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Abstract

We study the behavior of random walks along the edges
of the stable marriage lattice for various restricted fam-
ilies of allowable preference sets. In the “k-attribute
model,” each man is valued in each of k attributes,
and each woman’s ranking of the men is determined
by a linear function, representing her relative ranking
of those attributes; men’s rankings of the women are
determined similarly. We show that sampling with a
random walk on the marriage lattice can take exponen-
tial time, even when k = 2. Moreover, we show that the
marriage lattices arising in the k-attribute model are
more restrictive than in the general setting; previously
such a restriction had only been shown for the sets of
preference lists. The second model we consider is the
“k-range model,” where each person lies in a position
in [i, i + k − 1], for some i, on every preference list of
the opposite sex. When k = 1 there is a unique stable
marriage. When k = 2 there already can be an expo-
nential number of stable marriages, but we show that a
random walk on the stable marriage lattice always con-
verges quickly to equilibrium. However, when k ≥ 5,
there are preference sets such that the random walk on
the lattice will require exponential time to converge.
Lastly, we show that in the extreme case where each
gender’s rankings of the other are restricted to one of
just a constant k possible preference lists, there are still
instances for which the Markov chain mixes exponen-
tially slowly, even when k = 4. This oversimplification
of the general model helps elucidate why Markov chains
based on spouse-swapping are not good approaches to
sampling, even in specialized scenarios.

1 Introduction

In the simplest formulation of the Stable Marriage
Problem [5, 7, 11], there are two disjoint sets of n
men and n women. Each man has a ranking of the n
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women, called a preference list, and each woman has an
analogous ranking of the men. We call these collections
of preference lists the preference sets. A marriage is
a perfect matching, pairing men and women. It is
considered stable if no man-woman pair simultaneously
ranks each other higher than their respective spouses.
Gale and Shapley [5] showed the remarkable result that
every instance of preference lists has a stable marriage.
Since then, many variants of the problem have been
studied such as the non-bipartite version (the stable
roommates problem) or case of more than two disjoint
sets of people (the so-called man-woman-dog marriage
problem). In addition, the stable marriage problem is
studied in various other scenarios including colleges and
applicants as well as hospitals and residents [5].

It is well-known that the set of stable marriages
form a distributive lattice, known as the stable marriage
lattice. This is a graph where vertices correspond
bijectively to the stable marriages and a marriage is
above another if every man is at least as happy with the
first marriage as with the second [11, 7]. If one marriage
is better for all men who have new partners, then it
turns out to be worse for each of their partners. The
lattice has unique male and female optimal marriages
and the Gale-Shapley algorithm [5] efficiently produces
these extremal stable marriages.

A common concern with the standard Gale-Shapley
algorithm is that it unfairly favors one sex at the ex-
pense of the other. This gives rise to the problem of
finding “fair” stable marriages. Previous work on find-
ing fair marriages has focused on algorithms for optimiz-
ing an objective function that captures the “happiness”
of either a group of people or the person that is worst
off, without regard for the gender [6, 9, 11, 12, 13, 16].
This is in contrast to the Gale-Shapley algorithm, which
is the special case maximizing the happiness of only one
gender. Simple schemes such as flipping a coin to de-
cide which group attains optimality, or walking along
the edges of the lattice to find a stable marriage in
the middle level, seem unsatisfactory; if the lattice has
many stable marriages that are nearly female-optimal
and very few that are nearly male-optimal, then it might
be more “fair” to generate a marriage that favors the
women.

The optimization approaches based on happiness



typically involve showing that an appropriately defined
integer program can be efficiently solved. A different
approach is to ask if one can generate a random stable
marriage uniformly. The most natural method for
random generation is to define a random walk along
edges of the lattice so that it converges to the uniform
distribution over all stable marriages. It known that the
edges of the lattice correspond to “rotations,” where
a set of men swap partners so that either all of the
men rank their new wives higher than before while
the women rank their new husbands lower, or vice
versa (see [7] or [11] for details). We can think of a
move of the chain as forcing someone to accept a less
favorable mate, setting off a series of “spouse swaps”
whereby a set of people of one gender all improve in
their preference lists while all of their previous partners
do worse. The edges of the lattice dictate exactly how to
formalize these moves so that there are at most a linear
number of spouse-swapping moves at each step, these
are easily identifiable, and they form reversible moves
that connect the state space and converge to the uniform
distribution. Unfortunately, it is possible to construct
preferences sets such that the stable marriage lattice,
when regarded as a Markov kernel for a random walk,
has a “bad cut” in the state space, implying the walk
will take exponential time to converge to equilibrium.

