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Abstract

Conforming colorings naturally generalize many graph theory structures, including
independent sets, vertex colorings, list colorings, H-colorings and adapted colorings.
Given a multigraph G and a function F that assigns a forbidden ordered pair of
colors to each edge e, we say a coloring C of the vertices is conforming to F if,
for all e = (u, v), F (e) 6= (C(u), C(v)). We consider Markov chains on the set of
conforming colorings and provide some general conditions for when they can be
used to construct efficient Monte Carlo algorithms for sampling and counting.

1 Introduction

Adapted colorings [3] have been introduced recently as a generalization of many
well-studied discrete models, including independent sets, vertex colorings, list
colorings, and H-colorings. We consider “conforming colorings” as a further
generalization. Let G = (V,E) be a (multi)graph and for k ∈ Z+, let [k] =
{1, . . . , k} be a set of colors. We are given a set of edge constraints F :
E → [k]× [k] describing forbidden ordered pairs of colors on the endpoints of
each edge, and we are interested in the set of vertex colorings satisfying these
constraints. We say that a coloring C : V → [k] is a conforming coloring if,
for each edge e = (u, v), we have F (e) 6= (C(u), C(v)). Let Ω = Ω(G,F, k) be
the set of all conforming colorings of G with forbidden pairs F and k colors.
A simple application is resource allocation, where vertices represent jobs and
edge constraints capture incompatible scheduling assignments. We focus here
on approximately counting and sampling conforming and adapted colorings.
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The connections between conforming colorings and many standard graph
theoretic objects is straight-forward. For example, when k = 2 and F (e) =
(1, 1) for all edges e ∈ E, each allowable vertex coloring is an independent set
in G. Likewise, given a graph G, form a multigraph G′ where each edge is
replaced with k parallel edges, each labeled with distinct (i, i) for 1 ≤ i ≤ k,
then the conforming colorings of G′ are the proper colorings of G. We can
formulate weighted versions of these models similarly, including the class of
H-colorings, or homomorphisms from a graph G to H preserving adjacencies.
Adapted colorings are a special case of conforming colorings that has garnered
a lot of interest recently where we are given an edge coloring C : E → [k]
and are looking for a vertex coloring C ′ : V → [k] such that there is no edge
e = (u, v) with C(e) = C ′(u) = C ′(v) [3].

There has been extensive work trying to approximately count graph struc-
tures using Monte Carlo approaches. The main ingredient is designing a
Markov chain for sampling configurations that is rapidly mixing. For ex-
ample, for k-colorings, local chains that modify a small number of vertices
in each move converge quickly to equilibrium if there are enough colors com-
pared to the maximum degree of the graph [2], whereas even finding a single
k-coloring is NP-complete for small degree. When local algorithms are slow,
nonlocal variants can be more effective, but they are typically more challeng-
ing to analyze. One such example is the Wang-Swendsen-Kotecký chain for
proper colorings that uses moves based on Kempe chains [8].

We show that there is a polynomial time algorithm for finding a conforming
coloring when the number of colors is at least max(3,∆), where ∆ is the
maximum degree in G, including multi-edges and self-loops. Moreover, we
show that the local Markov chain ML that recolors one vertex at a time
connects the state space of conforming colorings (Ω), is rapidly mixing and
there is a FPRAS (fully polynomial randomized approximation scheme) for
approximately counting. For adapted colorings, we prove a stronger result
requiring only that k ≥ max(∆m, 3), where ∆m is related to ∆ except at most
two parallel edges between any two vertices are counted toward the degree.

When we have 2 colors, the local chain does not always connect the state
space so we introduce a new component chain MC that reverses colors on
(possibly) large components that are predetermined based on the structure
of G and F . We provide conditions under which we can find conforming 2-
colorings efficiently and showMC connects the state space, is rapidly mixing,
and there is an FPRAS for counting. Last, we provide examples for which
both chains can be slow.

The mixing results build on ideas used to show fast and slow mixing in
the context of colorings and independent sets; however, the proofs require



careful fine-tuning to fit the more general setting of conforming colorings and
to prove the bounds we achieve here. Moreover, unlike sampling colorings and
independent sets where we typically restrict to graphs on which connecting
the state space is trivial, in this more general setting establishing ergodicity
for the two chains has proven considerably more challenging.

