ,
and Minv proposes subtracting 1 from xi and suc-
ceeds with probability ri/(4n), increasing the distance
by αxi−1

i . Thus the expected change in distance is

E[d(Xt+1, Yt+1)− d(Xt, Yt)]

=
1

4n

(
−αxii + (1− ri)αxi+1

i + riα
xi−1
i

)
=
αxi−1
i

4n

(
−αi + (1− ri)α2

i + ri
)

=
αxi−1
i

4n

(
ri −

1

4(1− ri)

)
=
αxii
2n
· −(2ri − 1)2

4

=
−dt(2ri − 1)2

8n
,

since dt = αxii . Hence E[dt+1] ≤ dt(1− (2ri−1)2/(8n)).
Moreover, the maximum distance between any two
inversion tables is

B =

n−1∑
i=1

1 +αi + · · ·+αn−ii =

n−1∑
i=1

αni − 1

αi − 1
= O(nαnmax),

where αmax = maxi{αi} = 1
2(1−rmax) . Hence

ln(Bε−1) = O(n log(nε−1),

so by Theorem 4.1, we have

τ(ε) = O(n2 log(nε−1)).

�

4.3 Comparing Minv with Mnn. The comparison
method can be used to infer the mixing time of one
chain given the mixing time of another, similar chain.
If P ′ and P are the transition matrices of two reversible
Markov chains on the same state space Ω with the same
stationary distribution π, the comparison method [5, 15]
allows us to relate the mixing times of these two chains.
Let E(P ) = {(σ, β) : P (σ, β) > 0} and E(P ′) =
{(σ, β) : P ′(σ, β) > 0} denote the sets of edges of the
two graphs, viewed as directed graphs. For each σ, β
with P ′(σ, β) > 0, define a path γσβ using a sequence of
states σ = σ0, σ1, · · · , σk = β with P (σi, σi+1) > 0,
and let |γσβ | denote the length of the path. Let
Γ(υ, ω) = {(σ, β) ∈ E(P ′) : (υ, ω) ∈ γσβ} be the set
of paths that use the transition (υ, ω) of P . Finally, let
π∗ = minρ∈Ω π(ρ) and define

A = max
(υ,ω)∈E(P )

1

π(υ)P (υ, ω)

∑
Γ(υ,ω)

|γσβ |π(σ)P ′(σ, β).

We use the following formulation of the comparison
method [15].

Theorem 4.4. Given two Markov chains each with
stationary distribution π, transition matrices P and P ′

and mixing times τ(ε) and τ ′(ε), respectively. Define A
and π∗ as above, then for 0 < ε < 1, we have

τ(ε) ≤ 4 log(1/(επ∗))

log(1/2ε)
Aτ ′(ε).

Here, we use 4.4 to infer that Mnn is fast from
the mixing time ofMinv. We assume that each pi,j is a
constant less than 1; this is to ensure a good comparison
between the spectral gap and the mixing time. If this
condition is not satisfied, then the proofs still go through
and will give a bound on the spectral gap, but will not
provide a good bound on the mixing time.

Theorem 4.5. Let 1/2 < r1, r2, . . . , rn−1 < 1 be con-
stants. If P = {pi,j = rmin{i,j}}, then the mixing time
of Mnn satisfies

τ(ε) = O(n7 log(n/ε)).

Here we are using the bound from Theorem 4.2, and if
each pi,j is bounded away from 1/2 then we would get
a better bound using Theorem 4.3.

Proof. In order to apply Theorem 4.4, we need to define,
for any transition e = (σ, β) of the Markov chainMinv,
a sequence of transitions of Mnn. Let e be a transition
of Minv which performs a transposition on elements
σ(i) and σ(j), where i < j. Recall Minv can only
swap σ(i) and σ(j) if all the elements between them are



smaller than both σ(i) and σ(j). To obtain a sufficient
bound on the congestion along each edge, we ensure
that in each step of the path, we do not decrease the
weight of the configuration. This is easy to do; in the
first stage, move σ(i) to the right, one step at a time,
until it swaps with σ(j). This removes an inversion of
the type (σ(i), σ(k)) for every i < k < j, so clearly
we have not decreased the weight of the configuration
at any step. Next, move σ(j) to the left, one step
at a time, until it reaches position i. This completes
the move e, and at each step, we are adding back an
inversion of the type (σ(j), σ(k)) for some i < k < j.
Since σ(k) = min{σ(j), σ(k)} = min{σ(i), σ(k)}, we
have pσ(i),σ(k) = pσ(j),σ(k) for every i < k < j, so in this
stage we restore all the inversions destroyed in the first
stage, for a net change of pσ(i),σ(j).