The existence of a bad cut follows from the real-
ization that every distributive lattice is isomorphic to
some marriage lattice [1, 8]. Since it is easy to con-
struct examples of lattices on which the random walk
will mix slowly, it is not surprising that this approach
fails for the general problem of sampling stable mar-
riages. In fact, the problem of counting the number
of stable marriages can be reduced to the problem of
counting the number of antichains of a partial order; for
any partial order, there is an instance of the marriage
problem (of size polynomial in the size of the partial
order) whose rotation poset is isomorphic to the partial
order and the number of stable marriages is in bijec-
tion with the number of antichains of its rotation poset.
This puts the problem of counting stable marriages in
a large class of problems studied in [4] which includes
counting antichains of a poset and counting the number
of independent sets in a bipartite graph, which are in-
terreducible with respect to the existence of an FPRAS
(fully polynomial randomized approximating scheme).
The existence of an FPRAS for this class of problems is
open. This apparent intractability motivates the consid-
eration of the problem of sampling stable marriages for
more restricted sets of instances that model situations
that might arise in actual applications.

1.1 Specialized models Each of the following mod-
els limits the allowable preference sets in different ways.

The k-attribute model: Our first model is moti-
vated by on-line dating sites that ask many questions
to compile extensive psychological profiles for each per-
son. Some of these questions attempt to value a per-
son in terms of some k attributes, such as athleticism,
intelligence, salary, etc. Other questions try to deter-
mine the relative importance of these attributes in a
potential mate.1 Accordingly, we define the k-attribute
model first by associating the men with points in Rk.
Each woman’s ranking of the men is defined by a linear
function of these attributes, whereby her preference list
is determined by projecting the men’s points onto some
line. Likewise, reversing the roles of men and women
determines the men’s preference lists. A similar model
was considered previously where it was shown that not
all preference sets can be realized in a k-attribute model
when k ≤ n− 2 (see [2] and references therein).

The k-range model: In the setting where medical
students are matched to hospital residencies, one might
expect some amount of uniformity among the preference
lists of each group. Of course this will not be true if stu-
dents exhibit nonuniform preferences over geography or
specialties, but we consider the extreme case where stu-
dents are interested solely in hospitals’ national rank-
ing and hospitals are interested only in the students’
academic performance. If the preference lists are com-
pletely uniform on each side, then there will be a unique
stable marriage. Instead we weaken this slightly and
consider rankings such that if one hospital ranks a stu-
dent 25th, then she always falls in between positions,
say, 20 and 30 on all the other hospitals’ lists.

Formalizing this scenario, we say that a preference
set is from a k-range model if, for each student, there
exists an index i such that the student falls in position
i, i+1, ..., or i+k−1 on each hospital’s list, and similarly
each hospital falls in some range of width k on all of the
students’ lists. We say such an input has range k.

The k-list model: In our third and final model, we
further simplify the allowable preference lists to drive
home how pervasive obstacles to fast mixing can be.
Each gender is partitioned into at most k different
groups, and all members of a group are restricted to
have exactly the same preference list. Such a scenario
depicts a world where, for instance, all the women on
the chess club have the same preference list. This
may be different from the list shared by the women on

1We restrict to a heterosexual context throughout this paper.

Moreover, any stereotypes and/or politically incorrect statements
are intended solely for clarity of exposition.



the basketball team, or the one shared by the drama
club. Note that we are not making any assumption that
women on the chess club prefer male chess players to
male athletes; rather they can have any ordering based
on factors describing individual men.

1.2 Results We give a general construction demon-
strating that walks on the stable marriage lattice can
take exponential time to converge to equilibrium, and
then show how to modify it to fit the restricted con-
texts. We show that the k-attribute model can contain
exponentially many stable marriages when k ≥ 2, and
that with as few as two attributes the Markov chain can
converge exponentially slowly.

Moreover, we show that fewer stable marriage lat-
tices are achievable in the k-attribute model than in the
general model, thus necessitating the modified construc-
tion. This was shown previously only for the preference
sets; Bogomalnaia and Laslier [2] show that there is a
preference set that is not realizable with fewer than n−1
attributes. However, this does not immediately imply
the corresponding result for stable marriage lattices. We
show that there are marriage lattices for n people that
can only realized with at least n/2 attributes.

Next, we show that for the k-range model, rates of
convergence provide a more interesting landscape as we
vary k, reminiscent of a phase transition. When k = 1,
there is a unique stable marriage. When k ≥ 2 there
can be an exponential number of stable marriages. We
show that when k = 2 the marriage lattice must be
a hypercube, and hence the random walk will mix in
polynomial time. (We conjecture that this remains true
when k = 3, though the set of lattices have a much richer
graph structure.) However, as soon as k is at least 5,
there will be preference sets for which the random walk
requires exponential time to converge to equilibrium.

The construction we used to show slow mixing
for the k-range model can be extended to show slow
mixing for the k-list model. It might be surprising
to realize that there can be an exponential number of
stable marriages, even when there are only a constant
number of allowable lists for each gender. However, a
careful construction demonstrates that even in this very
restrictive model, already when k = 4 the structure
of the stable marriage lattice can be rich enough to
contain an exponentially small cut. We believe that
this elucidates the inherent obstacles to sampling stable
marriages by random walks on the marriage lattice.

