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Abstract. In a self-organizing particle system, an abstraction of pro-
grammable matter, simple computational elements called particles with
limited memory and communication self-organize to solve system-wide
problems of movement, coordination, and configuration. In this paper,
we consider stochastic, distributed, local, asynchronous algorithms for
“shortcut bridging,” in which particles self-assemble bridges over gaps
that simultaneously balance minimizing the length and cost of the bridge.
Army ants of the genus Eticon have been observed exhibiting a similar
behavior in their foraging trails, dynamically adjusting their bridges to
satisfy an e�ciency tradeo↵ using local interactions [1]. Using techniques
from Markov chain analysis, we rigorously analyze our algorithm, show
it achieves a near-optimal balance between the competing factors of path
length and bridge cost, and prove that it exhibits a dependence on the
angle of the gap being “shortcut” similar to that of the ant bridges.
We also present simulation results that qualitatively compare our al-
gorithm with the army ant bridging behavior. The proposed algorithm
demonstrates the robustness of the stochastic approach to algorithms for
programmable matter, as it is a surprisingly simple generalization of a
stochastic algorithm for compression [2].

1 Introduction

In developing a system of programmable matter, one endeavors to create a ma-
terial or substance that can utilize user input or stimuli from its environment to
change its physical properties in a programmable fashion. Many such systems
have been proposed (e.g., DNA tiles, synthetic cells, and reconfigurable modular
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robots) and each attempts to perform tasks subject to domain-specific capabili-
ties and constraints. In our work on self-organizing particle systems, we abstract
away from specific settings and envision programmable matter as a system of
computationally limited devices (which we call particles) which can actively
move and individually execute distributed, local, asynchronous algorithms to
cooperatively achieve macro-scale tasks of movement and coordination.

The phenomenon of local interactions yielding emergent, collective behavior
is often found in natural systems; for example, honey bees choose hive loca-
tions based on decentralized recruitment [3] and cockroach larvae perform self-
organizing aggregation using pheromones with limited range [4]. In this paper,
we present an algorithm inspired by the work of Reid et al. [1], who found that
army ants continuously modify the shape and position of foraging bridges — con-
structed and maintained by their own bodies — across holes and uneven surfaces
in the forest floor. Moreover, these bridges appear to stabilize in a structural for-
mation which balances the “benefit of increased foraging trail e�ciency” with
the “cost of removing workers from the foraging pool to form the structure” [1].

We attempt to capture this inherent trade-o↵ in the design of our algorithm
for “shortcut bridging” in self-organizing particle systems (to be formally defined
in Section 1.3). Our proposed algorithm for shortcut bridging is an extension of
the stochastic, distributed algorithm for the compression problem introduced
in [2], which shows that many fundamental elements of our stochastic approach
can be generalized to applications beyond the specific context of compression.
In particular, our stochastic approach may be of future interest in the molecular
programming domain, where simpler variations of bridging have been studied.
Groundbreaking works in this area, such as that of Mohammed et al. [5], focus on
forming molecular structures that connect some fixed points; our work may o↵er
insights on further optimizing the quality and/or cost of the resulting bridges.

Shortcut bridging is an attractive goal for programmable matter systems, as
many application domains envision deploying programmable matter on surfaces
with structural irregularities or dynamic topologies. For example, one commonly
imagined application of smart sensor networks is to detect and span small cracks
in infrastructure such as roads or bridges as they form; dynamic bridging be-
havior would enable the system to remain connected as the cracks form and to
shift its position accordingly.

1.1 Related Work

When examining the recently proposed and realized systems of programmable
matter, one can distinguish between passive and active systems. In passive sys-
tems, computational units cannot control their movement and have (at most)
very limited computational abilities, relying instead on their physical structure
and interactions with the environment to achieve locomotion (e.g., [6–8]). A large
body of research in molecular self-assembly falls under this category, which has
mainly focused on shape formation (e.g., [9–11]). Rather than focusing on con-
structing a specific fixed target shape, our work examines building dynamic
bridges whose exact shape is not predetermined. Mohammed et al. studied the
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more relevant problem of connecting DNA origami landmarks with DNA nan-
otubes, using a carefully designed process of nanotube nucleation, growth, and
di↵usion to achieve and maintain the desired connections [5]. The most signifi-
cant di↵erences between their approach and ours is (i) the bridges we consider
already connect their endpoints at the start, and focus on the more specific goal
of optimizing their shape with respect to a parameterized objective function,
and (ii) our system is active as opposed to passive.