Given a transition (υ, ω) of Mnn we must upper
bound the number of canonical paths γσβ that use
this edge, which we do by bounding the amount of
information needed in addition to (υ, ω) to determine σ
and β uniquely. will provide a bound on the number
of paths which use (υ, ω). For moves in the first
stage, all we need to remember is σ(i), because we
know σ(j) (it is the element moving forward). We also
need to remember where σ(j) came from. Given this
information along with υ and ω we can uniquely recover
(σ, β). Thus there are at most n2 paths which use any
edge (υ, ω). Also, notice that the maximum length of
any path is 2n.

Next we bound the quantity A which is needed
to apply Theorem 4.4. Recall that we have guaran-
teed that π(σ) ≤ max{π(υ), π(ω)}. Assume first that
π(σ) ≤ π(υ). Then

A = max
(υ,ω)∈E(P )

 1

π(υ)P (υ, ω)

∑
Γ(υ,ω)

|γσβ |π(σ)P ′(σ, β)


≤ max

(υ,ω)∈E(P )

∑
Γ(υ,ω)

2n
P ′(σ, β)

P (υ, ω)

≤ max
(υ,ω)∈E(P )

∑
Γ(υ,ω)

2n
1/(2n)

λ
(1+λ)(n−1)

= O(n3).

If, on the other hand, π(σ) ≤ π(ω), then we use detailed

balance to obtain:

A = max
(υ,ω)∈E(P )

 1

π(υ)P (υ, ω)

∑
Γ(υ,ω)

|γσβ |π(σ)P ′(σ, β)


= max

(υ,ω)∈E(P )

 1

π(ω)P (ω, υ)

∑
Γ(υ,ω)

|γσβ |π(σ)P ′(σ, β)


≤ max

(υ,ω)∈E(P )

∑
Γ(υ,ω)

2n
P ′(σ, β)

P (ω, υ)

≤ max
(υ,ω)∈E(P )

∑
Γ(υ,ω)

2n
1/(2n)

λ
(1+λ)(n−1)

= O(n3).

In either case, we have A = O(n3). Let λ =

mini<j pj,i/pi,j . Then π∗ = minρ∈Ω π(ρ) ≥ λ(n2)/n!, so
log(1/(επ∗)) = O(n2 log ε−1), since each pi,j is bounded
away from 1 implying that λ is a positive constant. Ap-
pealing to Theorem 4.4 we have that

τnn = O(n7 log(n/ε)).

�

5 League Hierarchies

We now introduce a second general class of input prob-
abilities P for which we show Mnn is always rapidly
mixing. Imagine a sporting franchise consisting of an
A-league with stronger players and a B-league with
weaker players. We assume that any player from the
A-league has a fixed advantage over any player from the
B-league, representing his or her probability of winning
in a matchup. Within each of these leagues we have
tier-1 and tier-2 players, where again a player from the
stronger tier has a fixed probability of winning a com-
petition against a tier-2 player. Likewise for the tiers in
the other league, but of course the fixed advantage there
can be different. This partition of each tier into stronger
and weaker players continues recursively. To formalize
the class of “League Hierarchies,” let T be a proper
rooted binary tree with n leaf nodes, labeled 1, . . . , n in
sorted order. Each non-leaf node v of this tree is labeled
with a value 1

2 ≤ qv ≤ 1. For i, j ∈ [n], let i ∧ j be the
lowest common ancestor of the leaves labeled i and j.
We say that P has league structure T if pi,j = qi∧j . For
example, Figure 4a shows a set P such that p1,4 = .8,
p4,9 = .9, and p5,8 = .7. We define matches by pairing
up adjacent players in the current ranking and then we
promote the winners, thus simulating Mnn.

