CS 1050 Practice Midterm 2 Solutions

1. Negate the following sentences:
a) For all integers $n \geq 4$, there exists $c \in \mathbb{R}$ such that $n^{100} \geq 2^{n}$.

Ans: There exists an integer $n, n \geq 4$, such that for all $c \in \mathbb{R}, n^{100}<2^{n}$.
b) The square of an integer is never odd.

Ans: There exists an integer n such that n^{2} is odd.
c) $\forall x \in \mathbb{R} \forall y \in \mathbb{R}[x>y]$ or $[x<y]$.

Ans: $\exists x \in \mathbb{R} \exists y \in \mathbb{R}[x \leq y]$ and $[x \geq y]$.
d) $\forall x \in \mathbb{Z}^{+} \exists y \in \mathbb{Z}^{+}\left[x^{2}=y^{2}\right]$ and $[x \neq y]$.

Ans: $\exists x \in \mathbb{Z}^{+} \forall y \in \mathbb{Z}^{+}\left[x^{2} \neq y^{2}\right]$ or $[x=y]$.
2.

Theorem 1. For all $n \in \mathbb{Z}^{+}$,

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

Proof. (by induction)
Base case: $n=1: \sum_{i=1}^{n} i^{2}=1^{2}=1=\frac{1 \cdot 2 \cdot 3}{6}$.
Induction hypothesis: Let $k \geq 1$ and assume

$$
\sum_{i=1}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

Inductive step: We will show the equation holds when $n=k+1$.
$\sum_{i=1}^{k+1} i^{2}=\sum_{i=1}^{k} i^{2}+(k+1)^{2}=\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \quad$ (by the induction hypothesis)

$$
=\frac{k+1}{6}(k(2 k+1)+6(k+1))=\frac{k+1}{6}\left(2 k^{2}+7 k+6\right)=\frac{(k+1)(k+2)(2(k+1)+1)}{6} .
$$

Thus, by induction, for all $n \in \mathbb{Z}^{+}$,

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

3. Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ be defined by

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, 2 x_{1}-x_{2}\right)
$$

for all reals x_{1}, x_{2}.
Prove that f is invertible.
Proof. First we will show that f is onto, i.e., for all $(a, b) \in \mathbb{R} \times \mathbb{R}, \exists(x, y) \in \mathbb{R} \times \mathbb{R}$ such that $f(x, y)=(a, b)$. Let $(a, b) \in \mathbb{R} \times \mathbb{R}$. Let $x=\frac{a+b}{3}$ and let $y=\frac{2 a-b}{3}$, where both x and y are reals since a and b are. Then

$$
f(x, y)=f\left(\frac{a+b}{3}, \frac{2 a-b}{3}\right)=\left(\frac{a+b+2 a-b}{3}, \frac{2 a+2 b-(2 a-b)}{3}\right)=(a, b) .
$$

Hence f is onto.
Now we will show that f is 1-1. Suppose for $x, y, x^{\prime}, y^{\prime} \in \mathbb{R}, f(x, y)=f\left(x^{\prime}, y^{\prime}\right)$. Then $x+y=x^{\prime}+y^{\prime}$ and $2 x-y=2 x^{\prime}-y^{\prime}$. Adding these two equations, we find $x+y+2 x-y=$ $x^{\prime}+y^{\prime}+2 x^{\prime}-y^{\prime}$ which implies $3 x=3 x^{\prime}$ and hence $x=x^{\prime}$. Subsituting this into the first equation, we find $x+y=x+y^{\prime}$ or $y=y^{\prime}$. Therefore $f(x, y)=f\left(x^{\prime}, y^{\prime}\right)$ implies $(x, y)=\left(x^{\prime}, y^{\prime}\right)$ and so f is 1-1.

Since we have shown that f is both onto and 1-1, it is invertible.
4. Let $a_{1}=5, a_{2}=13$, and, for $n \geq 2$, let $a_{n+1}=5 a_{n}-6 a_{n-1}$.

Prove the following theorem.
Theorem 2. For all $n \in \mathbb{Z}^{+}, a_{n}=3^{n}+2^{n}$.

Proof. (by strong induction)
Base cases: $n=1: a_{1}=3^{1}+2^{1}=5 . n=2: a_{2}=3^{2}+2^{2}=13$.
Induction hypothesis: Let $k \geq 2$ be an integer and assume that $\forall n \in \mathbb{Z}, 0 \leq n \leq k, \quad a_{n}=$ $3^{n}+2^{n}$.

Inductive step: We want to show that $a_{n+1}=3^{n+1}+2^{n+1}$.

$$
\begin{aligned}
& a_{n+1}=5 a_{n}-6 a_{n-1}=5\left(3^{n}+2^{n}\right)-6\left(3^{n-1}+2^{n-1}\right) \\
& \quad=(15-6) 3^{n-1}+(10-6) 2^{n-1}=3^{n+1}+2^{n+1}
\end{aligned}
$$

Hence, by induction, $a_{n}=3^{n}+2^{n}$ for all integers $n \geq 1$.
5. Prove that for all integers $n \geq 1,8^{n}-2^{n}$ is a multiple of 6 .

Proof. (by induction) Base case: If $n=1$, then $8^{1}-2^{1}=6$ so it is a multiple of 6 . Inductive hypothesis: Let $n \geq 1$ and assume $8^{n}-2^{n}$ is a multiple of 6 , i.e., there exists an integer k such that $8^{n}-2^{n}=6 k$. Inductive step: We want to show that $8^{n+1}-2^{n+1}$ is a multiple of 6 as well.

$$
\begin{aligned}
8^{n+1}-2^{n+1}= & 8\left(8^{n}-2^{n}\right)+8 \cdot 2^{n}-2 \cdot 2^{n} \\
=8(6 k)+6\left(2^{n}\right) & \quad(\text { by the inductive hypothesis) } \\
= & 6\left(8 k+2^{n}\right)
\end{aligned}
$$

which is a multiple of 6 . Hence, by induction, $8^{n}-2^{n}$ is a multiple of 6 for all integers $n \geq 1$.