Active systems, in contrast, are composed of computational units which can
control their actions to solve a specific task. Examples include swarm robotics,
various other models of modular robotics, and the amoebot model, which defines
our computational framework (detailed in Section 1.2).

Swarm robotics systems usually involve a collection of autonomous robots
that move freely in space with limited sensing and communication ranges. These
systems can perform a variety of tasks including gathering [12], shape forma-
tion [13, 14], and imitating the collective behavior of natural systems [15]; how-
ever, the individual robots have more powerful communication and processing
capabilities than those we consider. Modular self-reconfigurable robotic systems
focus on the motion planning and control of kinematic robots to achieve dynamic
morphology [16], and metamorphic robots form a subclass of self-reconfiguring
robots [17] that share some characteristics with our geometric amoebot model.
Walter et al. have conducted some algorithmic research on these systems (e.g., [18,
19]), but focus on problems disjoint from those we consider.

In the context of molecular programming, our model most closely relates to
the nubot model by Woods et al. [20, 21], which seeks to provide a framework for
rigorous algorithmic research on self-assembly systems composed of active molec-
ular components, emphasizing the interactions between molecular structure and
active dynamics. This model shares many characteristics of our amoebot model
(e.g., space is modeled as a triangular grid, nubot monomers have limited com-
putational abilities, and there is no global orientation) but di↵ers in that nubot
monomers can replicate or die and can perform coordinated rigid body move-
ments. These additional capabilities prohibit the direct translation of results
under the nubot model to our amoebot model.

1.2 The Amoebot Model

We recall the main properties of the amoebot model [2, 22], an abstract model
for programmable matter that provides a framework for rigorous algorithmic re-
search on nano-scale systems. We represent programmable matter as a collection
of individual computational units known as particles. The structure of a particle
system is represented as a subgraph of the infinite, undirected graph G = (V,E),
where V is the set of all possible locations a particle could occupy and E is the
set of all possible atomic transitions between locations in V . For shortcut bridg-
ing (and many other problems), we assume the geometric amoebot model, in
which G = � , the triangular lattice (Figure 1a).

Each particle is either contracted, occupying a single location, or expanded,
occupying or a pair of adjacent locations in � (Figure 1b). Particles move via
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a series of expansions and contractions; in particular, a contracted particle may
expand into an adjacent unoccupied location, and completes its movement by
contracting to once again occupy a single location.

Two particles occupying adjacent locations in � are said to be neighbors.
Each particle is anonymous, lacking a unique identifier, but can locally identify
each of its neighbors via a collection of ports corresponding to edges incident to
its location. We assume particles have a common chirality, meaning they share
the same notion of clockwise direction, which allows them to label their ports in
clockwise order. However, particles do not share a global orientation and thus
may have di↵erent o↵sets for their port labels (Figure 1c).
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Fig. 1: (a) A section of the triangular lattice � ; (b) expanded and contracted particles;
(c) two non-neighboring particles with di↵erent o↵sets for their port labels.

Each particle has a constant-size, local memory that can read from for com-
munication by it and its neighbors, so a particle’s state (e.g., contracted or
expanded) is visible to its neighbors. Due to the limitation of constant-size mem-
ory, a particle cannot know the total number of particles in the system or any
estimate of it. We assume the standard asynchronous model from distributed
computing [23], where progress is achieved through atomic particle activations.
Once activated, a particle can perform an arbitrary, bounded amount of com-
putation involving its local memory and the memories of its neighbors, and can
perform at most one movement. A classical result under this model states that
for any concurrent asynchronous execution of activations, there is a sequential
ordering of activations producing the same result, provided conflicts that arise
in the concurrent execution are resolved. In our scenario, conflicts arising from
simultaneous memory writes or particle expansions into the same empty loca-
tion are assumed to be resolved arbitrarily. Thus, while many particles may
be activated at once in a realistic settings, it su�ces to consider a sequence of
activations in which only one particle is active at a time.

