
A Markov Chain Algorithm for Compression in
Self-Organizing Particle Systems ⇤

Sarah Cannon

†

Georgia Institute of Technology

Atlanta, GA, USA

sarah.cannon@gatech.edu

Joshua J. Daymude

‡

Arizona State University

Tempe, AZ, USA

jdaymude@asu.edu

Dana Randall

§

Georgia Institute of Technology

Atlanta, GA, USA

randall@cc.gatech.edu

Andréa W. Richa

‡

Arizona State University

Tempe, AZ, USA

aricha@asu.edu

ABSTRACT
We consider programmable matter as a collection of simple
computational elements (or particles) with limited (constant-
size) memory that self-organize to solve system-wide prob-
lems of movement, configuration, and coordination. Here,
we focus on the compression problem, in which the parti-
cle system gathers as tightly together as possible, as in a
sphere or its equivalent in the presence of some underlying
geometry. More specifically, we seek fully distributed, local,
and asynchronous algorithms that lead the system to con-
verge to a configuration with small perimeter. We present a
Markov chain based algorithm that solves the compression
problem under the geometric amoebot model, for particle sys-
tems that begin in a connected configuration with no holes.
The algorithm takes as input a bias parameter �, where
� > 1 corresponds to particles favoring inducing more lat-
tice triangles within the particle system. We show that for
all � > 5, there is a constant ↵ > 1 such that at stationar-
ity with all but exponentially small probability the particles
are ↵-compressed, meaning the perimeter of the system con-
figuration is at most ↵ · pmin, where pmin is the minimum
possible perimeter of the particle system. We additionally
prove that the same algorithm can be used for expansion for
small values of �; in particular, for all 0 < � <

p

2, there is a
constant � < 1 such that at stationarity, with all but an ex-

⇤A full version of this paper, including omitted proofs, is available
at www.arxiv.org/abs/1603.07991.
†Supported in part by NSF DGE-1148903 and a grant from the
Simons Foundation (#361047 to Sarah Cannon)
‡Supported in part by NSF awards CCF-1353089, CCF-1422603,
and REU-026935.
§Supported in part by NSF grant CCF-1526900.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODC’16, July 25-28, 2016, Chicago, IL, USA
c� 2016 ACM. ISBN 978-1-4503-3964-3/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2933057.2933107

ponentially small probability, the perimeter will be at least
� · pmax, where pmax is the maximum possible perimeter.

Keywords
Self-organizing Particles; Compression; Markov Chains

1. INTRODUCTION
Many programmable matter systems have recently been

proposed and realized—modular and swarm robotics, syn-
thetic biology, DNA tiling, and smart materials form an in-
complete list—and each is often tailored toward a specific
task or physical setting. In our work on self-organizing par-
ticle systems, we abstract away from specific settings and
instead describe programmable matter as a collection of sim-
ple computational elements (to be referred to as particles)
with limited computational power that each perform fully
distributed, local, asynchronous algorithms to solve system-
wide problems such as movement, configuration, and coor-
dination. Here we present an algorithm for compression, in
which the particle system gathers as tightly together as pos-
sible, as in a sphere or its equivalent in the presence of some
underlying geometry. This phenomenon is often found in
natural systems: fire ants form floating rafts by gathering
in such a manner, and honey bees communicate foraging
patterns within their hives. While each individual ant or
bee cannot view the group as a whole when soliciting in-
formation, it can take cues from its immediate neighbors
to achieve cooperation. It is with this motivation that we
present a distributed algorithm for compression in the amoe-
bot model derived from a Markov chain process.

In the (geometric) amoebot model, more formally defined
in Section 2.1, particles with limited computational power
move among the vertices of the triangular lattice � (Fig-
ure 1(a)) by traveling along the edges of �. The compression
problem seeks to reorganize the configuration of a particle
system (via movements of particles) such that the system
converges to a configuration with small perimeter, where
we measure the perimeter of a configuration by the length
of the walk along its boundary. We say a particle system
is ↵-compressed, for ↵ > 1, if the perimeter of the parti-
cle configuration is at most ↵ times the minimum possible
perimeter for those particles.

1.1 Our results and techniques
We present a Markov chain M for particle compression

under the geometric amoebot model that can be directly
translated into a fully distributed, local, asynchronous com-
pression algorithm A. Both A and M take as input a bias
parameter � (where � > 1 makes induced lattice triangles
more favorable) and start from an arbitrary initial configu-
ration for the particles that is connected and has no holes.

Markov chainM is carefully designed according to the dis-
tributed and local nature of the system, so that the particles
always stay connected and no holes form. Furthermore, we
proveM is reversible and ergodic, meaning many of the stan-
dard tools of Markov chain analysis can be applied. While
most of these proofs rely only on first principles, we empha-
size they are far from trivial; working in a distributed setting
necessitated carefully defined protocols for local moves that
made proofs challenging.1

When the particles execute the local moves of M (by run-
ning A) for long enough, the configuration of the particles
converges to the stationary distribution of M. We prove for
all large enough � there is a constant ↵ = ↵(�) > 1 such
that at stationarity, with all but exponentially small proba-
bility, the particles are ↵-compressed, meaning the perimeter
of the particle configuration is at most ↵ times the mini-
mum perimeter (which is ⇥(

p

n) for systems of n particles).
We additionally show the counterintuitive result that � > 1
is not enough to guarantee compression. In fact, for all
0 < � <

p

2, there is a constant � < 1 such that at stationar-
ity with all but exponentially small probability the perimeter
is at least a � fraction of the maximum perimeter, which is
⇥(n) for systems of n particles. We call such a configuration
�-expanded. This implies that for any 0 < � <

p

2, the prob-
ability that the particles are ↵-compressed is exponentially
small for any constant ↵.

The motivation underlying the design of this Markov chain
is from statistical physics, where ensembles of particles rem-
iniscent of our amoebot model are used to study physical
systems. Like a spring relaxing, systems tend to favor con-
figurations that minimize energy. The energy function is
determined by a Hamiltonian H(�); each configuration �
has weight w(�) = e�B·H(�)/Z, where where B = 1/T is in-
verse temperature and Z =

P
⌧ e

�B·H(⌧) is the normalizing
constant known as the partition function.

In our amoebot model, we assign each configuration � a
Hamiltonian H(�) = �t(�), where t(�) is the number of tri-
angles in �, i.e., the number of faces of the triangle lattice �
with all three vertices occupied by particles. Setting � = eB ,
we get w(�) = �t(�). As � gets larger (by increasing B, e↵ec-
tively lowering temperature), we favor configurations with
a large number of occupied triangles, causing increasingly
compressed configurations. Favoring edges with both end-
points occupied is an alternative metric we could consider,
but we prove for connected configurations on � without holes
the two measures are equivalent. Likewise, favoring shorter
perimeter is a third equivalent representation.

The key tool used to establish compression is a careful
Peierls argument, used in statistical physics to study non-
uniqueness of limiting Gibbs measures and determining the
presence of phase transitions (see, e.g., [9]), and in com-
puter science to establish slow mixing of Markov chains
(see, e.g., [2]). For standard Peierls arguments, configura-

1Due to length constraints some proofs were omitted.

tions typically are not required to be connected and can
have holes. Here, we focus on the connected a0nd hole-free
model to show compression can be achieved, even in an asyn-
chronous distributed system where particles have constant-
size memory and use only local information.

1.2 Related Work
Our algorithm is derived from a carefully designed Markov

chain, enabling us to provide provable guarantees of its be-
havior. Random particle processes on the grid with hard
constraints (e.g., simple exclusion processes where no two
particles can occupy the same location) have been studied
in statistical physics, but we want results under the further
constraints of distributed computing. Our work exploits the
memoryless, stochastic nature of Markov chains to accom-
plish particle compression in the amoebot model, just one of
many distributed physical systems where compression-type
problems have been studied.

When considering physical systems and models, one can
di↵erentiate between active and passive systems. Particles
in passive systems have no explicit control over their move-
ments, and in some cases do not have any computational
power. One example is the DNA self-assembly work de-
scribed in [19], where strands of DNA gather together to
form larger structures with certain patterns.

In active systems, particles have control over their be-
havior and—depending on the model—can achieve some di-
rected locomotion. Swarm robotics is one example; di↵erent
variations of shape formation and collection problems have
been studied (e.g. [11, 17]), but always with more computa-
tional power or global knowledge of the system. Similarly,
pattern formation and creation of convex structures has been
studied in the cellular automata domain (e.g. [4, 8]), but dif-
fers from our model by assuming more powerful computa-
tional capabilities. The nubot model [20] addresses a frame-
work for biomolecular-inspired models which—although al-
lowing some non-local movements—provides additional ways
to create two dimensional shapes in polylogarithmic time.

Nature o↵ers a variety of examples in which gathering and
cooperative behavior is apparent. For example, social insects
often exhibit compression-like characteristics in their collec-
tive behavior: fire ants form floating rafts [15], cockroach lar-
vae perform self-organizing aggregation [13, 16], and honey
bees choose hive locations based on a decentralized process
of swarming and recruitment [3].

The rendezvous (or gathering) problem seeks to gather
mobile agents together on some node of a graph (see e.g. [1]
and the references within). In comparison, our particles fol-
low the exclusion principle, and hence would not be able
to gather at a single node, and are computationally simpler
than the mobile agents considered.

Lastly, in [5, 6], algorithms for hexagon shape forma-
tion in the amoebot model were presented. Although a
hexagon satisfies a compressed configuration as we define
here, the Markov chain-based algorithm we present takes
a fully decentralized and local approach. This is naturally
self-stabilizing, forgoing the need for a seed particle that
may coordinate or initiate some underlying organization of
the set of particles, as required in [5] and even more critically
in [6].

(a) (b)
Figure 1: (a) A section of the triangular lattice �; (b) expanded
particles (each denoted by its two occupied adjacent locations in
� and a thick line in between) and contracted particles (occupying
one location).

2. BACKGROUND AND MODEL
We begin with the geometric amoebot model for pro-

grammable matter. We then define some properties of par-
ticle systems and discuss what it means for a particle system
to be compressed. We conclude with an overview of Markov
chains, which form the basis for our algorithm for compres-
sion to be presented in Section 3.

2.1 The Amoebot Model
In the amoebot model [7], programmable matter consists of

particles whose properties we now detail. An infinite undi-
rected graph G = (V,E) represents the set of relative lo-
cations that the particles can occupy (given by V) and the
set of all possible atomic transitions between locations in V
(given by E) [7]. We further assume the geometric variant of
the amoebot model, which imposes an underlying geometric
structure G = �, where � is the triangular lattice shown in
Figure 1(a) (also called the infinite regular triangular grid
graph, and denoted by Geqt in earlier work).

Each particle occupies either a single location (i.e., it is
contracted) or a pair of two adjacent locations on the graph
(i.e., it is expanded); Figure 1(b) illustrates expanded and
contracted particles on �. Each location can be occupied
by at most one particle. Particles achieve movement via a
series of expansions and contractions: a contracted particle
may expand into an adjacent unoccupied location to become
expanded, and completes its movement by contracting to
once again occupy only one location.

Two particles occupying adjacent nodes are said to be con-
nected by a bond (and hence induce an edge in the particle
system), and we refer to them as neighbors. Particles are
anonymous, but can uniquely identify each one of their (six)
possible bonds and check which bonds lead to nodes occu-
pied by neighboring particles. Additionally, the particles do
not share any global orientation or coordinate system.
Every particle has a constant-size, shared, local memory

which both it and its neighbors can read and write to for
communication. Because of the limitation on memory size,
particles cannot know neither the total size of the system
nor an estimate of it. Particles execute a sequence of atomic
actions, in each of which they do some local computation (in
our case, those may involve checking which of its adjacent
locations are occupied with particles) and an expansion or
contraction. We assume a fully asynchronous system, where
particles perform atomic actions concurrently and at di↵er-
ent, possibly variable speeds; conflicts, which in our context
arise when two particles attempt to expand into the same
location, are resolved in an arbitrary manner. In order to
analyze such systems, we use the standard asynchronous
model from distributed computing, allowing us to evaluate
the progress of the system through a sequential series of in-
dividual particle activations, where every time a particle is
activated, it performs an atomic action.

2.2 Terminology for Particle Systems
First, we introduce notation and terminology that will be

used throughout this paper. We call the collection of loca-
tions in � that are occupied by particles an arrangement;
note two arrangements are the same even if particles occupy
di↵erent locations within the arrangement. We can define
an equivalence relation on arrangements, where two arrange-
ments are equivalent if one is a translation of the other. We
define a configuration to be an equivalence class of arrange-
ments. If configuration � is a rotation of configuration ⌧ , we
still consider � and ⌧ to be distinct configurations. That is,
for the purpose of monitoring the particle system we main-
tain a global orientation of the particles, even though each
individual particle has no sense of global orientation.

We will let capital letters refer to particles and lower case
letters refer to locations on the triangular lattice �, e.g.,
“particle P at location `.” For a particle P (resp., loca-
tion `), we use N(P) (resp., N(`)) to denote the set of par-
ticles adjacent to P (resp., to `), where by adjacent we mean
connected by a lattice edge. Similarly, for a particle P (resp.,
location `), we will use n(P) (resp., n(`)) to denote the six
locations in the neighborhood of P (resp., of `). For loca-
tions ` and `0, by N(`[`0) we mean (N(`)[N(`0)) \ {`, `0};
the same holds for n(` [`0).

By an edge or triangle of a configuration � we mean, re-
spectively, an edge or face of � such that all (respectively,
two or three) incident vertices are occupied by particles. The
number of edges of � is e(�) and the number of triangles is
t(�). Throughout, by a path or a cycle we mean a path or cy-
cle in the underlying graph � where all vertices are occupied
by particles, and in the case of a cycle, at least one location
inside the cycle is unoccupied. Two particles are connected
if there exists a path between them, and a configuration is
connected if all pairs of particles are. A hole in a configura-
tion is a maximal finite component of adjacent unoccupied
locations. We specifically consider connected configurations
with no holes, and our algorithm, if starting at such a con-
figuration, will maintain these properties.