To show Mnn is rapidly mixing for any input
probabilities in the League Hierarchy class, we introduce
a new combinatorial representation of each permutation
that will be useful for the proofs. This representation
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Figure 4: A set P with league structure, and the corre-
sponding tree-encoding of the permutation 519386742.

associates a bit string bv to each node v of a binary tree
with n leaves. Specifically, bv ∈ {L,R}`v where `v is the
number of leaves in tv, the subtree rooted at v, and for
each element i of the sub-permutation corresponding
to the leaves of tv, bv(i) records whether i lies under
the left or the right branch of v (see Figure 4b).
The set of these bit strings is in bijection with the
permutations. We consider a chain Mtree(T ) that
allows transpositions when they correspond to a nearest
neighbor transposition in exactly one of the bit strings.
Thus, the mixing time of Mtree(T ) decomposes into a
product of n−1 ASEP chains and we can conclude that
the chain Mtree(T ) is rapidly mixing using results in
the constant bias case [1, 10]. Again, we use comparison
techniques to conclude thatMnn is also rapidly mixing
when we have weak monotonicity, although we show
that Mtree(T ) is always rapidly mixing.

5.1 The Markov chain Mtree(T ). We define the
Markov chainMtree(T ) over permutations, given set P
with league structure T .

The Markov chain Mtree(T )

Starting at any permutation σ0, repeat:

• Select distinct a, b ∈ [n] with a < b u.a.r.

• If every number between a and b in the

permutation σt is not a descendant in T

of a ∧ b, obtain σt+1 from σt by placing a, b
in order with probability pa,b, and out of

order with probability 1− pa,b, leaving all

elements between them fixed.

• Otherwise, σt+1 = σt.

First, we show that this Markov chain samples from
the same distribution as Mnn.

Lemma 5.1. The Markov chainMtree(T ) has the same
stationary distribution as Mnn.

Proof. Let π be the stationary distribution ofMnn, and
let σ1, σ2 be a transition in Mtree(T ). It suffices to
show that the detailed balance condition holds for this
transition with the stationary distribution π.

Recall that we may express π(σ) =
∏
i,j|i<σj pi,j/Z

where Z =
∑
σ∈Ω

∏
i,j|i<σj pi,j . The transition σ1, σ2

transposes some two elements a <σ1 b, where every
element between a, b in σi is not a descendant of a ∧ b
in T . Let x1, . . . , xk be those elements. Thus, the path
from a or b to xi in T must pass through a ∧ b and go
to another part of the tree. For every such element xi,
a ∧ xi = (a ∧ b) ∧ xi = b ∧ xi.

From the observation, we see from the league struc-
ture that pa,xi = pb,xi for every xi between a and b.
Also, we see that either both a < xi, b < xi or a >
xi, b > xi, since all numbers between a, b are necessarily
descendants of a ∧ b.

Therefore,

π(σ1)

π(σ2)
=
pa,b

∏
i pa,xi

pb,a
∏
i pb,xi

=
pa,b
pb,a

.

This is exactly the ratio of the transition probabilities
in Mtree(T ), thus Mtree(T ) also has stationary distri-
bution π. �

The key to the proof that Mtree(T ) is rapidly
mixing is again to decompose the chain into n − 1
independent Markov chains, M1,M2, . . . ,Mn−1, one
for each non-leaf node of the tree T . We introduce
an alternate representation of a permutation as a set
of binary strings arranged like the tree T . We use the
characters L and R for our binary representation instead
of 0 and 1 for convenience. For each non-leaf node v in
the tree T , let L(v) be its left descendants, and R(v) be
its right descendants. We now do the following:

• For each non-leaf node v do the following:

– List each descendant x of v in the order we
encounter them in the permutation σ. These
are parenthesized in Figure 4b.



– For each listed element x, write a L if x ∈ L(v)
and a R if x ∈ R(v). This is the final encoding
in Figure 4b.

We see that any σ will lead to an assignment of
binary strings at each non-leaf node v with L(v) L′s
and R(v) R′s. This is a bijection between the set
of permutations and the set of assignments of binary
strings to the tree T . Given any such assignment
of binary strings, we can recursively reconstruct the
permutation σ as follows:

• For each leaf node i, let its string be the string “i”.