In order to show fast mixing in the k-range model
when k = 2, we first characterize the allowable stable
marriage lattices and show that they are always binary
hypercubes. Random walks on the edges of the hyper-
cube are known to converge quickly to equilibrium.

The technical contributions underlying the proofs
of slow mixing are two-fold. First we identify a general
mechanism for realizing an exponentially small cut in
the state space arising from the stable marriage lattice.
There is a single stable marriage with exponentially
many marriages above and below it in the lattice.
The random walk must pass through this vertex to
connect the two sets, and the bottleneck can be used
to show that the random walk converges slowly to
equilibrium. Second, we develop methods for adapting
this general mechanism to each of the restricted models,
each involving a more careful construction.

For any preference set, the allowable rotations form
a poset under the relation that one rotation precedes
another if the first must be performed before the second
can be performed. We carefully construct this rotation
poset such that there is a rotation B which depends on
d different independent (in the sense that they can be
rotated in any order) rotations {A0,A1, . . . ,Ad}, but
is depended on by a set of d independent rotations
{C0, C1, . . . , Cd}. If B has not yet been rotated, then
any subset of the pre-rotations Ai may be rotated
independently, so there are at least 2d marriages in this
part of the state space. Similarly, if we have rotated
B, we may rotate any subset of the post-rotations Ci
independently, so there are at least 2d more marriages
in this second part of the state space. There is a single
edge connecting these two sets of marriages, thereby
defining the bad cut.

While this construction is fairly straightforward
when there are no restrictions on the preference set, it
becomes much more challenging in each of our restricted
scenarios. However, studying the allowable lattices in
each of the restricted models revealed a rich structure
worthy of further investigation.

2 Background

2.1 A Markov Chain on the Marriage lattice
In a given marriage M, define a woman’s suitor to be
her favorite of the men that prefer her to their current
wives. As the marriage is stable, every woman prefers
her husband to her suitor. A man-improving rotation
is a sequence ρ = (M1, w1, · · · ,Mr, wr) such that Mi

is married to wi and Mi+1 is the suitor to wi, where
subscripts are modulo r. By dissolving the previous
marriages and newly wedding each woman to her suitor,
we obtain another stable marriageM/ρ that is preferred
by the men. (see [7] or [11] for details). Woman-
improving rotation are defined similarly by exchanging
genders in all of these definitions.

It can be shown that after performing a rotation
improving preferences of one gender, the inverse is
a rotation improving the other. Also, the edges of



the marriage lattice correspond exactly to allowable
rotations [7]. To find all the rotations, we need only
list the suitors for each person. Therefore we can use
the rotations to define a Markov chain R on the set of
stable marriages as follows. Suppose we are currently
at the marriage Mt.

• With probability 1/3, choose a man
u.a.r. If he is part of a woman-improving
rotation ρ, set Mt+1 =Mt/ρ.

• With probability 1/3, choose a man u.a.r.
If he is part of a man-improving rotation
ρ, set Mt+1 =Mt/ρ.

• With probability 1/3, set Mt+1 =Mt.

The probability of picking a particular rotation is
proportional to the number of couples it contains. Since
a rotation and its inverse contain the same people, R is
reversible. It is easy to see that the chain is aperiodic
and connects the state space of stable marriages, so the
Markov chain converges to the uniform distribution over
stable marriages.

2.2 Mixing Time The convergence time of a
Markov chain is captured by its mixing time (see, e.g.,
[14]). The total variation distance between distributions
is 1/2 of their `1 distance. The mixing time τ(ε) of a
Markov chain is the time to come within ε total vari-
ation distance of its stationarity. If the mixing time is
upper bounded by a polynomial, we say the chain is
rapidly mixing. If the mixing time is exponential, we
say the chain is slowly mixing.

The conductance provides a way to upper and lower
bound the mixing rate [10, 15], defined as

Φ = min
S⊆Ω:π(S)≤1/2

∑
x∈S,y/∈S

π(x)P (x, y)

π(S)
.

The following conductance theorem is our main tool for
showing slow mixing.

Theorem 2.1. For any reversible Markov chain with
conductance Φ,

τ(ε) ≥ 1− 2Φ
2Φ

ln ε−1.

Thus, to lower bound the mixing time, it is sufficient to
show that the conductance is small.

3 The k-attribute model

Recall that in the k-attribute model, men and women
are represented by points in Rk, and preference lists

are determined by linear objective functions. We show
that even in the case that there are only two attributes,
there are instances for which the Markov chain R mixes
slowly.

Before looking into the mixing time of R in the
attribute model, we show that, in a robust sense, this
model is indeed more restrictive than the general case of
arbitrary preference sets. Bogomolnaia and Laslier [2]
showed that there exist preference sets on n men which
cannot be realized with fewer than n−1 attributes. This
cyclic preference set is shown in Figure 1 for n = 4.

