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Power-law Degree Distributions

1 Complex Networks - A Brief Overview

Complex networks occur in many social, technological and scientific settings. Examples of
complex networks include World Wide Web, Internet, movie actor collaboration network, science
collaboration network, cellular networks, protein folding.

There are some measures and properties that we can focus on related to complex networks:
Small worlds: Even though the complex networks are often large, in most networks there is

a relatively short path between any two nodes. One of the most popular manifestations of small
worlds is the “six degrees of separation” which concludes that, in a social network, there is a path
of acquaintances with a length of about six between most pairs of people . Especially the existence
of nodes with very high degrees contributes to this fact (Ex: Degrees of Kevin Bacon in the actor
collaboration network, Erdős in science collaboration network).

Clustering: A common property of social networks is that cliques form, representing circles
of friends in which every member knows every other member. This property is quantified by the
clustering coefficient which is defined as follows: For a node i that has ki edges incident on it, if
all its neighbor nodes were part of a clique, there would be ki(ki − 1)/2 edges between them. The
ratio between the actual number of edges Ei and the total number gives the clustering coefficient
of node i:

Ci =
2Ei

ki(ki − 1)
(1)

The clustering coefficient of the whole graph is the average of individual Ci’s.
Degree Distributions: This spread in the node degrees is characterized by a distribution function

P (k), which gives the probability that a randomly selected node has exactly k edges. Degree
distributions are the main topic of this lecture.

1.1 Random Graphs

Random graphs were originally introduced by Paul Erdős and Alfréd Rényi in the 50s. In their
classic first article, they define a random graph with n nodes connected by m edges, which are
chosen randomly from the n(n− 1)/2 possible edges. That means there are

(
n(n−1)/2

m

)
graphs with

n nodes and m edges. This forms a probability space where each graph is equiprobable.
An alternative definition of random graphs is the binomial model. In this case, we start with

n nodes and every pair of nodes is connected with probability p. Then the expected total number
of edges in the graph is E(m) = p[n(n − 1)/2]. If, say, a graph G′ has n nodes and m edges,
the probability of obtaining this particular graph by this construction process is P (G′) = pm(1 −
p)n(n−1)/2−m.

Mathematicians are interested in the properties of random graphs as n → ∞. One of the
important results is that the degree distribution of random graphs can be approximated by Poisson
distribution:

P (k) =
(

n− 1
k

)
pk(1− p)n−1−k ' e−pn (pn)k

k!
= e−z (z)k

k!
(2)

where z is the average degree of a node and p = z/(n− 1). For n large, z = pn.
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2 Power Law

It was initially thought that the Internet is an Erdős - Rényi random graph. However, it is later
observed that the degrees have a power law distribution, that is, the probability that a degree is
larger than D is about cD−β for some c and β > 0. For the Internet graph, it is observed that
β is between 2.15 and 2.48 for various years. The same distribution is observed for some other
Internet-related quantities such as the number of hops per message and largest eigenvalues of the
Internet graph. This contradicts the random graphs model, which yields an exponential degree
distribution.

Power laws are not observed only in Internet-related activities but also in income distributions,
city populations, word frequencies and the world-wide web graph. One interesting situation where
power laws result is as follows: consider the first digit of every number that person sees during the
day. The distribution of these digits is a power law.

The power laws are explained by generative models that fall into one large category called
scale-free growth or preferential attachment or “the rich get richer”: if the growth of individuals in
a population follows a stochastic process that is independent of the individual’s size (so that larger
individuals attract more growth), then a power law will result. 1

We will now go into the details of a model of Internet growth in the next section and then we
will prove a similar result for a simple model of file creation.

3 A Model of Internet Growth

We will give a method for constructing a graph that will exhibit similar structural properties
to the internet graph, namely the degree distribution will follow a power law. The entirety of this
section is based on [2], and this paper will be referred to throughout the section.

3.1 Construction

We will discuss a simple model of Internet growth and show that it results with power-law degree
distribution under very general assumptions (the probability that a degree is larger that D is at
least D−β for some β > 0). We will consider the unit square in R2 with points pi i ∈ {0, . . . , n}
distributed randomly and uniformly within it and give a method to connect them into a tree.
When the i-th node arrives, it attaches itself to one of the previous nodes forming a tree based on
minimizing the following two objectives:

• To minimize Euclidian distance

• To minimize hop distance (connect to a node that is centrally located)

We construct the graph by choosing an initial point p0 and then for i = 1, . . . , n we connect pi to
the point pj that minimizes:

min
j<i

α · dij + hj (3)

1One should not confuse the concept Zipf’s Law and scale-free networks: Originally, Zipf’s law stated that, in a
corpus of natural language utterances, the frequency of any word is roughly inversely proportional to its rank in the
frequency table. So, the most frequent word will occur approximately twice as often as the second most frequent
word, which occurs twice as often as the fourth most frequent word, etc. The term has come to be used to refer
to any of a family of related probability distributions. A scale-free network is a specific kind of complex network in
which some nodes act as “highly connected hubs” (high degree), although most nodes are of low degree.