• For any node n with binary string b,

– Determine the strings of its two children. Call
these sL, sR.

– Interleave the elements of sL with sL, choosing
an element of sL for each L in b, and an
element of sR for each R.

With this bijection, we first analyze Mtree(T )’s
behavior over tree representations and later extend this
analysis to permutations. The Markov chainMtree(T ),
when proposing a swap of the elements a and b, will
only attempt to swap them if a, b correspond to some
adjacent L and R in the string associated with a ∧ b.
Swapping a and b does not affect any other string,
so each non-leaf node v represents an independent
exclusion process with L(v) L′s and R(v) R′s. These
exclusion processes have been well-studied [3, 18, 1, 10].
We use the following bounds on the mixing times of the
symmetric and asymmetric simple exclusion processes.

Theorem 5.1. Let M be the exclusion process with
parameter p on kL L

′s and kR R′s, where k = kL + kR.
Then

1. if p = 1/2, τ(ε) = O(k3 log(kLkR/ε)). [3, 18]

2. if p > 1/2, then τ(ε) = O(k(min{kL, kR} +
log k) log(ε−1)) = O(k2 log(ε−1)). [10]

The bounds in Theorem 5.1 refer to the exclusion
process which selects a position at random and swaps
the two elements in that position with the appropriate
probability. However, our process selects arbitrary pairs
(i, j) consisting of a single L and a single R. Since we
only swap (i, j) if they are neighboring, this may slow
down the chain by a factor of at most k.

Since each exclusion process Mi operates indepen-
dently, the overall mixing time will be roughly n times
the mixing time of each piece, slowed down by the in-
verse probability of selecting that process. EachMi has
a different size, and a different mixing time relative to

its size. To employ the bounds from Theorem 5.1, we
need the following theorem, which relates the mixing
time of a product of independent Markov chains to the
mixing time of each component. Similar results have
been proved before in other settings [1, 2]. The proof is
elementary, and is in the appendix.

Theorem 5.2. Suppose the Markov chainM is a prod-
uct of N independent Markov chains {Mi}, where M
updates each Mi with probability pi, and

∑
i pi = 1. If

τi(ε) is the mixing time for Mi and τi(ε) ≥ 4 ln ε for
each i, then

τ(ε) ≤ max
i=1,2,...,N

2

pi
τi

( ε

2N

)
.

Finally, we can prove that Mtree(T ) is rapidly
mixing.

Theorem 5.3. If P has league structure T , then the
mixing time of Mtree(T ) under P satisfies

τ(ε) = O(n5 log(n/ε)).

If P is such that each qi > 1/2 is a constant, then

τ(ε) = O(n3 log2(n/ε)).

Proof. In order to apply Theorem 5.2 to the Markov
chain Mtree(T ), we note that for a node with kL L′s
and kR R′s (k = kL + kR), the probability of selecting
that node is kLkR

(n2)
. Since M = n − 1, Theorem 5.2

implies

τ(ε) ≤ n(n− 1)

kLkR
k4 ln(2nkLkR/ε) = O(n5 log(n/ε)).

Of course, if all of the chains have probabilities that are
bounded away from 1/2, then we can use the second
bound from Theorem 5.1 to obtain

τ(ε) ≤ n(n− 1)

kLkR
k2(min{kL, kR}+ log k) log(2n/ε)

≤ n(n− 1)k2

max{kL, kR}

(
1 +

log k

min{kL, kR}

)
log(2n/ε).

There are two cases to consider. Let c > 0.
If min{kL, kR} ≥ c log k then

τ(ε) ≤ n(n− 1)k2

k/2
(1 + c) log(2n/ε)) = O(n3 log(n/ε)).

Otherwise, max{kL, kR} > k − c log k, so

τ(ε) ≤ n(n− 1)k2

k − c log k
(1 + log k) log(2n/ε))

=
n(n− 1)k

1− c log k
k

(1 + log k) log(2n/ε))

= O(n3 log2(n) log(ε−1)).