A : a b c d a : D C B A
B : b c d a b : A D C B
C : c d a b c : B A D C
D : d a b c d : C B A D

Figure 1: A preference set, either side of which cannot
be realized in the 3-attribute model.

However, while this shows that there are preference
sets in the general model which cannot be realized in
the k-attribute model, it does not show the same about
the rotation posets arising from these preference sets.
For instance, if the men and women have the disallowed
preference set as in Figure 1, the marriage lattice is
simply a path of n marriages, each dependent on the
previous, as shown in Figure 2. This marriage lattice
(and the equivalent rotation poset) can be easily realized
in the k-attribute model, even when k = 2.

Figure 2: The range of stable marriages of Figure 1,
with the marriage lattice to the far right

We show that the rotation posets realized in the k-
attribute model are, in fact, strictly contained within
the rotation posets arising in the general model. The
unrealizable preference set in Figure 1 corresponded to a
realizable rotation poset because there was an alternate
preference set for the same rotation poset. To create
a rotation poset with no realizable preference set, we
remove this flexibility by creating a poset with the
maximum number of rotations. We can then show the
following.

Theorem 3.1. There exist rotation posets on n men
which cannot be realized by any preference set in the
k-attribute model when k < n/2.



Proof. The maximum number of rotations for any n

men is n(n−1)
2 . To see this, define the improvement of

a rotation to be the total distance the wives move on
the men’s preference lists. For instance, if a rotation
on three men improves their allotment from their least
favorite to second-to-least favorite, the rotation has
improvement 3. Clearly the minimum improvement of
any rotation is 2, as a rotation involves at least two men
and they must improve at least one position each. On
the other hand, the maximum sum of the improvements
of all rotations is n(n−1), as the nmen can only improve
n − 1 positions each. Therefore there can be at most
n(n−1)

2 rotations.
A rotation poset with n(n−1)

2 rotations is illustrated
in Figure 3. It consists of n−1 rows of n/2 independent
rotations, where the edges between any two rows forms a
2n cycle. We will show that, up to permutation of labels,
this rotation poset has only one possible preference set.

Figure 3: A rotation poset on 8 men which cannot be
realized in the 3-attribute model.

We know that the male-optimal marriage weds
each man to his favorite woman or else the number
of rotations would not be maximal. Without loss of
generality, let these favorites be (Mi, wi). Again by
the maximality, the n independent initial rotations must
involve only pairs of men swapping their two wives, and
decrease the men’s ranking by only one position each.
We may assume these pairs are (M1,M2), (M3,M4),
. . . , (Mn−1,Mn). Therefore the men’s preference set
begins as in the upper left of Figure 4.

The next round of rotations must decrease the
men from their second choice to their third, and again
involve only pairs of men swapping wives. The only
way for a pair-rotation to depend on both the (M1,M2)
rotation and the (M3,M4) rotation, is for it to involve
one man from each, for instance (M2,M3). If a pair-
rotation depends on (M3,M4) and (M5,M6), it must
then involve (M4,M5). This allows us to progressively
build the preference list up to the third choice, as in the
upper right of Figure 4.

This pattern continues, until we have finished the

M1 : w1 w2 M1 : w1 w2 w7

M2 : w2 w1 M2 : w2 w1 w4

M3 : w3 w4 M3 : w3 w4 w1

M4 : w4 w3 M4 : w4 w3 w6

M5 : w5 w6 M5 : w5 w6 w3

M6 : w6 w5 M6 : w6 w5 w8

M7 : w7 w8 M7 : w7 w8 w5

M8 : w8 w7 M8 : w8 w7 w1

M1 : w1 w2 w7 w4 w5 w6 w3 w8

M2 : w2 w1 w4 w7 w6 w5 w8 w3

M3 : w3 w4 w1 w6 w7 w8 w5 w2

M4 : w4 w3 w6 w1 w8 w7 w2 w5

M5 : w5 w6 w3 w8 w1 w2 w7 w4

M6 : w6 w5 w8 w3 w2 w1 w4 w7

M7 : w7 w8 w5 w2 w3 w4 w1 w6

M8 : w8 w7 w2 w5 w4 w3 w6 w1

Figure 4: The incremental construction of the men’s
preference set from Figure 3.

preference set as on be bottom of Figure 4. However,
the men with even subscripts form a cyclic preference
set on n/2 people which, as stated above, can not be
realized in fewer than n/2 attributes.

We show that although the k-attribute model is a
real restriction on the possible marriage lattices, R may
still mix slowly. First it will be useful to give a general
construction for slow mixing that will be the starting
point for each of our subsequent constructions.