2.3 Compression of Particle Systems
Our objective is to find a solution to the particle com-

pression problem. There are many ways to formalize what
it means for a particle system to be compressed. For exam-
ple, one could try to minimize the diameter of the system,
maximize the number of edges, or maximize the number of
triangles. We choose to define compression in terms of mini-
mizing the perimeter. We prove for connected configurations
with no holes, minimizing perimeter, maximizing the num-
ber of edges, and maximizing the number of triangles are
all equivalent and are stronger notions of compression than
minimizing the diameter.

For a connected configuration � of n particles with no
holes, the perimeter of �, denoted p(�), is the length of the
walk around the (single external) boundary of the particles.
In an abuse of notation, we use the term perimeter to refer
both to the length p(�) of this walk and the walk itself. We
assume any walk W along the perimeter of a configuration is
in the clockwise direction. For a walk W in � with some no-
tion of direction, we say location ` is left of edge e =

�!

st 2 W

traversed from s to t if `, s and t are the vertices of a triangu-
lar face of � with ` the next vertex counterclockwise around
this face from t. With this terminology, every edge traversed
in a clockwise walk W along the perimeter of � has an unoc-

cupied location to its left. Specifically, for any consecutive
particles A,B,C in W, the locations in the clockwise span
of n(B) from A to C are always unoccupied and there is
at least one of them. Note an edge may appear twice in a
perimeter walk W; in this case, its length is counted twice
in p(�). For a connected configuration of n particles with-
out holes, the perimeter ranges from a maximum value of
2n�2 when the particles are in their least compressed state
(a tree with no induced triangles) to some minimum value
pmin(n) = ⇥(

p

n) when the particles are in their most com-
pressed state. It is easy to see pmin(n)  4

p

n, and we now
prove any configuration � of n particles has p(�) �

p

n; this
bound is not tight but su�ces for our proofs.

Lemma 2.1. A connected configuration with n � 2 parti-
cles and no holes has perimeter at least

p

n.

Proof. We argue by induction on n. A particle system
with two particles necessarily has perimeter 2 �

p

2, as
claimed. Let � be any particle configuration with n par-
ticles where n > 2, and suppose the lemma holds for all
configurations with less than n particles.

First, suppose there is a particle Q 2 � not incident to
any triangles of �. This implies Q has one, two, or three
neighbors, none of which are adjacent. If Q has one neigh-
bor, removing Q from � yields a configuration �0 with n� 1
particles and, by induction, perimeter at least

p

n� 1. Thus

p(�) = p(�0) + 2 �

p

n� 1 + 2 �

p

n.

If Q has two neighbors, removing Q from � produces two
connected particle configurations �

1

and �
2

, where �
1

has n
1

particles, �
2

has n
2

particles, and n
1

+ n
2

= n� 1. Thus

p(�) �
p

n
1

+
p

n
2

+ 4 >
p

n� 1 + 4 >
p

n.

Similarly, ifQ has three neighbors its removal produces three
particle configurations with n

1

, n
2

, and n
3

particles where
n
1

+ n
2

+ n
3

= n� 1 and we conclude

p(�) �
p

n
1

+
p

n
2

+
p

n
3

+ 6 >
p

n.

Now, suppose every particle in � is incident to some tri-
angle of �, implying there are at least n/3 triangles in �. An
equilateral triangle with side length 1 has area

p

3/4, so the
perimeter of � encloses an area of at least A =

p

3n/12. By
the isoperimetric inequality, the minimum perimeter way of
enclosing this area, without regard to lattice constraints, is
with a circle of radius r and perimeter p, where

r =

r
A
⇡

=

s
n
p

3
12⇡

, p = 2⇡r =
r

⇡n
p

3
>

p

n.

As the perimeter of � also encloses an area of at least
p

3n/12,
it is of length at least

p

n.

When n is clear from context we omit it and refer to pmin =
pmin(n) and pmax = pmax(n). We now define what it means
for a particle system to be compressed.

Definition 2.2. For any ↵ > 1, a connected configura-
tion � with no holes is ↵-compressed if p(�)  ↵ · pmin.

We prove in Section 4 that our algorithm, when executed
for a su�ciently long time, achieves ↵-compression with all
but exponentially small probability for any constant ↵ >
1, provided n is su�ciently large. We note ↵-compression

implies the diameter of the particle system is also O(
p

n),
so our definition of ↵-compression is stronger than defining
compression in terms of diameter.

In order to minimize perimeter using only simple local
moves, we exploit the following relationship.

Lemma 2.3. For a connected particle configuration � with
no holes, t(�) = 2n� p(�)� 2.

Proof. We count particle-triangle incidences, of which
there are 3t(�). Counting another way, every particle has six
incident triangles, except for those on the perimeter. Con-
sider any traversal W of the perimeter; at each particle, the
exterior angle is 120, 180, 240, 300, or 360 degrees. These
correspond to the particle “missing”2, 3, 4, 5, or 6 of its pos-
sible six incident triangles, or degree/60 missing triangles. If
W visits the same particle multiple times, count the appro-
priate exterior angle at each visit. The sum of exterior angles
along W is 180p(�)+360, so in total particles on the perime-
ter are missing 3p(�)+6 triangles. This implies 6n�3p(�)�6
particle-triangle incidences, so 3t(�) = 6n� 3p(�)� 6.

Minimizing perimeter is also equivalent to maximizing
edges, as we now show.

Lemma 2.4. For a connected particle configuration � with
no holes, e(�) = 3n� p(�)� 3.

Proof.The proof is nearly identical to that of Lemma 2.3,
counting particle-edge incidences instead.

Corollary 2.5. For a connected particle configuration �
with no holes, t(�) = e(�)� (n� 1).

Corollary 2.6.A connected particle configuration � with
no holes and minimum perimeter is also a configuration with
the maximum number of triangles (and edges).

2.4 Markov chains
The distributed protocol for particle compression we pre-

sent is based on a Markov chain, i.e., a memoryless stochastic
process defined on a finite set of states ⌦. The transition
matrix P on ⌦⇥ ⌦ ! [0, 1] is defined so that P (x, y) is the
probability of moving from state x to state y in one step, for
any pair x, y 2 ⌦. The t-step transition probability P t(x, y)
is the probability of moving from x to y in exactly t steps.

A Markov chain is ergodic if it is irreducible, i.e., for all
x, y 2 ⌦, there is a t such that P t(x, y) > 0, and aperiodic,
i.e., for all x, y 2 ⌦, g.c.d.{t : P t(x, y) > 0} = 1. Any finite,
ergodic Markov chain converges to a unique distribution ⇡,
i.e., for all x, y 2 ⌦, limt!1 P t(x, y) = ⇡(y). In fact, for
any distribution ⇡0 such that ⇡0(x)P (x, y) = ⇡0(y)P (y, x)
(the detailed balance condition) and

P
x2⌦

⇡0(x) = 1, ⇡0 is
the unique stationary distribution of M (see, e.g., [10]).