�



5.2 Comparing Mtree(T ) with Mnn. Next, we
show that Mnn is rapidly mixing when P has league
structure and is weakly monotone:

Definition 5.1. The set P is weakly monotone if
properties 1 and either 2 or 3 are satisfied.

1. pi,j ≥ 1/2 for all 1 ≤ i < j ≤ n, and
2. pi,j+1 ≥ pi,j for all 1 ≤ i < j ≤ n− 1 or
3. pi−1,j ≥ pi,j for all 2 ≤ i < j ≤ n.

We note that if P satisfies all three properties then it is
monotone, as defined by Jim Fill [9].

The comparison proof in this setting is similar to
the comparison proof in Section 4.3, except we allow
elements between σ(i) and σ(j) that are larger or
smaller than both i and j. This poses a problem,
because we may not be able to move σ(j) towards σ(i)
without greatly decreasing the weight. However, we can
resolve this if P is weakly monotone. Specifically, we
prove the following theorem.

Theorem 5.4. If P has league structure, is weakly
monotone and every pij ∈ P is a constant less than 1,
then the mixing time of Mnn satisfies

τnn(ε) = O(n9 log(n/ε)).

Again, we are assuming the worst case bound on the
mixing time of Mtree(T ) given in Theorem 5.3, and if
each pi,j is bounded away from 1/2 then we would get
a better bound.

Proof. Throughout this proof we assume that P satisfies
properties 1 and 2 of the weakly monotone definition.
If instead P satisfies property 3, then the proof is very
similar. In order to apply Theorem 4.4 to relate the
mixing time ofMnn to the mixing time ofMtree(T ) we
need to define for each transition of Mtree(T ) a canon-
ical path using transitions of Mnn. Let e = (σ, β) be
a transition of Mtree(T ) which performs a transposi-
tion on elements σ(i) and σ(j). If there are no ele-
ments between σ(i) and σ(j) then e is already a tran-
sition of Mnn and we are done. Otherwise, σ contains
the string σ(i), σ(i+ 1), ...σ(j − 1), σ(j) and y contains
σ(j), σ(i + 1), ...σ(j − 1), σ(i). From the definition of
Mtree(T ) we know that for each σ(k), k ∈ [i+ 1, j − 1],
either σ(k) > σ(i), σ(j) or σ(k) < σ(i), σ(j). Define
S = {σ(k) : σk < σ(i), σ(j)} and B = {σ(k) : σk >
σ(i), σ(j)}. To obtain a good bound on the conges-
tion along each edge we must ensure that the weight of
the configurations on the path are not smaller than the
weight of σ. Thus, we define three stages in our path
from σ to β. In the first, we shift the elements of S to
the left, removing an inversion with each element of B.
In the second stage we move σ(i) next to σ(j) and in

the third stage we move σ(j) to σ(i)’s original location.
Finally, we shift the elements of S to the right to return
them to their original locations. See Figure 5.

Stage 1: At a high-level in this stage we are shifting the
elements in S to the left in order to remove an inversion
with every element in B. First if σ(j − 1) ∈ B, shift
σ(j) to the left until an element from S is immediately
to the left of σ(j). Next, starting at the right-most
element in S and moving left, for each σ(k) ∈ S such
that σ(k − 1) ∈ B, move σ(k) to the left one swap
at a time until σ(k) has an element from S or σ(i)
on its immediate left (see Figure 6a). Notice that for
each element σ(l) ∈ B we have removed exactly one
(σ(l), σ(k)) inversion where σ(k) ∈ S.

Stage 2: Next perform a series of nearest neighbor
swaps to move σ(i) to the right until it is in the
original position occupied by σ(j) in σ (see Figure 6b).
While we have created an (σ(k), σ(i)) inversion for each
element σ(k) ∈ B the weight has not decreased from
the original weight because in Stage 1 we removed
an (σ(k), σ(l)) inversion (or an (σ(k), σ(j)) inversion)
and (σ(k), σ(l)) > (σ(k), σ(j)) and (σ(k), σ(j)) =
(σ(k), σ(i)) because the P are weakly monotone. For
each σ(k) ∈ S we also removed a (σ(k), σ(j)) inversion.
Stage 3: Perform a series of nearest neighbor swaps
to move σ(j) to the left until it is in the same position
σ(i) was originally. While we created an (σ(k), σ(j))
inversion for each σ(k) ∈ S, these inversions have the
same weight as the (σ(i), σ(k)) inversion we removed in
Stage 2. In addition we have removed an (σ(l), σ(j))
inversion for each σ(l) ∈ B.