2 The Local Markov Chain ML

We begin exploring how to find a conforming coloring, if one exists. First, we
prove that if k ≥ max(∆, 3) and Ω is not degenerate, a conforming coloring
exists. We define a degenerate state space recursively as follows. Let a flower
be a vertex v with k self-loops, each with a distinct color; note there is no
conforming coloring of a flower. A vertex is color-fixed if it has exactly k − 1
self-loops each with a distinct color or k self-loops with exactly one color
repeated. A color-fixed vertex has exactly one valid color in every conforming
coloring. For each color-fixed vertex v, color v with it’s only valid color c
and remove v from G. Next, handle each edge constraint e = (u, v), u 6= v
as follows. If c 6= Fv(e) remove e. Otherwise, if c = Fv(e) add a self-loop
colored Fu(e) to u. Continue this process until either a flower is found at
which point G is degenerate or there are no color-fixed vertices and G is not
degenerate. The following result is proved constructively using graph theoretic
techniques by giving an algorithm that iteratively colors vertices.

Theorem 2.1 Given a graph G with n vertices, k ≥ max(∆, 3) and edge k-
coloring F such that Ω is not degenerate, there exists a conforming k-coloring
of G and we give an O(∆n2) algorithm for finding one.

We now consider the local Markov chain ML that, at each step, selects a
vertex v and a color c uniformly at random and colors vertex v with color c
if this results in a valid conforming coloring. First, we show that when
k ≥ max(∆, 3), the Markov chain ML is ergodic (i.e., irreducible and aperi-
odic). We prove that for each σ, α ∈ Ω, there is a path from σ to α using
only transitions of ML, thus implying the connectivity of ML. The primary
challenge is that there might not be a path between σ and α that only modifies
vertices in the symmetric difference. We prove the following theorem.

Theorem 2.2 For any graph G, k ≥ max(∆, 3) and edge k-coloring F , ML

connects Ω(G,F, k).

Next, we study whether ML generates random conforming colorings effi-
ciently. Let (P ,Ω, π) be a Markov chain with transition matrix P , stationary
distribution π and state space Ω. For all ε > 0, the mixing time τ(ε) of M is
defined as τ(ε) = min{t : maxx∈Ω
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∑
y∈Ω |P t(x, y)−π(y)| ≤ ε,∀t′ ≥ t}, where



= (2, 2)
= (1, 1)

Fig. 1. The color-implied components associated with each edge coloring are circled.

P t(x, y) is the t-step transition probability. We say that a Markov chain is
rapidly mixing if the mixing time is bounded above by a polynomial in n and
log(ε−1). Our fast mixing proof uses a detailed application of the path cou-
pling technique due to Dyer and Greenhill [1]. In order to prove a stronger
result in the adapted coloring setting we use a more sophisticated coupling
introduced by Jerrum [4].

Finally, we can use ML to approximately count conforming colorings. To
do this we design a FPRAS which, in our context, is a randomized algorithm
that given a graph G with n vertices, edge coloring F and error parameter 0 <
ε ≤ 1, produces a number N such that P [(1+ε)N ≤ A(G,F ) ≤ (1+ε)N ] ≥ 3
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where A(G,F ) is the number of colorings of G conforming to F and runs in
time polynomial in n and ε−1. Our proof uses similar techniques to [5].

Theorem 2.3 Given a graph G, k ≥ max(∆, 3)and edge k-coloring F the
mixing time of ML on Ω(G,F, k) satisfies τ(ε) ≤ dekn5edln ε−1e and there
exists a FPRAS for counting the number of k-colorings conforming to F.

3 The Chain MC and Conforming 2-Colorings

The case when k = 2 is interesting because it generalizes independent sets
and ML typically is not ergodic. Consider, for example, the Cartesian lat-
tice where horizontal edges are colored (1, 1) and vertical edges are colored
(2, 2); there are two conforming colorings corresponding to the two proper
2-colorings. To handle the case k = 2, we introduce a non-local chain MC

based on “color-implied” components which we show is ergodic. Some moves
of MC are Kempe chain moves analogous to those in [8], but in general they
are more complicated. Additionally, under conditions based on the degrees
of the color-implied components we can find a conforming coloring, MC is
rapidly mixing and we have a FPRAS. On the other hand, we show that there
are settings when MC requires exponential time with ∆ = 4.