3.1 Slow mixing in the general model We begin
by constructing a specific instance of the general stable
marriage problem for which the Markov chain mixes
slowly. It is known that every distributive lattice is
isomorphic to some marriage polytope [1, 8]. Since it is
easy to construct examples of lattices where a random
walk on the edges will mix slowly, it is not surprising
that this approach fails for the problem of sampling
stable marriages in general. However, our particular
construction is the crux to showing that even for very
restricted marriage lattices, the chain will mix slowly.

Theorem 3.2. There is a preference set on n men and
n women on which, for some constant c1 > 0, the mixing
time of R is ec1n.

Proof. We design preference sets so that there is one
stable marriage that forms a bottleneck in the stable
marriage lattice, with an exponential number of stable
marriages above and below it. This establishes that the
conductance is exponentially small and consequently, by
Theorem 2.1, the Markov chain R is slow mixing.



The construction involves 5d people of each gen-
der. The construction’s rotation poset will be arranged
such that there is a rotation B which depends on d
different independent rotations {A0,A1, . . . ,Ad}, but
is depended on by a set of d independent rotations
{C0, C1, . . . , Cd}. If we have not rotated B, we may ro-
tate any subset of these pre-rotations Ai, so there are
2d marriages. Similarly, if we have rotated B we may
rotate any subset of these post-rotations Ci, so there are
2d more marriages. Such a construction is illustrated in
Figure 5.

Figure 5: Four stable marriages, ranging from man-
optimal to woman-optimal. The suitor-rotations are
labeled before they are rotated.

We use capital letters to represent men and low-
ercase for women throughout. For instance, our large
rotation B = (B1, b1, B2, . . . , b3d). For the men and
women used exclusively in pre-rotation Ai, we use Ai
and ai, so Ai = (Ai, ai, B4i−3, b4i−3). Similarly, we use
Ci and ci for those exclusively in post-rotation Ci, so
Ci = (Ci, ci, B3i, b3i−1). This is illustrated in Figure 5.

Building preference sets in the general model that
gives rise to such a rotation poset is straightforward; we
need only go through our various marriages and list the
spouses for each person, then move those spouses to the

A1 : b1 a1 B1 : a1 b1 b6

A2 : b4 a2 B2 : b2 b1

B3 : b3 b2 c1

C1 : c1 b2 B4 : a2 b4 b3

C2 : c2 b5 B5 : b5 b4

B6 : b6 b5 c2

b1 : B2 B1 A1 a1 : A1 B1

b2 : C1 B3 B2 a2 : A2 B4

b3 : B4 B3

b4 : B5 B4 A2 c1 : B3 C1

b5 : C2 B6 B5 c2 : B6 C2

b6 : B1 B6

Figure 6: The preference set corresponding to Figure 5

front of that person’s preference list. For instance, if
man B1 is married to first a1, then b1, and then b3d, his
preference list is (a1, b1, b3d, . . .). Note that the women
after these spouses are irrelevant, as he will always have
one of his first three choices available. Woman b1 is
married to A1, B1, then B2. However, these rotations
sequentially decrease b1’s happiness, so her preference
list is (B2, B1, A1, . . .). Again, the remaining preference
lists are unimportant. The partial preference set for
Figure 5 is depicted in Figure 6.

This construction of the preference lists guarantees
stability, as the only people someone might prefer to
their spouse in one marriage are their spouses in better
(from their perspective) marriages. The object of
affection therefore prefers their current spouse; they do
not favor switching and we have stability.

On this preference set, the mixing time of R is
exponential in n. The above construction helps display
a general mechanism for showing slow-mixing in the
restricted models.

3.2 Slow mixing in the k-attribute Model We
now proceed to adapt the construction from Section 3.1
to the k-attribute model.

Theorem 3.3. If k ≥ 2, there are k-attribute prefer-
ence sets for which there is a constant c2 > 0 such that
the mixing time of R is ec2n.

Here we first prove the case when k ≥ 3, and then
extend this to the case when k = 2.

Proof. We build the construction in Figure 5 in R3.
In doing so, we will place all women on the quarter
unit ball. That is, ∀w, ||vw|| = 1. For any three



equidistant neighboring women on the ball, a man
may choose these to be his favorite; he simply finds
a vector that is a convex combination of the three
women’s locations, and lets his function correspond to
that vector. Furthermore, he can arbitrarily choose
the order of those three points by letting the average
weigh more heavily towards his first and then second
choice. As Figure 6 needs only the first three people in
any preference list, will can recreate the preference sets
exactly.

Figure 7: The arrangement of women in 3-space when
k = 3.

In actually placing the women, we need only put
the large rotation in a circle, and the women for the
other rotations near their neighbors in Figure 5. This is
illustrated in Figure 7. Note that, for each man, there
is some face or edge to which all his wives are incident.
This way they may be placed at the very beginning of
his preference list, and our marriages are stable, proving
Theorem 3.3 in three or more dimensions.

When k = 2, again we place the women on the unit
ball; this time in two dimensions. Notice that a man
can choose any adjacent pair as his favorites (and their
order). He can then choose a woman incident to that
pair as his third, with a few exceptions. (Figure 8 shows
such an exception. The only way for a preference list to
begin {x, y, z} would be if the distance from y to z was
strictly less than the distance from w to x.)

There is no way to place all spouses at the very
beginning of the preference lists as we did in Figure 6,
even if we’re simply building a long rotation (with no
pre- or post-rotations). However, if we arrange the
women in order on the unit ball {b1, b2, . . . , b3k}, and do
the same with the men, then all but one of the preference
lists can place the spouses at the very beginning, and
we still have stability (as in Figure 9).

Inserting the women for pre- and post-rotations, we
place ai just before b3i−2 and place ci just before b3i−1.
This will place even more women in front of the spouses,

Figure 8: An example where, although adjacent, no
preference list may begin with {x, y, z}.

which might create instability. Luckily, these additional
women are all married to their first or second choice,
so stability is preserved. (The extra men are inserted
similarly, with Ai just behind B3i−2 and Ci just in front
of B3i−1.) This is illustrated in Figure 10. This allows
us to create a preference set, as illustrated in Figure 11.

B1 : b1 b2 b3 b4 b5 b6 b1 : B2 B1

B2 : b2 b1 b2 : B3 B2

B3 : b3 b2 b3 : B4 B3

B4 : b4 b3 b4 : B5 B4

B5 : b5 b4 b5 : B6 B5

B6 : b6 b5 b6 : B1 B2 B3 B4 B5 B6

Figure 9: The preference set from a 6-rotation in 2-
dimensions.

Figure 10: The arrangement of the women in 2-space,
when k = 2.

Note that the construction above barely avoids the
problem illustrated in Figure 8. For instance, b2’s
preference list begins {C1, B3, B2}. If she preferred
these in a different order, for example {B3, C1, B2},
the arrangement in 2-space must be changed, as the
distance from B2 to C1 is exactly the same as B3 to A2.



A1 : b1 a1 B1 : a1 b1 c1 b2 b3 a2 b4 c2 b5 b6

A2 : b4 a2 B2 : b2 c1 b1

B3 : b3 b2 c1

C1 : c1 b2 B4 : a2 b4 b3

C2 : c2 b5 B5 : b5 c2 b4

B6 : b6 b5 c2

a1 : A1 B1 b1 : B2 B1 A1

a2 : A2 B4 b2 : C1 B3 B2

b3 : B4 A2 B3

c1 : B3 C1 b4 : B5 B4 A2

c2 : B6 C2 b5 : C2 B6 B5

b6 : A1 B1 B2 C1 B3 A2 B4 B5 C2 B6

Figure 11: The people from Figure 5 arranged in 2-
dimensions and the corresponding preference lists.

4 The k-range model

Recall that in the k-range model, each person appears
within k possible positions on the other genders’ prefer-
ence lists. If either gender has range 1, then every mem-
ber of the opposite gender has the same preference list,
and there is only one stable marriage. When k ≥ 2 the
number of stable marriages can be exponential. The fol-
lowing two theorems show a type of “phase transition”
in the mixing rate as k increases.

Theorem 4.1. When k = 2, there are k-range pref-
erence sets that allow exponentially many stable mar-
riages, but the mixing time of R is always bounded by a
polynomial in n.

Interestingly, increasing the range slightly yields
very different behavior in the mixing rate.

Theorem 4.2. For k ≥ 5, there is a k-range preference
set so that, for some constant c, the mixing time of R
is at least ecn.

We now outline proofs of these two theorems to explain
the dichotomy in the mixing rates as we vary k.

Proof of Theorem 4.1: To prove R mixes in polynomial
time on 2-range preference sets, we use the fact that if a
preference set has range 2, removing an individual from
the lists never increases the range. We claim that the
marriage lattice arising from a preference set with range
2 must be a hypercube, and therefore a random walk on
its edges is fast-mixing. The proof of this claim that the
lattice is a hypercube is by induction.

If all the men agree that some woman is best, she
gets her first choice in any stable marriage. We can

remove the newlyweds from the other preference lists
and use induction.

If there is a pair of people who are both first on the
other’s list, then any stable marriage will wed these two.
Again, we can remove both from the other preference
list and use induction.

If neither of these cases occur, then there are two
men at the top of the women’s lists, and two women at
the top of the men’s lists, and these four people form
a rotation. There are two ways to wed this group, but
after choosing such a pairing, we can remove all four
from others’ lists. The remaining preferences will be the
same regardless of the pairing we chose, and we again
use induction.

Therefore the marriage lattice is simply the binary
hypercube with dimension equal to the number of
rotations we found. Walks on the hypercube are well
known to be fast mixing (see, e.g., [3]).