Stage 4: Finally we want to return the elements in S
and B to their original position. Starting with the left-
most element in S that was moved in Stage 1, perform
the nearest neighbor swaps to the right necessary to
return it to its original position. It’s clear from the
definition of the stages that the weight of a configuration
never decreases below the weight of min(π(σ), π(β)).

Given a transition (υ, ω) of Mnn we must upper
bound the number of canonical paths γσβ that use this
edge. Thus, we analyze the amount of information

5 8 9 2 10 3 4 1 7
5 2 8 9 3 10 4 1 7
2 8 9 3 10 4 1 5 7
2 8 9 3 10 4 1 7 5
7 2 8 9 3 10 4 1 5
7 8 9 2 10 3 4 1 5

Figure 5: The canonical path for transposing 5 and 7.
Notice that the elements in S are underlined.



5 8 9 2 10 3 4 1 7
5 8 9 2 3 10 4 1 7
5 8 2 9 3 10 4 1 7
5 2 8 9 3 10 4 1 7

(a)

5 2 8 9 3 10 4 1 7
2 5 8 9 3 10 4 1 7
2 8 5 9 3 10 4 1 7

...
2 8 9 3 10 4 1 5 7
2 8 9 3 10 4 1 7 5

(b)

Figure 6: Stages 1 and 2 of the canonical path for
transposing 5 and 7.

needed in addition to (z, w) to determine σ and β
uniquely. First we record whether (σ, β) is already a
nearest neighbor transition or which stage we are in.
Next for any of the 4 stages we record the original
location of σ(i) and σ(j). Given this information, along
with υ and ω, we can uniquely recover (σ, β). Hence,
there are at most 4n2 paths through any edge (υ, ω).
Also, note that the maximum length of any path is 4n.

Next we bound the quantity A which is needed to
apply Theorem 4.4. Recall that we have guaranteed that
π(σ) ≤ max{π(υ), π(ω)}. Assume that π(σ) ≤ π(υ).
Let λ = mini<j pj,i/pi,j . Then

A = max
(υ,ω)∈E(P )

 1

π(υ)P (υ, ω)

∑
Γ(υ,ω)

|γσβ |π(σ)P ′(σ, β)


≤ max

(υ,ω)∈E(P )

∑
Γ(υ,ω)

2n
P ′(σ, β)

P (υ, ω)

≤ max
(υ,ω)∈E(P )

∑
Γ(υ,ω)

2n
1/
(
n
2

)
λ

(1+λ)(n−1)

= O(n2).

If, on the other hand, π(σ) ≤ π(ω), then we use detailed

balance to obtain:

A = max
(υ,ω)∈E(P )

 1

π(υ)P (υ, ω)

∑
Γ(υ,ω)

|γσβ |π(σ)P ′(σ, β)


= max

(υ,ω)∈E(P )

 1

π(ω)P (ω, υ)

∑
Γ(υ,ω)

|γσβ |π(σ)P ′(σ, β)


≤ max

(υ,ω)∈E(P )

∑
Γ(υ,ω)

2n
P ′(σ, β)

P (ω, υ)

≤ max
(υ,ω)∈E(P )

∑
Γ(υ,ω)

2n
1/
(
n
2

)
λ

(1+λ)(n−1)

= O(n2).

In either case, we have A = O(n2). Then

π∗ = minρ∈Ω π(ρ) ≥ λ(n2)/n!, so log(1/(επ∗)) =
O(n2 log ε−1), as above. Applying Theorem 4.4 proves
that τnn = O(n9 log(n/ε)). �

Remark 5.1. By repeating Stage 1 of the path a con-
stant number of times, it is possible to relax the weakly
monotone condition slightly if we are satisfied with a
polynomial bound on the mixing time.