2



CS 6550 – Design and Analysis of Algorithms Professor: Dana Randall
Lecture and notes by: Dan Steffy and Burak Karacık Nov. 7, 2005

where dij is the Euclidian distance between pi and pj and hj is the measure of the “centrality” of
pj . Possible measures for hj are:

• average number of hops from other nodes

• maximum number of hops from another node

• number of hops from a fixed center of the tree

α is a parameter that determines the relative importance of the two objectives. Note that this
is not meant to be an accurate representation of how Internet grows but it is an interesting and
simple model that leads to power law distribution.

The behavior of the model highly depends of the relative importance of the two objectives, α.

1. If α is too low, less than 1/
√

2 in this case, Euclidian distances are not important and the
resulting network is a star network.

2. If α = Ω(
√

n), then Euclidian distances become too important and we end up with a dynamic
version of Euclidian minimum spanning tree.

3. If α is in between, then degrees have a power law distribution.

3.2 Properties of the Graph

The following theorems examine the structural properties of the tree T formed by the method
outlined in the previous section. Throughout the paper let N(i) denote the neighbors of a point pi

in T .

Theorem 1 If α < 1√
2

then T is a star centered about p0.

Proof: By its definition dij <
√

2 ∀i, j, so αdij < 1 and hj ≥ 1 ∀j 6= 0. Therefore each node added
to T after p0 will connect directly to p0 forming a star. �

This theorem shows that when α is too small, the euclidian distances are ignored and all vertices
are connected to the most central vertex in the tree. The next theorem shows that if α is too large,
then the centrality of vertices is overlooked and the graph behaves as though the euclidian distance
is the only thing considered, which results in an exponential degree distribution.

Theorem 2 If α = Ω(
√

n) then the degree distribution of T is exponential.

Proof: To show that the degree distribution is exponential we need to verify that the expected
number of nodes that have degree at least D is at most n2e−cD for some constant c. Since expo-
nential growth is asymptotically lower than power-law growth, the authors only show the upper
bound here.

In order to obtain this bound for each pi we will divide its neighbors into two classes depending
on the length of the edges linking them. Define S(i) = |{j ∈ N(i)|dij ≤ 4

α}| and L(i) = |{j ∈
N(i)|dij > 4

α}|.
By the union bound Pr[degree(pi) ≥ D] ≤ Pr[S(i) ≥ D

2 ] + Pr[L(i) ≥ D
2 ] So if we can show

that each of these classes of vertices have exponential behavior, then we will have shown that the
total degree distribution has exponential behavior.

First we show that S(i) follows the exponential bound. Let i be fixed and let α ≥ c0
√

n. Then
any points in N(i) linked by short edges must fall in a circle of area πr2 = π( 4

α)2 ≤ pi

c0n and thus
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Figure 1: Proof of Thm. 2

S(i) is bounded by a sum of bernoulli trials that represent the probability that each point falls
within this circle. Therefore

E[S(i)] = nπ(
4
α

)2 ≤ n
pi

c0n
= c

Where c is constant in c0. Therefore by the Chernoff-Hoeffding bound, if we assume D > 3c then:

Pr[S(i) >
D

2
] ≤ e−

(D−2c)2

D+4c ≤ e−
D
21

Which establishes our exponential bound on S(i).
Next we show that L(i) also follows an exponential bound. Define Lx(i) = |{i ∈ N(i)|dij ∈

[x, 1.5x]}|. Consider Figure 1, and let x be any number larger than 4
α . Given pj and pj′ in this

region between distance x and 1.5x from pi, if the angle ∠pjpipj′ is small enough (namely when
∠pjpipj′ < c = cos−1(43

48) ) then pj will connect to p′j over pi. This is because the bound on the
angle would make αdij′ > αdjj′ + 1 while |hi − hj | ≤ 1.

We can verify that c > 2π
14 and hence for any x we get Lx(i) < 14 meaning every such region

has at most 14 points in it connected to pi. Now if we consider the sum of the points in all of these
regions which would contributed to our long edges we get at most an exponential number of them.
Namely setting δi = max{ 4

α ,minj dij} then the sum over all regions is:

L(i) =

− log 3
2

δi∑
k=1

L 3
2

−k(i) ≤ −14 log 3
2
δi

.
Since the points are distributed randomly we get:

Pr[δi ≤ y] ≤ 1− (1− πy2)(n−1) ≤ π(n− 1)y2

The second term meaning one minus the chance that each of the remaining n− 1 points falls in the
region outside of the radius y from the point pi. Finally combining this with our result about the
total number of points depending on δi we have:

Pr[L(i) ≥ D

2
] ≤ Pr[−14 log 3

2
δi ≥

D

2
] (4)
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Figure 2: Proof of Theorem 3

= Pr[
3
2

−14

δi ≥
3
2

D
2

] (5)

= Pr[δi ≥
3
2

−D
28

] (6)

≤ π(n− 1)(
3
2
)−

D
14 (7)

(8)

Which establishes our exponential bound on the long edges. As mentioned earlier the union bound
tells us that these two bounds can be combined to establish the exponential bound for the degree
sequence. �

Next we can move on to the main result. The proof has more intricate details than the previous
ones so we will only give a geometric sketch of the proof.