1.3 Problem Description

Just as the uneven surfaces of the forest floor a↵ect the foraging behavior of army
ants, the collective behavior of particle systems should change when � is non-
uniform. Here, we focus on system behaviors when the vertices of � are either
gap (unsupported) or land (supported) locations. A particle occupying some
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location in � can tell whether it is in the gap or on land. We also introduce
objects, which are static particles that do not perform computation; these are
used to constrain the particles to remain connected to certain fixed sites. In
order to analyze the strength of the solutions our algorithm produces, we define
the weighted perimeter p(�, c) of a particle system configuration � to be the
summed edge weights of edges on the external boundary of �, where edges on
land have weight 1, edges in the gap have a fixed weight c > 1, and edges with
one endpoint on land and one endpoint in the gap have weight (1 + c)/2.

In the shortcut bridging problem, we consider an instance (L,O,�
0

, c,↵)
where L ✓ V is the set of land locations, O is the set of (two) objects to be
bridged between, �

0

is the initial configuration of the particle system, c > 1 is
a fixed weight for gap edges, and ↵ > 1 is the accuracy required of a solution.
An instance is valid if (i) the objects of O and particles of �

0

all occupy lo-
cations in L, (ii) �

0

connects the objects, and (iii) �
0

is connected, a notion
formally defined in Section 2.1. An algorithm solves an instance if, beginning
from �

0

, it reaches and remains (with high probability) in a set of configura-
tions ⌃⇤ such that any � 2 ⌃⇤ has perimeter weight p(�, c) within an ↵-factor
of its minimum value. The weighted perimeter balances in one function (using an
appropriate weight for the land and gap perimeter edges) the trade-o↵ observed
in [1] between the competing objectives of establishing a short path between the
fixed endpoints while not having too many particles in the gap. We focus on
gap perimeter instead of the number of particles in the gap (which is perhaps
a more natural analogy to [1]) because (1) the shortcut bridges produced with
this metric more closely resemble the ant structures and (2) only particles on
the perimeter of a configuration can move, and thus recognize the potential risk
of being in the gap, justifying our focus on perimeter in the weight function.

In analogy to the apparatus used in [1] (see Figure 3a), we are particularly
interested in the special case where L forms a V-shape, O has two objects posi-
tioned at either base of L, and �

0

lines the interior sides of L, as in Figure 2a.
However, our algorithm is not limited to this setting; for example, we show
simulation results for an N-shaped land mass (Figure 2b) in Section 5.

(a) (b)

Fig. 2: Examples of L,O and �0 for instances of the shortcut bridging problem for which
we present simulation results (Section 5). Light (brown) nodes are land locations, large
(red) nodes are occupied by objects, and black nodes are occupied by particles.
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1.4 The Stochastic Approach to Self-Organizing Particle Systems

In [2], we introduced a stochastic, distributed algorithm for compression in the
amoebot model; here we extend that work to show that stochastic approach is in
fact more generally applicable. The motivation underlying this Markov chain ap-
proach to programmable matter comes from statistical physics, where ensembles
of particles reminiscent of the amoebot model are used to study physical sys-
tems and demonstrate that local micro-behavior can induce global macro-scale
changes to the system [24–26]. Like a spring relaxing, physical systems favor
configurations that minimize energy. The energy function is determined by a
Hamiltonian H(�). Each configuration � has weight w(�) = e�B·H(�)/Z, where
where B = 1/T is inverse temperature and Z =

P
⌧ e

�B·H(⌧) is the normalizing
constant known as the partition function.

For shortcut bridging, we introduce a Hamiltonian over particle system con-
figurations so that the configurations of interest will have the lowest energy, and
will design our algorithms to favor these low energy configurations. We assign
each particle system configuration � a Hamiltonian H(�) = p(�, c), its weighted
perimeter. Setting � = eB , we get w(�, c) = ��p(�,c)/Z. As � gets larger (by
increasing B, e↵ectively lowering temperature), we increasingly favor configu-
rations where p(�, c) is small and the desired bridging behavior is exhibited.
We prove (Theorem 1) that raising � above 2 +

p
2 su�ces for the low energy

configurations with small p(�, c) to dominate the state space and overcome the
entropy of the system. That is, for � > 2 +

p
2, low energy configurations occur

with su�cient frequency that we will find such configurations when we sample
over the whole state space. The key tool used to establish this is a careful Peierls
argument, used in statistical physics to study non-uniqueness of limiting Gibbs
measures and to determine the presence of phase transitions and in computer
science to establish slow mixing of Markov chains (see, e.g., [27], Chapter 15).