6 Conclusions

In this paper, we introduced new classes of positively
biased probability distributions P for which the nearest
neighbor transposition chain is provably rapidly mixing,
the choose your weapon and league hierarchy classes.
Both classes represent linear families of input parame-
ters defining P, greatly generalizing the single parame-
ter constant bias case. The only case in which we know
the chain is rapidly mixing for a quadratic class is when
all of the pi,j are 0 or 1 and the problem reduces to lin-
ear extensions of a partial order. It would be interesting
to bound the mixing rate for other quadratic families.

It is also worth mentioning that our counterexample
from Section 3 showing that there exist positively
biased distributions for which the chain mixes slowly
does not satisfy the monotonicity condition in Fill’s
conjecture, so this conjecture certainly is worthy of
further consideration. Moreover, the new classes where
we can show the chain always converges quickly do
not necessarily satisfy monotonicity, so there may be
another condition that characterizes a larger class of
distributions P for which the chain always converges
quickly.

Acknowledgments. We thank Jim Fill for sharing
his earlier work on this problem and for several useful
conversations.
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Birkhäuser, 1993.

[17] S. Turrini. Optimization in permutation spaces. West-
ern Research Laboratory Research Report, 1996.

[18] D. Wilson. Mixing times of lozenge tiling and card
shuffling markov chains. The Annals of Applied Prob-
ability, 1:274–325, 2004.

A Appendix: Bounding the Mixing Time of a
Product of Markov Chains (Theorem 5.2)

In Sections 4 and 5 we use combinatorial bijections
to express the mixing time of Mnn as a product of
independent, smaller Markov chains. Our bounds on
the mixing rate rely on relating the mixing time of
the larger and smaller chains. While there exist many
results relating the mixing time of a product of Markov
chains (see, for example, references in [1, 2]), these
assume that the smaller chains defining the product are
of comparable size. These theorems would yield weaker
results in our case where the smaller Markov chains can
be of vastly different size, so we include a proof of the
more tailored theorem here for completeness.

We now prove Theorem 5.2 from Section 5, which
states that if the Markov chain M is a product of M
independent Markov chains M1,M2, . . . ,MM , each
with mixing time τi(ε), and M updates Mi with
probability pi, then the mixing time of M is

τ(ε) ≤ max
i=1,2,...,M

max

{
2

pi
τi

( ε

4M

)
,

8

pi
ln
( ε

8M

)}
.

In particular, if each τi(ε) ≥ 4 ln(ε) then

τ(ε) ≤ max
i=1,2,...,M

2

pi
τi

( ε

4M

)
.

Proof. Suppose the Markov chain M has transition
matrix P , and each Mi has transition matrix Pi and
state space Ωi. Let Bi = piPi+(1−pi)I, where I is the
identity matrix of the same size as Pi, be the transition
matrix of Mi, slowed down by the probability pi of
selecting Mi. First we show that the total variation
distance satisfies

1 + 2dtv(P
t, π) ≤

∏
i

(1 + 2dtv(B
t
i , πi)).

To show this, notice that for x = (x1, x2, . . . , xM ), y =
(y1, y2, . . . , yM ) ∈ Ω, P t(x, y) =

∏
iB

t
i (xi, yi). Let

εi(xi, yi) = Bti (xi, yi)− πi(yi) and for any xi ∈ Ωi,

εi(xi) =
∑
yi∈Ωi

|εi(xi, yi)| ≤ 2dtv(B
t
i , πi).



Then,

dtv(P
t, π)

= max
x∈Ω

1

2

∑
y∈Ω

|P t(x, y)− π(y)|

= max
x∈Ω

1

2

∑
y∈Ω

∣∣∣∣∣∏
i

Bti (xi, yi)−
∏
i

πi(yi)

∣∣∣∣∣
= max

x∈Ω

1

2

∑
y∈Ω

∣∣∣∣∣∏
i

(εi(xi, yi) + πi(yi))−
∏
i

πi(yi)

∣∣∣∣∣
= max

x∈Ω

1

2

∑
y∈Ω

∣∣∣∣∣∣
∑

S⊆[M ],S 6=∅

∏
i∈S

εi(xi, yi)
∏
i/∈S

πi(yi)