A color-implied component is a connected set of vertices where coloring any
vertex in the component implies a unique coloring of the remaining vertices
in the component; thus, each component has at most two valid conforming
colorings. For b ∈ {1, 2}, we define a path P = v1, v2, ...vx to be a b-alternating



path from v1 to vx if the following two conditions hold: Fv1(v1, v2) = b and for
all 1 ≤ i ≤ x−2, Fvi+1

(vi, vi+1) 6= Fvi+1
(vi+1, vi+2). Define two vertices u and v

to be color-implied if there is a 1-alternating path and a 2-alternating path
from u to v or u = v. We show that color-implied is an equivalence relation,
thus determining a partition of the vertices of G into connected components
C1, C2, . . . Cs (e.g. Fig. 1). Using a modified version of DFS we can find this
partition in polynomial time. Let G′ be the graph whose vertices are the
components C1, C2, . . . , Cs and there is an edge (Ci, Cj) ∈ G′ if there exists
(vi, vj) ∈ G : vi ∈ Ci, vj ∈ Cj. For each component Ci, let ρ(Ci) and ρ(Ci) be
the two conforming colorings of Ci. Next, consider any two components Ci

and Cj. Let ρ(u) be the color of vertex u in ρ(Ci). We show that for all the
edges (u, v) : u ∈ Ci, v ∈ Cj either Fu(u, v) = ρ(u) or Fu(u, v) = ρ(u). If there
exists an edge e = (Ci, Cj) ∈ G′ we will define FCi

(e) = ρ(Ci) if for all edges
(u, v) : u ∈ Ci, v ∈ Cj, Fu(u, v) = ρ(u) and otherwise FCi

(e) = ρ(Ci). We
now define the Markov chain MC which connects the state space Ω(G,F, 2).
Starting at any initial conforming coloring, at each step select an integer i ∈
1, 2, . . . , s uniformly at random. With probability 1/2 color Ci, ρ(Ci) if this is
valid, with probability 1/2 color Ci, ρ(Ci) if this is valid, otherwise do nothing.

Theorem 3.1 For any graph G and edge 2-coloring F , the Markov chainMC

connects Ω(G,F, 2).

We show that MC is rapidly mixing when every vertex v of the auxiliary
graph G′ = G′(G,F ) has d(v) ≤ 2 or d(v) ≤ 4 and v is monochromatic. We
say a vertex v ∈ G′ is monochromatic if for any two edges e1, e2 adjacent
to v, Fv(e1) = Fv(e2). In the adapted setting, if Ci is a single vertex then
this corresponds to having all adjacent edges colored the same. We use path
coupling to prove that a related chain ME mixes rapidly and then use the
comparison technique (see, [7]) to relate the mixing time ofME to the mixing
time ofMC . The chainME is a generalization of the edge chain introduced by
Luby and Vigoda [6]. Under these same conditions, we give a polynomial time
algorithm for finding a conforming coloring and a FPRAS for approximately
counting the number of conforming colorings by showing the model is self-
reducible and appealing to [5].

Theorem 3.2 Given a graph G with n vertices and edge 2-coloring F with
auxiliary graph G′ = G′(G,F ) such that for every vertex v ∈ G′ either d(v) ≤ 2
or d(v) ≤ 4 and v is monochromatic, we give an O(n3) algorithm for finding
a conforming 2-coloring (if one exists), the mixing time of MC on Ω(G,F, 2)
satisfies τ(ε) = O(n4) and there exists a FPRAS for counting |Ω(G,F, 2)|.

Finally, we show there is a graph (see Fig. 2) on whichMC requires expo-
nential time by demonstrating a bottleneck in the state space.
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Fig. 2. An edge coloring for which the Markov chain MC mixes slowly.

Theorem 3.3 There exists a graph G with n vertices and ∆ = 4, a constant
c > 1, and an edge 2-coloring F for which the mixing time ofMC on Ω(G,F, 2)
satisfies τ(ε) = Ω(cn).

Proof Sketch. The auxiliary graph G′ for Fig. 2, has a large component C
containing all vertices except for those labelled a and b, each of these forms
a single vertex component. For each of the two colorings of C either the a
vertices or the b vertices are free to change colors giving an exponential number
of configurations. However there is only a single coloring of the a and b vertices
that allows the color of C to change, creating a bottleneck. 2
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