Compared to other algorithms for programmable matter and self-organizing
particle systems, stochastic methods such as the compression algorithm of [2]
and our shortcut bridging algorithm are nearly oblivious, more robust to failures,
and require little to no communication between particles. Because each of these
algorithms is derived from a stochastic process, powerful tools developed for
Markov chain analysis can be employed to rigorously understand their behavior.

1.5 A Stochastic Algorithm for Shortcut Bridging

We present a Markov chain M for shortcut bridging in the geometric amoe-
bot model which translates directly to a fully distributed, local, asynchronous
algorithm A. We prove that M (and by extension, A) solves the shortcut bridg-
ing problem: for any constant ↵ > 1, the long run probability that M is in a
configuration � with p(�, c) larger than ↵ times its minimum possible value is
exponentially small. We then specifically consider V-shaped land masses with an
object on each branch of the V , and prove that the resulting bridge structures
vary with the interior angle of the V-shaped gap being shortcut — a phenomenon
also observed by Reid et al. [1] in the army ant bridges — and show in simulation
that they are qualitatively similar to those of the ants (e.g., Figure 3).
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(a)
(b)

Fig. 3: (a) In this image from [1], army ants of the genus Eticon build a dynamic bridge
which balances the benefit of a shortcut path with the cost of committing ants to the
structure. (b) Our shortcut bridging algorithm also balances competing objectives and
converges to similar configurations.

2 Background

2.1 Terminology for Particle Systems

For a particle P (resp., location `), we use N(P ) (resp., N(`)) to denote the
set of particles and objects1 adjacent to P (resp., to `). For adjacent locations `
and `0, we use N(` [ `0) to denote the set N(`) [N(`0), not including particles
or objects occupying either ` or `0.

We define an edge of a particle configuration to be an edge of � where both
endpoints are occupied by particles. When referring to a path, we mean a path
in the subgraph of � induced by the locations occupied by particles. Two par-
ticles are connected if there exists a path between them, and a configuration is
connected if all pairs of particles are. A hole in a configuration is a maximal
finite component of adjacent unoccupied locations. We specifically consider con-
nected configurations with no holes, and our algorithm, if starting at such a
configuration, will maintain these properties.

Let � be a connected configuration with no holes. The perimeter of �, denoted
p(�), is the length of the walk around the (single external) boundary of the
particles. The gap perimeter of �, denoted g(�), is the number of perimeter
edges that are in the gap, where edges with one endpoint in the gap and one
endpoint on land count as half an edge in the gap. Note that an edge may appear
twice in the boundary walk, and thus may be counted twice in p(�) or g(�).

2.2 Markov Chains

Our distributed shortcut bridging algorithm is based on a Markov chain, so
we briefly review the necessary terminology. A Markov chain is a memoryless

1 The notion of a particle (resp., location) neighborhood N(P ) (resp., N(`)) has been
extended from [2] to include objects.
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stochastic process defined on a finite set of states ⌦. The transition matrix P
on ⌦ ⇥ ⌦ ! [0, 1] is defined so that P (x, y) is the probability of moving from
state x to state y in one step, for any pair of states x, y 2 ⌦. The t-step transition
probability P t(x, y) is the probability of moving from x to y in exactly t steps.

A Markov chain is ergodic if it is irreducible, i.e., for all x, y 2 ⌦, there
is a t such that P t(x, y) > 0, and aperiodic, i.e., for all x, y 2 ⌦, g.c.d. {t :
P t(x, y) > 0} = 1. Any finite, ergodic Markov chain converges to a unique
stationary distribution ⇡ given by, for all x, y 2 ⌦, limt!1 P t(x, y) = ⇡(y).
Any distribution ⇡0 satisfying ⇡0(x)P (x, y) = ⇡0(y)P (y, x), for all x, y 2 ⌦,
(the detailed balance condition) and

P
x2⌦ ⇡0(x) = 1 is the unique stationary

distribution of the Markov chain (see, e.g., [28]).
Given a Markov chain and a desired stationary distribution ⇡ on ⌦, the cel-

ebrated Metropolis-Hastings algorithm [29] defines appropriate transition prob-
abilities for the chain so that ⇡ is its stationary distribution. Starting at x 2 ⌦,
pick a neighbor y in ⌦ uniformly with some fixed probability (that is the same
for all x), and move to y with probability min{1,⇡(y)/⇡(x)}; with the remaining
probability stay at x and repeat. Using detailed balance, if the state space is con-
nected then ⇡ must be the stationary distribution. While calculating ⇡(x)/⇡(y)
seems to require global knowledge, this ratio can often be calculated using only
local information when many terms cancel out. In our case, the Metropolis prob-
abilities are simply min{1,�p(x,c)�p(y,c)}; if x and y only di↵er by one particle
P , as is the case with all moves of our algorithm, then p(x, c) � p(y, c) can be
calculated using only local information from the neighborhood of P .

3 A Stochastic Algorithm for Shortcut Bridging

Recall that for the shortcut bridging problem, we desire for our algorithm to
achieve small weighted perimeter, where boundary edges in the gap cost more
than those on land. The algorithm must balance the competing objectives of
having a short path between the two objects while not forming too large of a
bridge. We capture these two factors by preferring small perimeter and small gap
perimeter, respectively. While these objectives may appear to be aligned rather
than competing, decreasing the length of the overall perimeter increases the gap
perimeter and vice versa in the problem instances we consider (e.g., Figure 2).

Specifically, our Markov chain algorithm incorporates two bias parameters: �
and �. The value of � controls the preference for having a small perimeter, while �
controls the preference for having a small gap perimeter. In this paper, we only
consider � > 1 and � > 1, which correspond to favoring a smaller perimeter and
a smaller gap perimeter, respectively. Using a Metropolis filter, we ensure that
our algorithm converges to a distribution over particle system configurations
where the relative likelihood of the particle system being in configuration �
is ��p(�)��g(�), or equivalently, ��p(�,c) for c = 1 + log� �. We note � is the
same parameter that controlled compression in [2], where particle configurations
converged to a distribution proportional to ��p(�). That work showed that � > 1
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is not su�cient for compression to occur, so we restrict our attention to � >
2 +

p
2, the regime where compression provably happens.

To ensure that during the execution of our algorithm the particles remain
connected and hole-free, we introduce two properties every movement must sat-
isfy. These properties help to guarantee the local connectivity structure in the
neighborhood of a moving particle doesn’t change; more details may be found
in [2]. Importantly, these properties maintain system connectivity2, prevent holes
from forming, and ensure reversibility of the Markov chain. These last two con-
ditions are necessary for applying established tools from Markov chain analysis.
Let ` and `0 be adjacent locations in � , and let S = N(`)\N(`0) be the particles
adjacent to both; we note |S| = 0, 1, or 2.

Property 1. |S| 2 {1, 2} and every particle in N(`[ `0) is connected to a particle
in S by a path through N(` [ `0).

Property 2. |S| = 0; ` and `0 each have at least one neighbor; all particles in
N(`)\{`0} are connected by paths within this set; and all particles in N(`0)\{`}
are connected by paths within this set.

Importantly, these properties are symmetric with respect to ` and `0 and can
be locally checkable by an expanded particle occupying both ` and `0 (as in Lines
2–3 of the Markov chain process described below).

We can now introduce the Markov chain M for an instance (L,O,�
0

, c,↵) of
shortcut bridging. For input parameter � > 2+

p
2, set � = �c�1, and beginning

at initial configuration �
0

, which we assume has no holes,3 repeat:

1. Select a particle P uniformly at random from among all n particles; let `
denote its location. Choose a neighboring location `0 and q 2 (0, 1) uniformly.
Let � be the configuration with P at ` and �0 the configuration with P at `0.

2. If `0 is unoccupied, then P expands to occupy both ` and `0. Otherwise,
return to step 1.

3. If (i) |N(`)| 6= 5, (ii) ` and `0 satisfy Property 1 or Property 2, and (iii)
q < �p(�)�p(�0

)�g(�)�g(�0
), then P contracts to `0. Otherwise, P contracts

back to `.

Although p(�)� p(�0) and g(�)� g(�0) are values defined at system-level scale,
we show these di↵erences can be calculated locally.

Lemma 1. The values of p(�)� p(�0) and g(�)� g(�0) in Step 3(iii) of M can
be calculated using information involving only `, `0, and N(` [ `0).

Proof. These values only need to be calculated if 3(i) and 3(ii) are both true.
By a result of [2], p(�)� p(�0) = |N(`0)|� |N(`)|, which is computable with only
local information.
2 Since particles treat objects as static particles, the particle system may actually
disconnect into several components which remain connected through objects.

3 If �0 has holes, our algorithm will eliminate them and they will not reform [2]; for
simplicity, we focus only on the behavior of the system after this occurs.
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Note g(�) is also the number of particles that are on the perimeter and in
the gap, counted with appropriate multiplicity if a particle is on the perimeter
more that once. Given a particle Q, let G(Q) be 1 if Q is in a gap location
and 0 if land; define G(`) for a location ` similarly. Let �(Q,�) be the number
of times Q appears on the perimeter of �. Then g(�) =

P
Q2p(�) G(Q)�(Q,�).

Define �(Q) = �(Q,�)� �(Q,�0). For particles not in {P}[N(`[ `0), �(Q) = 0
as the neighborhood of Q will be identical in � and �0. Because steps 3(i) and
3(ii) are true, inspection shows this implies �(P ) = 0. Then:

g(�)� g(�0) =
X

Q2N(`[`0)

G(Q)�(Q) + �(P,�)(G(`)�G(`0)).

The second term above is calculable with only local information; forQ 2 N(` [ `0),
to find �(Q) only Q’s neighbors in this set need to be considered. If Q is adjacent
to ` and not `0, �(Q) = �1 if it has two neighbors in N(`), �(Q) = 1 if it has
no neighbors in N(`), and �(Q) = 0 otherwise. If Q is adjacent to `0 but not `,
the opposite is true. If Q is adjacent to ` and `0, then �(Q) = 0 if Q has zero or
two neighbors in N(` [ `0); �(Q) = 1 if Q has a common neighbor with `0 but
not `; and �(Q) = �1 if Q has a common neighbor with ` but not `0. In all cases
�(Q), and thus g(�)� g(�0), can be found with only local information. ut

The state space ⌦ of M is the set of all configurations reachable from �
0

via valid transitions of M. We conjecture this includes all connected, hole-free
configurations of n particles connected to both objects, but proving all such
configurations are reachable from �

0

is not necessary for our results. (The proof
of the corresponding result in [2] does not generalize due to the presence of
objects).

3.1 From M to a Distributed, Local Algorithm

While M is a Markov chain with centralized control of the particle system, one
can transform M into a distributed, local, asynchronous algorithm A that each
particle runs individually. The full details of this construction are given in [2],
and we give a high level description here. When a particle is activated, it ran-
domly chooses one of its six neighboring locations, checks if moving there is
valid, and locally determines how the move will a↵ect the global weight func-
tion ��p(�)��g(�). If the weight will increase, the particle performs the move;
otherwise the particle only moves with some probability less than 1.

Specifically, in Step 1 of M, a particle is chosen uniformly at random to be
activated; to mimic this random activation sequence in a local way, we assume
each particle has its own Poisson clock with mean 1 and becomes active after
some random delay drawn from e�t. During its activation, a contracted parti-
cle P occupying location ` chooses a neighboring location `0 and a real value
q 2 (0, 1) uniformly at random4, expanding into `0 if it is unoccupied, just as

4 Note only a constant number of bits are needed to produce q, as � and � are constants
and a particle move changes perimeter and gap perimeter by at most a constant.
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in M. However, unlike in M, the expansion and contraction movements of P
are necessarily split into two activations, since in the amoebot model a central
assumption is that a particle can perform at most one movement per activation
(see Section 1.2). Since P ’s two activations are not necessarily consecutive, P
must be able to resolve conflicts with any other particles that may expand into its
neighborhood before it becomes activated again and contracts. We accomplish
this by introducing a system of Boolean flags maintained by all expanded parti-
cles. If P is the only expanded particle in its neighborhood, it stores a boolean
flag f = TRUE in its memory; otherwise, it sets f = FALSE. When P is acti-
vated again (now occupying both ` and `0), it checks its flag f . If it is FALSE,
P contracts back to `, since some other particle in its neighborhood activated
and expanded earlier. Otherwise, if f is TRUE, P checks the conditions in Step
3 of M and contracts either to ` or `0 accordingly. This ensures that at most one
particle in a local neighborhood is moving at a time, mimicking the sequential
nature of particle moves during the execution of Markov chain M.

While this shows our Markov chain M can be translated into a fully local
distributed algorithm with the same behavior, such an implementation is not al-
ways possible in general. Any Markov chain for particle systems that inherently
relies on non-local moves of particles or has transition probabilities relying on
non-local information cannot be executed by a local, distributed algorithm. Ad-
ditionally, most distributed algorithms for amoebot systems are not stochastic;
see, e.g., the mostly deterministic algorithms in [22, 30].

3.2 Properties of Markov Chain M

We now show some useful properties of M. Our first two claims follow from
work in [2] and basic properties of Markov chains and our particle systems.

Lemma 2. If �
0

is connected and has no holes, then at every iteration of M,
the current configuration is connected and has no holes.

Lemma 3. M is ergodic.

As M is finite and ergodic, it converges to a unique stationary distribution, and
we can find that distribution using detailed balance.

Lemma 4. The stationary distribution of M is given by

⇡(�) = ��p(�)��g(�)/Z,

where Z =
P

�2⌦ ��p(�)��g(�).

Proof. Properties 1 and 2 ensure that particle P moving from location ` to
location `0 is valid if and only if P moving from `0 to ` is. This implies for any
configurations � and ⌧ , P (�, ⌧) > 0 if and only if P (�, ⌧) > 0. Using this, the
lemma can easily be verified via detailed balance. ut
As referenced above, this stationary distribution can be expressed in an alternate
way using weighted perimeter.
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Lemma 5. For c = 1 + log� �, the stationary distribution of M is given by

⇡(�) = ��p(�,c)/Z,

where Z =
P

�2⌦ ��p(�,c).

Proof. This follows immediately from the definition of p(�, c). ut
Theorem 1. Consider an execution of Markov chain M on state space ⌦ , with
� > 2 +

p
2, � > 1, and stationary distribution ⇡, where starting configuration

�
0

has n particles. For any constant ↵ > log(�)

log(�)�log(2+

p
2)

> 1, the probability

that a configuration � drawn at random from ⇡ has p(�, 1 + log� �) > ↵ · pmin

is exponentially small in n, where pmin is the minimum weighted perimeter of a
configuration in ⌦.

Proof. This mimics the proof of ↵-compression in [2], though additional insights
and care were necessary to accommodate the di�culties introduced by consid-
ering weighted perimeter instead of perimeter.

Given any configuration �, let

w(�) := ⇡(�) · Z = ��p(�)��g(�) = ��p(�,1+log� �).

For a set of configurations S ✓ ⌦, we let w(S) =
P

�2S w(�). Let �min 2 ⌦ be
a configuration of n particles with minimal weighted perimeter pmin, and let S↵

be the set of configurations with weighted perimeter at least ↵ · pmin. We show:

⇡(S↵) =
w(S↵)

Z
<

w(S↵)

w(�min)
 ⇣

p
n,

where ⇣ < 1. The first equality follows from Lemma 5; the next inequality follows
from the definitions of Z, w, and �min. We focus on the last inequality.

We stratify S↵ into sets of configurations with the same weighted perimeter;
there are at most O(n2) such sets, as the total perimeter and gap perimeter can
each take on at most O(n) values. Label these sets A

1

, A
2

, . . . , Am in order of
increasing weighted perimeter, where m is the total number of distinct weighted
perimeters possible for configurations in S↵. Let pi be the weighted perimeter of
all configurations in set Ai; since Ai ✓ S↵, we have pi � ↵ · pmin.

We note w(�) = ��pi for every � 2 Ai, so to bound w(Ai) it only remains to
bound |Ai|. Any configuration with weighted perimeter pi has perimeter p  pi,
and a result from [2] which exploits a connection between particle configurations
and self-avoiding walks in the hexagon lattice shows that the number of con-
nected hole-free particle configurations with perimeter p is at most f(p)(2+

p
2)p,

for some subexponential function f . Letting pmin denote the minimum possible
(unweighted) perimeter of a configuration of n particles, we conclude that

w(Ai)  ��pi ·
piX

p=pmin

f(p)
⇣
2 +

p
2
⌘p

 ��pif 0(pi)
⇣
2 +

p
2
⌘pi

,
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where f 0(pi) =
Ppi

p=pmin
f(p) is necessarily also a subexponential function be-

cause it is a sum of at most a linear number of subexponential terms. So,

w(S↵) =
mX

i=1

w(Ai) 
mX

i=1

f 0(pi)

 
2 +

p
2

�

!pi

 f 00(n)