Given a desired stationary distribution ⇡ on ⌦, the cele-
brated Metropolis-Hastings algorithm [12] defines appropri-
ate transition probabilities. Starting at state x, pick a neigh-
bor y in ⌦ uniformly with probability 1/(2�), where � is
the maximum number of neighbors of any state, and move
to y with probability min (1,⇡(y)/⇡(x)); with the remaining
probability stay at x and repeat. Using detailed balance, one
can verify if the state space is connected then ⇡ must be the
stationary distribution. While calculating ⇡(x)/⇡(y) seems
to require global knowledge, this ratio can often be calcu-
lated using only local information when many terms cancel

out. In our case, the Metropolis probabilities are simply
min(1,�|t(y)�t(x)|); this di↵erence is just the change in the
number of triangles incident to the moving particle, which
can be calculated with only local information.

3. ALGORITHMS FOR COMPRESSION
Our objective is to demonstrate how stochastic algorithms

can provably achieve compression, focusing on self-organizing
particle systems on the triangular lattice �. Our algorithm
is based on Markov chain principles that will enable us to
prove rigorous results about the algorithm’s behavior. Re-
markably, it does not even require the particles to commu-
nicate more than one bit of information to each other, even
though the amoebot model allows for such exchanges; at any
activation, a particle only needs to know which of its neigh-
boring locations are occupied and if any of those neighbors
are expanded.

Our algorithm carefully maintains several critical prop-
erties throughout its execution. First, the particle system
stays connected and no holes form, even while particles de-
cide where to move based only on local information. Addi-
tionally, any moves made are reversible: if a particle moves
to a new location, there is a nonzero probability that during
the next step, it moves back to its previous location. Finally,
the moves allowed by the algorithm (and respective Markov
chain) su�ce to transform any configuration of particles into
any other configuration. These conditions are essential so
certain tools from Markov chain analysis can be applied.

In addition to the precise conditions needed to ensure con-
nectivity and reversibility, our algorithm achieves compres-
sion by making particles more likely to move into a position
where they form more triangles with their neighbors. Specif-
ically, a bias parameter � controls how strongly the particles
favor being incident to triangles; � > 1 corresponds to fa-
voring triangles, while � < 1 corresponds to disfavoring tri-
angles. As Lemma 2.3 shows, locally favoring more triangles
is equivalent to globally favoring a shorter perimeter; this is
the relationship we exploit to obtain particle compression.

3.1 The Local Algorithm A
We start with two key properties that enable a particle to

move from location ` to location `0. If ` and `0 are neigh-
boring locations on �, let S = N(`) \ N(`0) be the set of
particles adjacent to both ` and `0 (i.e., |S| = 0, 1, or 2).

Property 1. |S| = 1 or 2 and every particle in N(`[`0)
is connected to a particle in S by a path through N(` [`0).

Property 2. |S| = 0; ` and `0 each have at least one
neighbor; all particles in N(`) \ {`0} are connected by paths
within this set; and all particles in N(`0) \ {`} are connected
by paths within this set.

These properties capture precisely the structure required to
maintain particle connectivity and prevent holes from form-
ing. Additionally, both are symmetric for ` and `0, neces-
sary for reversibility. However, they are not so restrictive as
to limit the movement of particles and prevent compression
from occurring; we will see moves satisfying these properties
su�ce to transform any configuration into any other.

We now present the local asynchronous algorithm that
each particle runs. Later we show how to view this algorithm
through the lens of our Markov chain M. Both A and M

take as an input a bias parameter � > 1, and begin in an

arbitrary starting configuration �
0

of contracted particles
that is connected and has no holes.

Algorithm A: Algorithm for compression run by particle P

If P is contracted:

1: Let ` denote P ’s current location.
2: Particle P chooses neighboring location `0 uniformly at

random from the six possible choices, and generates a
random number q 2 (0, 1).

3: if `0 is unoccupied and P has no expanded neighboring
particle at ` then

4: P expands to simultaneously occupy ` and `0.
5: if there are no expanded particles adj. to ` or `0 then
6: P sets flag = TRUE in its local memory
7: else P sets flag = FALSE.

If P is expanded:

8: Let t be the number of triangles formed by P when it
was contracted at its original location `, and let t0 be
the number of triangles formed by P if it contracts at
the location it expanded into, `0.

9: if (1) location ` does not have five neighboring particles,
(2) locations ` and `0 satisfy Property 1 or Property 2,

(3) q < �t0�t, and (4) flag = TRUE then

10: P contracts to `0.
11: else P contracts back to `.

Each particle P continuously runs Algorithm A, executing
Steps 1–7 if P is contracted, and Steps 8–11 if P is expanded.
Note a constant number of random bits su�ce to generate q,
as only a constant precision is required (given that t0�t is an
integer in [�6, 6] and � is a constant). In Step 9, Condition
(1) ensures no holes form; Condition (2) ensures the par-
ticles stay connected and the corresponding Markov chain
M is reversible; Condition (3) ensures the moves happen
with probabilities such that M converges to the desired dis-
tribution; and Condition (4) ensures P is the only particle
in its neighborhood potentially moving to a new position,
`0, since P last expanded. The claims regarding Conditions
(1)–(3) pertain to the underlying Markov process and will
be formalized in the next subsections. To understand why
Condition (4) su�ces to ensure P is the only particle (po-
tentially) moving to a new location in its immediate neigh-
borhood, note that once P expands, any other particle P 0

expanding into a position adjacent to P will contract back to
its original position, since P 0 will set its own flag to FALSE
in Step 7. We assume any conflicts arising from two parti-
cles attempting to concurrently move into the same location
are resolved arbitrarily. Hence, any concurrent movements
will cover pairwise disjoint neighborhoods and the respective
actions will be mutually independent.

Following the classical asynchronous model [14], for any
starting configuration �

0

, we have that for any concurrent
execution of A that reaches a configuration �, there is a
sequential execution of the same atomic actions that also
reaches �, for all �.

3.2 The Markov Chain M
We now make explicit the Markov chain M corresponding

to Algorithm A. The state space of M is the set of all con-
nected configurations of n contracted particles and no holes.

Transitions between states happen subject to the rules and
probabilities we now present.

Beginning at any connected, hole-free configuration �
0

of
contracted particles, repeat:

1. Select particle P uniformly at random from among all
particles; let ` be its location. Choose, uniformly at
random, `0 2 n(`) and q 2 (0, 1).

2. If `0 is unoccupied, then P expands to simultaneously
occupy ` and `0; Else return to Step 1.

3. Let t be the number of triangles formed by P in posi-
tion `, and let t0 be the number of triangles formed by
P in position `0.

4. If (1) location ` does not have five neighboring parti-
cles, (2) locations ` and `0 satisfy Property 1 or Prop-

erty 2, and (3) q < �t0�t
then contract P to `0.

5. Else contract P back to `.

In M, we have paired up the consecutive actions that a
particle will take according to Algorithm A when contracted
and then expanded into one state transition, so that a tran-
sition corresponds to the complete movement of exactly one
(contracted) particle into a new (adjacent) location. Let P
be a particle that eventually moves from location ` to `0 at
some time t0 according to an execution of A. Condition (4)
in Step 9 and the condition in Step 3 of A ensure that if P
was activated and expanded at time t before being activated
once again and contracting to occupy `0 at time t0 > t, even
if other particles are activated between t and t0 no move-
ment to a new location will occur in the neighborhood of P
in that time interval. Hence all activations of other particles
in the neighborhood of P in the interval (t, t0) can be ig-
nored, justifying the pairing of actions in the Markov chain
M.

For every sequential execution of atomic actions that leads
to configuration �0 in A, there exists a sequence of transi-
tions in M that reaches a configuration � such that � can
be obtained from �0 by preserving the locations of all con-
tracted particles in �0 and by letting every expanded particle
in �0 contract according to the rules of A, for all correspond-
ing pairs (�0,�). Conversely, every sequence of transitions
in M that reaches a configuration � directly corresponds to
a sequence of atomic actions in A also leading to �0 = �.
The perimeter of the respective �0 and � di↵ers by at most a
constant factor, and hence proving ↵-compression for � also
implies ↵0-compression for �0, and vice-versa, for constants ↵
and ↵0. Hence, we can use M, and respective Markov chain
tools and techniques, in order to analyze the correctness of
algorithm A.

We note that, under the assumptions of the asynchronous
model of distributed computing, one cannot typically as-
sume the next particle to be activated is equally likely to be
any particle, as we assume in Step 1 of the description of M.
We make this assumption in order to be able to explicitly
calculate the stationary distribution of M so that we can
provide rigorous guarantees about its structure, but do not
expect the behavior of the system would be substantially
di↵erent if this requirement was relaxed.

To justify this random activation assumption, we note
that random sequences of particle activations can be ap-

proximated using Poisson clocks with mean 1.2 That is,
each particle activates, and executes Algorithm A, at a ran-
dom real time drawn from the exponential distribution e�t.
After each action, the particle then computes another ran-
dom time drawn from the same distribution e�t and ex-
ecutes again after that amount of time has elapsed. The
exponential distribution is unique in that, if particle P has
just activated, it is equally likely that any particle will be the
next particle to activate, including particle P (see, e.g., [10]).
Moreover, the particles update without requiring knowledge
of any of the other particles’ clocks. Similar Poisson clocks
are commonly used to describe physical systems that per-
form updates in parallel in continuous time.

3.3 Invariants for Markov chain M
We begin by showing M maintains certain invariants. We

prove Conditions (1) and (2) in Step 4 of Markov chain M

ensure the particles remain in a connected configuration with
no holes, provided they start in such a configuration.

Lemma 3.1. If the particles are initially connected, dur-
ing the execution of Markov chain M they remain connected.

Proof. Consider one iteration of M where a particle P
moves from location ` to location `0. Let � be the configu-
ration before this move, and �0 the configuration after. We
show if � is connected, then so is �0.

A move of particle P from ` to `0 occurs only if ` and `0

are adjacent and satisfy Property 1 or Property 2. First,
suppose they satisfy Property 1. Let P

1

, P
2

6= P be particles,
and let Q be a path connecting them in �. If P /2 Q, then P

1

and P
2

remain connected by Q in �0. If P 2 Q, let N
1

and N
2

be the two particles on path Q before and after P ,
respectively. By Property 1, there exist paths in N(` [`0)
from N

1

to a particle S
1

2 S and from N
2

to a particle
S
2

2 S, possibly with S
1

= S
2

. A (not necessarily simple)
path from P

1

to P
2

in �0 is the union of Q from P
1

to N
1

;
the path from N

1

to S
1

in N(` [`0); if S
1

6= S
2

, the path
from S

1

to P at location `0 to S
2

; the path from S
2

to N
2

in N(` [`0); and Q from N
2

to P
2

. As P is connected to
S
1

2 S and by the above argument S
1

is connected to all
other particles, we conclude P is connected to every other
particle and thus �0 is connected.

Next, assume locations ` and `0 satisfy Property 2. Let
P

1

, P
2

6= P be particles; we show they are connected by a
path not containing P . Path Q connecting P

1

and P
2

in �
exists, and suppose it contains P . Let N

1

and N
2

be the ver-
tices on Q before and after P , respectively. Both N

1

and N
2

are neighbors of `, and by Property 2 all neighbors of ` are
connected by a path in N(`). Thus Q can be augmented to
form a (not necessarily simple) walk Q

0 by replacing P with
a path from N

1

to N
2

in N(`). As P /2 Q

0, this walk also
connects P

1

and P
2

in �0. Additionally, because `0 has at
least one neighbor by Property 2, P remains connected to
all other particles in �0 and thus �0 is connected.

Lemma 3.2. If the particles begin in a connected configu-
ration with no holes, during the execution of Markov chain
M they will never form a configuration with a hole.

Proof. Recall we assume a cycle in � encircles at least
one unoccupied location; note a configuration has a hole if
2The analysis can be modified to accommodate each clock
having its own constant mean; however, for the sake of ease
of presentation, we assume here that they are all i.i.d.

and only if it has a cycle encircling that hole. Let � be a
particle configuration with particle P at location `, and �0

the same configuration with P at neighboring location `0.
We assume � has no cycles (i.e., no holes) and prove �0 has
no cycles (i.e., no holes).

We first show if a cycle is introduced in �0, then P must
be on that cycle. Suppose this is not the case and �0 has
a cycle C with P /2 C. If P is removed from location `0, C
still exists. If P is then placed at `, yielding �, then C

still exists unless it had enclosed exactly one unoccupied
location, `. However, this is not possible as any cycle in
�0
\P encircling ` would also necessarily encircle neighboring

unoccupied location `0. This implies C is present in �, a
contradiction, so we conclude any cycle in �0 must contain P .

By the conditions in Step 4 of Markov chain M that must
be met before a move occurs, particle P necessarily has fewer
than five neighbors in � and locations ` and `0 satisfy Prop-
erty 1 or Property 2. First, suppose they satisfy Property 2.
While P might momentarily create a cycle when it expands
to occupy both locations ` and `0, it will then contract to
location `0. Suppose P is part of some cycle C in �0. Before
and after P on C are some neighbors N

1

and N
2

of P . By
Property 2, N

1

and N
2

are connected by a path in N(`0),
which doesn’t contain P . Replacing path N

1

�P �N
2

in cy-
cle C by this path in N(`0) yields a (not necessarily simple)
cycle C

0 in �0 not containing P , a contradiction.
Suppose ` and `0 satisfy Property 1; recall location ` has

less than five neighbors in �. Suppose there exists a cycle C

in �0, which by definition encircles at least one unoccupied
location. If ` is unoccupied inside C, then so is at least one
of its neighbors; we conclude C encircles some unoccupied
location `00 6= `. Let N

1

and N
2

be the particles on cycle C

before and after P . If there exists a path between N
1

and N
2

in N(`0), the argument in the previous paragraph applies, so
we suppose this is not the case. It must be, without loss of
generality, that |S| = 2 and there exist paths in N(` [`0)
from N

1

to S
1

2 S and from N
2

to S
2

2 S, with S
1

6= S
2

.
There then exists cycle C0 in �, obtained from C by replacing
path N

1

� P �N
2

, where P is in location `0, with the path
N

1

�...�S
1

�P�S
2

�...�N
2

, where P is in location `. This is
a valid (not necessarily simple) cycle in �, as it still encircles
unoccupied location `00 6= `. This is also a contradiction, so
in all cases we find �0 has no cycles.