B3 : b3 b1 b2 b4 b5 b6 b7 b8 b9 b10 b11 b12

B5 : b1 b2 b5 b3 b4 b6 b7 b8 b9 b10 b11 b12

B7 : b1 b2 b3 b4 b7 b5 b7 b8 b9 b10 b11 b12

B9 : b1 b2 b3 b4 b5 b6 b9 b7 b8 b10 b11 b12

B11 : b1 b2 b3 b4 b5 b6 b7 b8 b11 b9 b10 b12

B12 : b1 b2 b3 b4 b5 b6 b9 b7 b8 b10 b12 b11

B10 : b1 b2 b3 b4 b5 b6 b7 b8 b9 b12 b10 b11

B8 : b1 b2 b3 b4 b5 b6 b7 b8 b10 b9 b11 b12

B6 : b1 b2 b3 b4 b5 b6 b8 b7 b9 b10 b11 b12

B4 : b1 b2 b3 b4 b6 b5 b7 b8 b9 b10 b11 b12

B2 : b1 b2 b4 b3 b5 b6 b7 b8 b9 b10 b11 b12

B1 : b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

Figure 12: The male preferences for a 12-rotation with
range 4.

Proof of Theorem 4.2: In order to show that the
random walk on the stable marriage lattice is slowly
mixing when k ≥ 5, we would like to create a k-
range example as in Section 3.1. Unlike in the previous
examples, the difficulty here is creating an arbitrarily
long rotation. If there is a rotation on (B1, B2, . . . , B3d),
then some woman will be married to a man of high value
before the rotation (B1), but a man of low value after
(B3d). No matter her own worth, this cannot be stable
for large d.

Instead, our construction of the long cycle pro-
ceeds up along the odd numbered men and then
back along the even, so their quality never varies
too much along the cycle; with a rotation on
(B1, B3, . . . , B3d, B3d−1, B3d−3, . . . , B2), the value of



the men slowly increases and then slowly decreases.
To build the long cycle, consider the worth of the

men ordered as {B1, . . . , B3d}. A woman’s preference
list will be a copy of this ranking, but with her own
husband pushed slightly earlier. More formally, for each
woman w, we define her stratum as the set Sw that
includes all of her potential husbands and all of the
men between them in worthiness. For instance, if b3
is married to B5 and then B3, Sb3 = {B3, B4, B5}. To
build w’s preference list, we use the natural order on the
men above and below Cw, but order her stratum such
that her husbands are first. (Of course the same process
is done with the genders reversed for the women’s
preference lists.) This construction is illustrated in
Figure 13.

Figure 13: The 5-range construction when k = 2.

We build the full construction, with pre- and post-
rotations Ai and Ci, in much the same way. However,
to ensure that adding the new men and women does
not add too much to the range, we only insert the Ai
and Ci on the odd side of the cycle. This will cut the
number of independent cycles in half, but still give us
exponentially many marriages on each side of the cut.

Inserting the remaining people into the ordering
{B1, B2, . . .}, we put Ai next to the other man in Ai and
Ci next to the other man in Ci. As seen in Figure 13, Ai
is before B6i−2 and Ci is before B6i−1. The full set of
strata is illustrated in Figure 14. To fill in the preference
lists, one needs only insert the missing women in order,
as in Figure 15

It is clear that such a construction will give k-range
for some small constant k, as each of the strata are of
constant size. Analyzing this specific construction, we
find that this example can be constructed with range 5.

A1 : b1 a1

A2 : b7 a2

C1 : c1 b3

C2 : b9 c2

B1 : a1 b1 b2

B3 : b3 b1 b2
B5 : b5 b3 c1 b4
B7 : a2 b7 b5 b6
B9 : b9 b7 b8
B11 : b11 b9 c2 b10

B12 : b12 b11

B10 : b10 b12 b11

B8 : b8 b10 b9 c2
B6 : b6 b8 a2 b7
B4 : b4 b6 b5
B2 : b2 b4 b3 c1

Figure 14: The set of strata for a 5-range construction.