 
2 +

p
2

�

!↵·pmin

,

where f 00(n) =
Pm

i=1

f 0(pi) is a subexponential function because pi = O(n),
m = O(n2), and f 0 is subexponential. The last inequality follows because � >
2 +

p
2 and pi � ↵pmin by assumption. Finally, because w(�min) = ��pmin ,

w(S↵)

w(�min)
 f 00(n)

 
2 +

p
2

�

!↵·pmin

�pmin = f 00(n)⇣pmin ,

where ⇣ = �
⇣

2+

p
2

�

⌘↵
< 1 whenever ↵ > log(�)

log(�)�log(2+

p
2)

. We have pmin � p
n

because any n particles must have perimeter at least
p
n. This su�ces to show

there is a constant ⇣ < 1 and a subexponential function f 00(n) such that

⇡(S↵) < f 00(n)⇣
p
n,

which proves the theorem. ut
As we see in the following corollary, to solve an instance (L,O,�

0

, c,↵) of
the shortcut-bridging problem, one just needs to run algorithm M with carefully
chosen parameters � and �.

Corollary 1. The distributed algorithm associated with Markov chain M can
solve any instance (L,O,�

0

, c,↵) of the shortcut-bridging problem.

Proof. It su�ces to run the distributed algorithm associated with M starting
from configuration �

0

with parameters � > (2 +
p
2)

↵
↵�1 and � = �c�1. Then it

holds that ↵ > log(�)

log(�)�log(2+

p
2)

> 1, so by Theorem 1 the system reaches and

remains with all but exponentially small probability in a set of configurations
with weighted perimeter p(�, c)  ↵ ·pmin, where pmin is the minimum weighted
perimeter of a configuration in ⌦. ut

4 Dependence of Bridge Structure on Gap Angle

Specifically, we consider V-shaped land masses (e.g., Figure 2a) of various angles.
We prove that our shortcut bridging algorithm exhibits a dependence on the
internal angle ✓ of the gap that is similar to that of the army ant bridging
process observed by Reid et al. [1]. When the internal angle ✓ is su�ciently
small, with high probability the bridge constructed by the particles stays close
to the bottom of the gap (away from the apex of angle ✓). Furthermore, when
✓ is large and � and � satisfy certain conditions (made explicit in Theorem 3),
with high probability the bridge stays close to the top of the gap. Both of these
results are proven using a Peierls argument and careful analysis of the geometry
of the gap. Due to space constraints, we merely state our main results and omit
the proofs, while noting that they are far from trivial.
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(a) (b) (c) (d)

Fig. 4: A particle system using biases � = 4 and � = 2 to shortcut a V-shaped land
mass with ✓ = 60� after (a) 2 million, (b) 4 million, (c) 6 million, and (d) 8 million
iterations of Markov chain M, beginning in configuration �0 shown in Figure 2a.

Theorem 2. Let � > 2 +
p
2 and � > 1. Then there exists ✓

1

such that for all
✓ < ✓

1

, the probability at stationarity of M that the bridge structure is strictly
above the midpoint of the gap is exponentially small in n, the number of particles.
In particular, ✓

1

= 2 tan�1

�
log��

�
�/
�
2 +

p
2
��

/
p
3
�
.

Theorem 3. For each � > 2 +
p
2 and � > (2 +

p
2)4�4, there is a constant

✓
2

> 60� such that for all ✓ 2 (60�, ✓
2

), the probability at stationarity of M that
the bridge structure goes through or below the midpoint of the gap is exponentially

small in n. In particular, ✓
2

= 2 tan�1

h
1

2

p
3

log(���4
)

log(2+

p
2)

� 1p
3

i
.

5 Simulations

In this section, we show simulation results of our algorithm running on a variety
of instances. Figure 4 shows snapshots over time for a bridge shortcutting a V-
shaped gap with internal angle ✓ = 60� and biases � = 4, � = 2. Qualitatively,
this bridge matches the shape and position of the army ant bridges in [1]. Figure 5
shows the resulting bridge structure when the land mass is N-shaped. Lastly,
Figure 6 shows the results of an experiment which held �, �, and the number of
iterations of M constant, varying only the internal angle of the V-shaped land
mass. The particle system exhibited behavior consistent with the theoretical
results in Section 4 and the army ant bridges, shortcutting closer to the bottom
of the gap when ✓ is small and staying almost entirely on land when ✓ is large.

These simulations demonstrate the successful application of our stochastic
approach to shortcut bridging. Moreover, experimenting with variants suggests
this approach may be useful for other related applications in the future.
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