3.4 Ergodicity of Markov chain M
We next show the carefully-defined moves of M su�ce to

move from any configuration � to any other configuration ⌧ ,
necessary for showing M is ergodic and thus has a unique
stationary distribution.

We emphasize the details of this proof are far from triv-
ial, and occupy ten pages in the full version of this paper⇤.
Figure 2 illustrates one di�culty. It depicts a particle con-
figuration for which there exist no valid moves satisfying
Property 1; the only valid moves satisfy Property 2. Thus
if moves satisfying Property 2 are not included, the state
space of M is not connected. Our approach relies critically
on moves satisfying Property 2.

Here we outline and explain our approach to proving M

is ergodic. At a high level, we prove for any configuration �
there exists a sequence of valid particle moves transform-
ing � into a straight line, and then prove M is reversible, im-
plying for any other configuration ⌧ there exists a sequence
of valid particle moves transforming that straight line into ⌧ .

Figure 2: A particle configuration for which all valid moves of
Markov chain M satisfy Property 2; no particle has a valid move
satisfying Property 1 (darker lines represent induced edges of the
system). This demonstrates the subtlety of the Markov chain
rules we have defined.

Given a particle configuration � with lowest leftmost par-
ticle S, we find a sequence of moves transforming � into a
line of particles stretching down and left from S; particle S
never moves. We traverse the perimeter of �, starting at S,
finding particles which we can eliminate, or move to this
line. We begin with a crucial definition.

Definition 3.3. An unoccupied location ` in � is a gap
of configuration � if placing an additional particle P at `
results in a hole in configuration � [P .

Lemma 3.4. There exists a sequence of particle moves
transforming any configuration � into a straight line.

Proof. Traverse the perimeter of � starting from lowest
leftmost particle S. When possible, particles encountered
move via a sequence of valid particle moves backwards along
the perimeter to S, and then into a line stretching down
and left from S, eliminating them. This is possible precisely
when particles can move along the perimeter to S without
ever occupying a gap location. We prove if W is the longest
clockwise walk around the perimeter of � starting at S that
is not adjacent to any gaps, then it is possible to either
eliminate one particle or execute a valid sequence of particle
moves that lengthens walk W. In fewer than 2n2 iterations,
all particles are eliminated: a particle must be eliminated at
least once every 2n steps, as the length of W can increase
at most p(�) < 2n times in a row. After this, all particles
form a straight line stretching down and left from S.

We present one more lemma before provingM is irreducible.
Recall P (�, ⌧) is the probability of moving from configura-
tion � to state ⌧ in one step of M.

Lemma 3.5. For any two configurations � and ⌧ in ⌦, if
P (�, ⌧) > 0, then P (⌧,�) > 0.

Proof. Let �, ⌧ 2 ⌦ be any two configurations such that
P (�, ⌧) > 0. This means � and ⌧ di↵er by one particle P at
location ` in � and at adjacent location `0 in ⌧ .

Note in ⌧ , particle P at location `0 has at most four neigh-
bors. This is because l 2 n(`0) is unoccupied as particle P
is instead at `0, and at least one other location in n(`0) is
unoccupied as otherwise `0 would have been a hole in �, im-
possible by Lemma 3.2. Because P (�, ⌧) > 0, Property 1 or
Property 2 must hold for ` and `0. Both properties are sym-
metric with regard to the role played by ` and `0. If Markov
chain M, in state ⌧ , selects in Step 1 particle P , location
` 2 n(P), and a su�ciently small probability q, then because
Conditions 1, 2, and 3 are necessarily satisfied, particle P
moves to location `. This proves P (⌧,�) > 0.

Lemma 3.6. Markov chain M connects the state space of
all connected configurations without holes.

Proof. Let � and ⌧ be any two connected configurations
of n particles with no holes. By Lemma 3.4, there exists
a sequence of moves transforming � into a line with slope
1/

p

3. By Lemmas 3.4 and 3.5, there exists a sequence of
valid moves transforming this line into ⌧ .

Corollary 3.7. M is ergodic.

Proof. By Lemma 3.6, the state space is connected. M
is aperiodic as at each iteration there is a probability of at
least 1/6 that no move is made. Therefore M is ergodic.

3.5 The stationary distribution ⇡ of M
We now know the Markov chain M is ergodic and finite,

so its stationary distribution is unique.

Lemma 3.8. The stationary distribution ⇡ of M is

⇡(�) = �t(�)/Z,

where Z =
P

� �t(�) is the normalizing constant.

Proof. We confirm ⇡ is the stationary distribution by de-
tailed balance. Let � and ⌧ be configurations in ⌦ with � 6=
⌧ such that P (�, ⌧) > 0. By Lemma 3.5, also P (⌧,�) > 0.
Suppose particle P moves from location ` in � to neighboring
location `0 in ⌧ . Let t be the number of triangles on which Q
is incident when it is in location `, and let t0 be that number
when P is in location `0. This implies t(�) � t(⌧) = t � t0.
Without loss of generality, let t0 < t. We see

P (�, ⌧) =
1
n
·

1
6
· �t0�t and P (⌧,�) =

1
n
·

1
6
· 1.

We now show � and ⌧ satisfy the detailed balance condition:

⇡(�)P (�, ⌧) =
�t(�)

Z
�t0�t

6n
=

�t(⌧)

Z · 6n
= ⇡(⌧)P (⌧,�).

We conclude ⇡ is the stationary distribution of M.

While it is natural to assume maximizing the number of
triangles in a particle configuration results in more com-
pression, here we formalize this. We prove ⇡ can also be
expressed in terms of perimeter, which implies M converges
to a distribution weighted by the perimeter of configura-
tions, a global characteristic, even though the probability of
any particle move is determined only by local information.

Corollary 3.9. The stationary distribution ⇡ of M is

⇡(�) = ��p(�)/Z,

where Z =
P

� ��p(�) is the normalizing constant.

Proof. We use Lemma 2.3 and Lemma 3.8:

⇡(�) =
�t(�)

P
� �t(�)

=
�2n�p(�)�2

P
� �2n�p(�)�2

=
�2n�2

�2n�2

·

��p(�)

P
� ��p(�)

=
��p(�)

P
� ��p(�)

.

The stationary distribution of M can also be expressed in
terms of edges.

Corollary 3.10. The stationary distribution ⇡ of M is

⇡(�) = �e(�)/Z,

where Z =
P

� �e(�) is the normalizing constant.

Proof. This follows from Lemma 2.4 and Corollary 3.9:

⇡(�) =
��p(�)

P
� ��p(�)

=
��(3n�e(�)�3)

P
� ��(3n�e(�)�3)

=
��3n+3

��3n+3

·

�e(�)

P
� �e(�)

=
�e(�)

P
� �e(�)

.

3.6 Convergence Time of Markov Chain M
We prove in Section 4 that when � > 5, if Markov chain

M has converged to its stationary distribution, then with
all but exponentially small probability the particle system
will be compressed. However, we do not give explicit bounds
on the time required for this to occur; we give experimen-
tal evidence of convergence times in Section 6, but believe
proving rigorous bounds will be challenging.

A common measure of convergence time of a Markov chain
is the mixing time, the number of iterations until the distri-
bution is within total variation distance " of the stationary
distribution, starting from the worst initial configuration.
Bounding the mixing time of a Markov chain achieving com-
pression is likely to be challenging because of the similar-
ity to physical systems such as the Ising and Potts models,
common models for ferromagnetism. Algorithms that per-
form local updates are known to require exponential time for
many of these models precisely because of a type of compres-
sion of the systems [18]. However, mixing time most likley
is not the correct measure of our algorithm’s convergence.
Even if it takes exponential time for M to converge to its
stationary distribution, which is certainly plausible, it may
be true that the particles achieve ↵-compression after only a
polynomial number of steps. In fact, based on simulations,
it appears compression occurs in polynomial time; doubling
the number of particles consistently results in a ten-fold in-
crease in iterations until compression starting from a straight
line of n particles, so we conjecture the number of iterations
until compression occurs is close to O(n3.3).

4. ACHIEVING COMPRESSION
If M executes long enough, it will converge to its station-

ary distribution ⇡; we will use the expression of ⇡ given in
Corollary 3.9. To simplify notation, we define the weight of
a configuration � to be w(�) = ��p(�). For a set S ✓ ⌦,
we define w(S) as the sum of the weights of all configura-
tions in S. We now show that, provided � and n are large
enough, with all but exponentially small probability if M
is at stationarity then the particles are in an ↵-compressed
configuration. Constant ↵ > 1 can be as close to 1 as de-
sired, though smaller ↵ requires larger �. We begin with a
crucial counting lemma.

Lemma 4.1. The number of connected configurations with
no holes and perimeter k is at most 5k.

Proof. Consider any configuration �. Let W be a clock-
wise traversal of its perimeter, beginning at the lowest left-
most particle of �; for every edge e traversed in W, the loca-
tion left of e is unoccupied. At each step of W, the perimeter
can continue straight, turn left by 60 degrees, turn right by
60 degrees, turn right by 120 degrees, or turn right by 180
degrees; the perimeter can never turn left by 120 or 180
degrees. Thus, at any point there are at most five possi-
ble locations for the next particle on W. We conclude that
there are fewer than 5k configurations of perimeter k, each
specified by the directions of the turns on W.

We note this bound is not tight; see the full version⇤ for
stronger bounds, which lead directly to lower values of �⇤

below. We now prove our main result.

Theorem 4.2. For any ↵ > 1, there exists �⇤ = 5
↵

↵�1 ,
n⇤

� 0, and � < 1 such that for all � > �⇤ and n > n⇤,
the probability that a random sample � drawn according to
the stationary distribution ⇡ of M is not ↵-compressed is
exponentially small:

P (p(�) � ↵ · pmin) < �
p
n.

Proof. Let S↵ be the set of configurations of perimeter
at least ↵ · pmin. Let �min be a configuration of n particles
achieving the minimum perimeter pmin. We show

⇡(S↵) =
w(S↵)
Z

<
w(S↵)
w(�min)

 �
p
n.

The first equality is the definition of ⇡; the next inequality
follows from the definitions of Z and w. We focus on the
last inequality. Using Lemma 4.1 and noting the weight of
any � with p(�) = k is ��p(�) = ��k, we sum over S↵:

w(S↵)
w(�min)



P
2n�2

k=d↵·p
min

e 5
k��k

��p
min

=
2n�2X

k=d↵·p
min

e

5(1�log

5

�)k+(log

5

�)p
min .

Using the inequality pmin  k/↵, it follows that

w(S↵)
w(�min)



2n�2X

k=d↵·p
min

e

5(1�log

5

�)k+(log

5

�)(k/↵)

=
2n�2X

k=d↵·p
min

e

5(1�(1�1/↵) log

5

�)k.

As � > �⇤ = 5
↵

↵�1 , then �c
1

:= 1 � (1 � 1/↵) log
5

� < 0.
Also k � ↵ · pmin, and by Lemma 2.1, pmin >

p

n, so

w(S↵)
w(�min)



2n�2X

k=d↵·p
min

e

5�c
1

·2↵
p

n
 2n

�
5�2↵c

1

�pn
.

There exists � < 1 and n⇤ such that for all n � n⇤,

P (p(�) � ↵ · pmin) = ⇡(S↵) 
w(S↵)
w(�min)

 2n
�
5�2↵c

1

�pn
< �

p
n.

Corollary 4.3. For any � > 5, there exists a value ↵ =
log

5

�/(log
5

�� 1), n⇤
� 0, and � < 1 such that for all n >

n⇤, a random sample � drawn according to the stationary
distribution ⇡ of M satisfies

P (p(�) � ↵ · pmin) < �
p
n.

5. USING M FOR EXPANSION
A nice feature of our algorithm is that it also provably

achieves particle expansion for di↵erent values of bias pa-
rameter �. We say a configuration � is �-expanded for some
� < 1 if p(�) > � · pmax, where pmax = 2n � 2. We note
as pmax = ⇥(n) and pmin = ⇥(

p

n) for a system of n par-
ticles, �-expansion and ↵-compression for any constants �
and ↵ are mutually exclusive for su�ciently large n. We

show that, provided n is large enough, for all 0 < � <
p

2
there is a constant � such that with all but exponentially
small probability, if M is at stationarity then the particles
are �-expanded. This is notable because it implies, counter-
intuitively, that � > 1 is not su�cient to guarantee particle
compression as one might first guess.

Theorem 5.1. For all 0 < � < 1, there exists �⇤ =
�⇤(�) <

p

2, n⇤
� 0, and � < 1 such that for all � < �⇤

and n > n⇤, the particles achieve �-expansion with all but
exponentially small probability: for a configuration � drawn
at random according to stationary distribution ⇡,

P (p(�) < � · pmax)  �
p
n.

Proof. We let

� < �⇤ = 5
�� log

5

2

2

��1 < 5
0� log

5

2

2

0�1 =
p

2.

Let S� be the set of configurations � with p(�)  � · pmax.
Let �max be a configuration achieving maximum perimeter
pmax = 2n�2. Note the number N of configurations achiev-
ing this maximum is at least 2n�1 = 2pmax

/2; this is the
number of paths where every step is up or up-right, which
have no triangles and thus maximum perimeter. We show

⇡(S�) =
w(S�)
Z

<
w(S�)

N · w(�max)
 �

p
n.