∣∣∣∣∣∣
≤ max

x∈Ω

1

2

∑
y∈Ω

∑
S⊆[M ],S 6=∅

∏
i∈S
|εi(xi, yi)|

∏
i/∈S

|πi(yi)|

= max
x∈Ω

1

2

∑
S⊆[M ],S 6=∅

∏
i∈S

∑
yi∈Ωi

|εi(xi, yi)|
∏
i/∈S

∑
yi∈Ωi

|πi(yi)|

= max
x∈Ω

1

2

∑
S⊆[M ],S 6=∅

∏
i∈S

εi(xi)
∏
i/∈S

1

= max
x∈Ω

1

2

∏
i

(1 + εi(xi))− 1/2

≤ 1

2

∏
i

(1 + 2dtv(B
t
i , πi))− 1/2,

as desired. Thus to show dtv(P
t, π) ≤ ε, it suffices to

show dtv(B
t
i , πi) ≤ ε/(2M) for each i, as

1 + 2dtv(P
t, π) ≤

∏
i

(1 + 2dtv(B
t
i , πi))

≤
∏
i

(1 + 2ε/(2M))

≤ eε ≤ 1 + 2ε.

Hence it suffices to show dtv(B
t
i , πi) ≤ ε/(2M) for each i.

Let qi = 1− pi. Since

Bti = (piPi + qiI)t =

t∑
j=0

(
t

j

)
pji q

t−j
i P ji I,

we have

dtv(B
t
i , πi)

= max
xi∈Ωi

1

2

∑
yi∈Ωi

∣∣Bti (xi, yi)− πi(yi)∣∣
= max
xi∈Ωi

1

2

∑
yi∈Ωi

∣∣∣∣∣∣
t∑

j=0

(
t

j

)
pji q

t−j
i P ji (xi, yi)− πi(yi)

∣∣∣∣∣∣

= max
xi∈Ωi

1

2

∑
yi∈Ωi

∣∣∣∣∣∣
t∑

j=0

(
t

j

)
pji q

t−j
i (P ji (xi, yi)− πi(yi))

∣∣∣∣∣∣
≤ max
xi∈Ωi

1

2

∑
yi∈Ωi

t∑
j=0

(
t

j

)
pji q

t−j
i

∣∣∣P ji (xi, yi)− πi(yi)
∣∣∣

=

t∑
j=0

(
t

j

)
pji q

t−j
i max

xi∈Ωi

1

2

∑
yi∈Ωi

∣∣∣P ji (xi, yi)− πi(yi)
∣∣∣

=

t∑
j=0

(
t

j

)
pji q

t−j
i dtv(P

j
i , πi).

Let ti = τi(ε/(4M)). Now, for j ≥ ti = τi(ε/(4M)),
we have that dtv(P

j
i , πi) < ε/(4M). For all j, we have

dtv(P
j
i , πi) ≤ 2, so if X is a binomial random variable

with parameters t and pi with qi = 1− pi, we have

dtv(B
t
i , πi)

≤
t∑

j=0

(
t

j

)
pji q

t−j
i dtv(P

j
i , πi)

=

ti−1∑
j=0

(
t

j

)
pji q

t−j
i dtv(P

j
i , πi) +

t∑
j=ti

(
t

j

)
pji q

t−j
i dtv(P

j
i , πi)

< 2

ti−1∑
j=0

(
t

j

)
pji q

t−j
i +

t∑
j=ti

(
t

j

)
pji q

t−j
i ε/(2M)

= 2P (X < ti) + ε/(2M).

By Chernoff bounds, P (X < (1 − δ)tpi) ≤ e−tpiδ
2/2.

Setting δ = 1− ti/(tpi), then for all t > 2ti/pi, δ
2 ≥ 1/4

and we have

P (X < ti) ≤ e−tpiδ
2/2 ≤ e−tpi/8 ≤ ε/(8M)

as long as t ≥ 8 ln(ε/(8M))/pi. Therefore for t ≥
max{8 ln(ε/(8M))/pi, 2ti/pi},

dtv(B
t
i , πi) = 2P (X < ti) + ε/(4M)

≤ 2ε/(8M) + ε/(4M) = ε/(2M).

Hence by time t the total variation distance satisfies
dtv(P

t, π) ≤ ε. �


