
CS 1050 Practice Midterm 2 Solutions

1. Negate the following sentences:

a) For all integers n ≥ 4, there exists c ∈ IR such that n100 ≥ 2n.

Ans: There exists an integer n, n ≥ 4, such that for all c ∈ IR, n100 < 2n.

b) The square of an integer is never odd.

Ans: There exists an integer n such that n2 is odd.

c) ∀x ∈ IR ∀y ∈ IR [x > y] or [x < y].

Ans: ∃x ∈ IR ∃y ∈ IR [x ≤ y] and [x ≥ y].

d) ∀x ∈ ZZ+ ∃y ∈ ZZ+ [x2 = y2] and [x 6= y].

Ans: ∃x ∈ ZZ+ ∀y ∈ ZZ+ [x2 6= y2] or [x = y].

2.

Theorem 1. For all n ∈ ZZ+,

n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
.

Proof. (by induction)

Base case: n = 1:
∑

n

i=1 i2 = 12 = 1 = 1·2·3

6
.

Induction hypothesis: Let k ≥ 1 and assume

k∑

i=1

i2 =
k(k + 1)(2k + 1)

6
.

Inductive step: We will show the equation holds when n = k + 1.

k+1∑

i=1

i2 =
k∑

i=1

i2 + (k + 1)2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2 (by the induction hypothesis)
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=
k + 1

6
(k(2k + 1) + 6(k + 1)) =

k + 1

6
(2k2 + 7k + 6) =

(k + 1)(k + 2)(2(k + 1) + 1)

6
.

Thus, by induction, for all n ∈ ZZ+,

n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
.

3. Let f : IR × IR → IR × IR be defined by

f(x1, x2) = (x1 + x2, 2x1 − x2)

for all reals x1, x2.

Prove that f is invertible.

Proof. First we will show that f is onto, i.e., for all (a, b) ∈ IR × IR,∃(x, y) ∈ IR × IR such

that f(x, y) = (a, b). Let (a, b) ∈ IR × IR. Let x = a+b

3
and let y = 2a−b

3
, where both x and y

are reals since a and b are. Then

f(x, y) = f(
a + b

3
,
2a − b

3
) = (

a + b + 2a − b

3
,
2a + 2b − (2a − b)

3
) = (a, b).

Hence f is onto.

Now we will show that f is 1-1. Suppose for x, y, x′, y′ ∈ IR, f(x, y) = f(x′, y′). Then

x + y = x′ + y′ and 2x − y = 2x′ − y′. Adding these two equations, we find x + y + 2x − y =

x′ + y′ + 2x′ − y′ which implies 3x = 3x′ and hence x = x′. Subsituting this into the first

equation, we find x+ y = x+ y′ or y = y′. Therefore f(x, y) = f(x′, y′) implies (x, y) = (x′, y′)

and so f is 1-1.

Since we have shown that f is both onto and 1-1, it is invertible.

4. Let a1 = 5, a2 = 13, and, for n ≥ 2, let an+1 = 5an − 6an−1.

Prove the following theorem.

Theorem 2. For all n ∈ ZZ+, an = 3n + 2n.

Proof. (by strong induction)

Base cases: n = 1 : a1 = 31 + 21 = 5. n = 2 : a2 = 32 + 22 = 13.

Induction hypothesis: Let k ≥ 2 be an integer and assume that ∀n ∈ ZZ, 0 ≤ n ≤ k, an =

3n + 2n.
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Inductive step: We want to show that an+1 = 3n+1 + 2n+1.

an+1 = 5an − 6an−1 = 5(3n + 2n) − 6(3n−1 + 2n−1)

= (15 − 6)3n−1 + (10 − 6)2n−1 = 3n+1 + 2n+1.

Hence, by induction, an = 3n + 2n for all integers n ≥ 1.

5. Prove that for all integers n ≥ 1, 8n − 2n is a multiple of 6.

Proof. (by induction) Base case: If n = 1, then 81 − 21 = 6 so it is a multiple of 6.

Inductive hypothesis: Let n ≥ 1 and assume 8n − 2n is a multiple of 6, i.e., there exists an

integer k such that 8n − 2n = 6k. Inductive step: We want to show that 8n+1 − 2n+1 is a

multiple of 6 as well.

8n+1 − 2n+1 = 8(8n − 2n) + 8 · 2n − 2 · 2n

= 8(6k) + 6(2n) (by the inductive hypothesis)

= 6(8k + 2n),

which is a multiple of 6. Hence, by induction, 8n − 2n is a multiple of 6 for all integers n ≥ 1.
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