A1 : b1 a1 b2 b3 c1 b4 b5 b6 a2 b7 b8 b9 c2 b10 b11 b12

A2 : a1 b1 b2 b3 c1 b4 b5 b6 b7 a2 b8 b9 c2 b10 b11 b12

C1 : a1 b1 b2 c1 b3 b4 b5 b6 a2 b7 b8 b9 c2 b10 b11 b12

C2 : a1 b1 b2 b3 c1 b4 b5 b6 a2 b7 b8 b9 c2 b10 b11 b12

B1 : a1 b1 b2 b3 c1 b4 b5 b6 a2 b7 b8 b9 c2 b10 b11 b12

B3 : a1 b3 b1 b2 c1 b4 b5 b6 a2 b7 b8 b9 c2 b10 b11 b12

B5 : a1 b1 b2 b5 b3 c1 b4 b6 a2 b7 b8 b9 c2 b10 b11 b12

B7 : a1 b1 b2 b3 c1 b4 a2 b7 b5 b6 b8 b9 c2 b10 b11 b12

B9 : a1 b1 b2 b3 c1 b4 b5 b6 a2 b9 b7 b8 c2 b10 b11 b12

B11 :a1 b1 b2 b3 c1 b4 b5 b6 a2 b7 b8 b11 b9 c2 b10 b12

B12 :a1 b1 b2 b3 c1 b4 b5 b6 a2 b7 b8 b9 c2 b10 b12 b11

B10 :a1 b1 b2 b3 c1 b4 b5 b6 a2 b7 b8 b9 c2 b10 b12 b11

B8 : a1 b1 b2 b3 c1 b4 b5 b6 a2 b7 b8 b10 b9 c2 b11 b12

B6 : a1 b1 b2 b3 c1 b4 b5 b6 b8 a2 b7 b9 c2 b10 b11 b12

B4 : a1 b1 b2 b3 c1 b4 b6 b5 a2 b7 b8 b9 c2 b10 b11 b12

B2 : a1 b1 b2 b4 b3 c1 b5 b6 a2 b7 b8 b9 c2 b10 b11 b12

Figure 15: The 5-range preference set when k = 2.

5 The k-list model

Theorem 5.1. If k ≥ 4, there are k-list preference sets
such that, for some constant c′, the mixing time of R is
at least ec

′n.



A1 : b1 a1 b2 b4 b3 c1 b5 b6 b8 a2 b7 b9 c2 b10 b12 b11

A2 : a1 b1 b2 c1 b3 b4 b6 b5 b7 a2 b8 b10 b9 c2 b12 b11

C1 : a1 b1 b2 c1 b3 b4 b6 b5 b7 a2 b8 b10 b9 c2 b12 b11

C2 : b1 a1 b2 b4 b3 c1 b5 b6 b8 a2 b7 b9 c2 b10 b12 b11

B1 : a1 b1 b2 b5 b3 c1 b4 b6 a2 b9 b7 b8 c2 b10 b12 b11

B3 : a1 b3 b1 b2 c1 b4 a2 b7 b5 b6 b8 b11 b9 c2 b10 b12

B5 : a1 b1 b2 b5 b3 c1 b4 b6 a2 b9 b7 b8 c2 b10 b12 b11

B7 : a1 b3 b1 b2 c1 b4 a2 b7 b5 b6 b8 b11 b9 c2 b10 b12

B9 : a1 b1 b2 b5 b3 c1 b4 b6 a2 b9 b7 b8 c2 b10 b12 b11

B11 :a1 b3 b1 b2 c1 b4 a2 b7 b5 b6 b8 b11 b9 c2 b10 b12

B12 :a1 b1 b2 c1 b3 b4 b6 b5 b7 a2 b8 b10 b9 c2 b12 b11

B10 : b1 a1 b2 b4 b3 c1 b5 b6 b8 a2 b7 b9 c2 b10 b12 b11

B8 : a1 b1 b2 c1 b3 b4 b6 b5 b7 a2 b8 b10 b9 c2 b12 b11

B6 : b1 a1 b2 b4 b3 c1 b5 b6 b8 a2 b7 b9 c2 b10 b12 b11

B4 : a1 b1 b2 c1 b3 b4 b6 b5 b7 a2 b8 b10 b9 c2 b12 b11

B2 : b1 a1 b2 b4 b3 c1 b5 b6 b8 a2 b7 b9 c2 b10 b12 b11

Figure 16: A slow construction in 4-list when k = 2

Proof. In the construction in the proof of Theorem 4.2,
the preference lists only needed a certain order in the
individual strata. Above or below the strata, the
lists had a great deal of flexibility. In fact, if two
strata are disjoint, a single preference list could contain
both. Combining strata in this way will give us a slow
construction with a constant number of lists. It happens
that our construction can be consolidated into four lists,
as illustrated in Figure 16.

6 Conclusions

We have demonstrated that random walks on the sta-
ble marriage lattice are slowly mixing, even in very re-
stricted scenarios. Finding alternative methods for sam-
pling stable marriages in any of these restrictive settings
is an interesting open problem that might shed light on
the general problem of sampling on distributive lattices.

It remains open whether R is fast for the k-range
model when k = 3 or 4. We conjecture that it is when
k = 3. In this case we believe the allowable lattices can
be expressed as a product of a small family of allowable
graphs, which would imply that random walks on all
the allowable lattices mix in polynomial time. We leave
k = 4 as an open problem.

Finally, we point out that the models defined in this
paper, in particular the k-attribute and k-range models,
are worthy of further study. For instance, given a set
of preference set, can we efficiently decide whether it
could have arisen from a k-attribute model? I.e., can
we associate the members of the one gender with points
in Rk so that the preference lists arise as projections
of these points onto a line. It also seems worthwhile

to ask whether the algorithms for constructing stable
marriages can be implemented more efficiently if the
the preference lists come from one of these restricted
scenarios. For example, we can show that we can find
the male- and female-optimal marriage more efficiently
in the k-range model.
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