We focus on proving the last of the inequalities above. Ap-
plying Lemma 4.1, we see

w(S�)
N · w(�max)



Pb�·p
max

c
k=p

min

5k��k

2pmax

/2
· ��p

max

=
b�·p

max

cX

k=p
min

5k��k

✓
�
p

2

◆p
max

.

Recalling that � <
p

2 and k < � · pmax, we see

w(S�)
N · w(�max)



b�·p
max

cX

k=p
min

5k��k

✓
�
p

2

◆ k

�

=
b�·p

max

cX

k=p
min

5
k
⇣
1�log

5

�+
log

5

�

�

� log

5

2

2�

⌘

.

Let c
3

be such that

�c
3

= 1� log
5

�+
log

5

�
�

�

log
5

2
2�

.

We want �c
3

< 0, so we solve for � and see �c
3

< 0 precisely
when � < �⇤, a condition we know to hold. It follows that

w(S�)
N · w(�max)



b�·p
max

cX

k=p
min

5�c
3

k



b�·p
max

cX

k=p
min

5�c
3

·2
p
n
 2n5�2c

3

p
n.

Hence there exists n⇤
� 0 and � < 1 such that for all n � n⇤,

P (p(�)  � · pmax) = ⇡(S�) 
w(S�)

N · w(�max)

 2n5�c
3

·2·
p
n < �

p
n.

(a) (b)

(c) (d) (e)

Figure 3: 100 particles in a line with occupied edges drawn, after
(a) 1 million, (b) 2 million, (c) 3 million, (d) 4 million, and (e) 5
million iterations of M with bias � = 4.

Corollary 5.2. For all � <
p

2, there exists a constant
0 < � < 1 such that with all but exponentially small proba-
bility a sample drawn according to stationary distribution ⇡
of M is �-expanded.

Proof. This follows immediately from the previous the-
orem; for � <

p

2, there exists � such that � < �⇤(�).

6. SIMULATIONS
In practice, Markov chain M yields good compression,

even beyond the values of � for which our proofs apply. We
simulated M for � = 4 on 100 particles that began in a line;
the configurations after 1, 2, 3, 4, and 5 million steps of M
are shown in Figure 3.

In contrast, � = 2, while still favoring particles forming
triangles, does not appear to yield compression; see Fig-
ure 4, where even after 20 million simulated steps of M,
the particles have not compressed. We conjecture there is a
phase transition in �, i.e., a critical value �c such that for
all � < �c the particles do not compress and for all � > �c

they do compress. Such phase transitions exist for similar
statistical physics models (e.g., [2]). Our proofs indicate if
�c exists, then

p

2  �c  5; simulations suggest 2 < �c < 4.

7. REFERENCES
[1] E. Bampas, J. Czyzowicz, L. Ga̧sieniec, D. Ilcinkas, and

A. Labourel. Almost optimal asynchronous rendezvous in
infinite multidimensional grids. In Distributed Comp.: 24th
Int. Symp., DISC 2010, pages 297–311, 2010.

[2] C. Borgs, J.T. Chayes, A. Frieze, J.H. Kim, P. Tetali,
E. Vigoda, and V.H. Vu. Torpid mixing of some MCMC
algorithms in statistical physics. In 40th IEEE Symp. on
Found. of Comp. Sci., FOCS 1999, pages 218–229, 1999.

[3] S. Camazine, K.P. Visscher, J. Finley, and S.R. Vetter.
House-hunting by honey bee swarms: Collective decisions
and individual behaviors. Insectes Sociaux, 46:348–360.

[4] A. Chavoya and Y. Duthen. Using a genetic algorithm to
evolve cellular automata for 2D/3D computational develop-
ment. In Genetic and Evolut. Comp. Conf., GECCO 2006.

[5] Z. Derakhshandeh, R. Gmyr, A.W. Richa, C. Scheideler,
and T. Strothmann. An algorithmic framework for shape
formation problems in self-organizing particle systems. In

(a) (b)

Figure 4: 100 particles after (a) 10 million and (b) 20 million
iterations of M with bias � = 2, starting with all particles in a
diamond shape of side lengths 10.

Proc. of the 2nd Ann. Int. Conf. on Nanoscale Computing
and Comm., NANOCOM’ 15, pages 21:1–21:2, 2015.

[6] Z. Derakhshandeh, R. Gmyr, A.W. Richa, C. Scheideler,
and T. Strothmann. Universal shape formation for pro-
grammable matter. In To appear, 28th ACM Symp. on
Parallelism in Alg. and Arch., SPAA ’16, 2016. To appear.

[7] Z. Derakhshandeh, R. Gmyr, T. Strothmann, R.A. Bazzi,
A.W. Richa, and C. Scheideler. Leader election and shape
formation with self-organizing programmable matter. In
21st DNA Comp. and Molec. Prog., DNA 21, pages
117–132, 2015.

[8] A. Deutsch and S. Dormann. Cellular Automaton Modeling
of Biological Pattern Formation: Characterization,
Applications, and Analysis. Modeling and Simulation in
Science, Eng. and Technology. Birkhäuser Boston, 2007.

[9] R.L. Dobrushin. The problem of uniqueness of a gibbsian
random field and the problem of phase transitions.
Functional Analysis and Its Applications, 2:302–312, 1968.

[10] W. Feller. An Introduction to Probability Theory and Its
Applications, volume 1. Wiley, 1968.

[11] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer.
Arbitrary pattern formation by asynchronous, anonymous,
oblivious robots. Theoretical Computer Science,
407:412–447, 2008.

[12] W. K. Hastings. Monte carlo sampling methods using
markov chains and their applications. Biometrika,
57:97–109, 1970.

[13] R. Jeanson, C. Rivault, J.L. Deneubourg, S. Blanco,
R. Fournier, C. Jost, and G. Theraulaz. Self-organized
aggregation in cockroaches. Animal Behaviour, 69:169 –
180, 2005.

[14] N. Lynch. Distributed Algorithms. Morgan Kau↵man, 1996.
[15] N.J. Mlot, C.A. Tovey, and D.L. Hu. Fire ants self-

assemble into waterproof rafts to survive floods. Proc. of
the National Academy of Sci., 108:7669–7673, 2011.

[16] C. Rivault and A. Cloarec. Cockroach aggregation:
Discrimination between strain odours in Blattella
germanica. Animal Behaviour, 55:177–184, 1998.

[17] M. Rubenstein, A. Cornejo, and R. Nagpal. Programmable
self-assembly in a thousand-robot swarm. Science,
345:795–799, 2014.

[18] L.E. Thomas. Bounds on the mass gap for finite volume
stochastic Ising models at low temperature. Comm. Math.
Phys., 126:1–11, 1989.

[19] E. Winfree, F. Liu, L.A. Wenzler, and N.C. Seeman. Design
and self-assembly of two-dimensional DNA crystals. Nature,
394(6693):539–544, 1998.

[20] D. Woods, H.L. Chen, S. Goodfriend, N. Dabby,
E. Winfree, and P. Yin. Active self-assembly of algorithmic
shapes and patterns in polylogarithmic time. In Proc. of
the 4th Conf. on Innovations in Theoretical Computer
Science, pages 353–354, 2013.