Theorem 3 If α ≥ 4 and α = o(
√

n) then the degree distribution of T is a power law.

What we need to show is that the expected number of nodes with degree at least D is at least
c(D

n )−β for constants c and β. To show this bound we only examine neighbors of p0 that fall within
a certain distance of p0 and show that enough of them have degree at least D to satisfy our bound.

The proof of this theorem is largely geometric. Some basic properties of the construction give
us the following two results. If we consider the point pi connected directly to p0 then consider
Figure 2.

Lemma 1 Points connected to the graph in the circular dashed region around any point pi that
arrive after pi will connect directly to it.

Proof: The radius in this region will be small enough that a point falling in this region must not
be in the corresponding region of another point connected directly to p0 and since any other point
will have hop distance at least one larger than pi the new point will always have its cost function
minimized when it connects to pi. �

Lemma 2 Points arriving after a point pi outside of the larger dashed region will never connect
to it.
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Proof: Whenever a point pj is either too close to p0, or the angle ∠pjp0pi is too large, larger than√
2.5α(di0 − 1/α), pj will always prefer connecting to p0 or another point over pi. �

With these two Lemmas established we can say a few more things about the behavior of the
model.

Sketch of Proof for Theorem 3: Consider Figure 2 depicting three regions about p0 labeled
A0, A′ and A. The radii of these regions are defined by [1/α, 1/α + ρ], (1/α + ρ, 1/α + .5ρ

2
3 ] and

(1/α+ρ, 1/α+ .5ρ
2
3 ] respectively where ρ = 4

√
D/n. By our choice of ρ and Lemma 1 it is evident

that for any point pi linking directly to p0 contained in A′, it will have region of influence at least
πD
n , which is a probability that any given point will land in that region. It is therefore expected to

have at least πD
2 points that link to it in the final tree, since at least this many points are expected

to arrive in this region after it, and other points could possibly connect to it as well, by Lemma 1
and 2.

• Any point in A′ can only link to either p0 or a neighbor of p0 contained in A0
⋃

A. This
follows from Lemmas 1 and 2 which characterize what points can possibly link to.

• Any point arriving in A′ can only connect to another point in A0
⋃

A if the angle between
them and p0 is small. More specifically this angle can be no larger than

√
10αρ1/3 by Lemma

2.

• Points arriving in A0
⋃

A can be thought of claiming sectors of A′. When a point arrives in
A0
⋃

A if no other point already present forms a small angle with it and p0 then we know
it must connect directly to p0, and points arriving within that small angle of it and p0 may
connect to it. With high probability the number of points that land in A′ is proportional to
the regions area since the points are uniformly distributed in the unit square.

• If we partition A′ into regions with rays separated by angles of degree equal to
√

10αρ1/3

coming out of p0. By our earlier statement about what points landing in A0
⋃

A can connect
to, we know that any point landing in a partition must connect directly to p0 whenever
the partition it lands in and the two partitions next to it empty. We see that there are
N = 1/(8

√
αρ1/3) partitions of angle 16π

√
αρ1/3 >

√
10αρ1/3.

• It can then be shown by the Chernoff bound that by the end of the construction of the graph
at least half of these partitions should have a point in them and therefore at least one sixth
of these partitions, N/6, contain a point in A0

⋃
A linking directly to p0.

• With high probability at most N/12 of these points are contained in A0, since A0 only occupies
a small area compared to A.

• Therefore there are at least N/12 points in A that are neighbors of p0 and by our previous
argument their expected degree is at least πD/2 in the final tree.

• By the Chernoff bound the probability that any one of these N/12 points with expected
degree πD/2 has degree less than D is exponentially small.

• With high probability we expect that at least N/24n of these points has degree at least D
and by choice of N and ρ, if we consider n and α as fixed, we get N/24n = CD−1/6 where C
is constant in n and α.

And this concludes the proof. �
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3.3 Experimental Results

The authors implemented the stated model along with a few simple modifications to it and
generated graphs for large values of n. The results all exhibited a power law for values of α in the
range for which we proved they should.

The authors observed that the range of α that produces the power law behavior was larger than
what it was proven for, and they believe their proofs could be tightened but would become much
more complicated. This behavior also is apparent in higher dimensions and by using other metrics
for dij .

4 A Model of File Creation

The power law phenomenon can be seen in other generative models. We present a simple model
of file creation so that we can see connections between seemingly different places where power laws
arise.

Assume that we have n data items and we want to partition them into files. We are given the
popularity pi for each data item i (this can be the expected number of times the data item will be
retrieved for Internet transmission each day). Our objectives are to minimize:

• Total transmission cost

• Total number of files

That is, we would like to find a partition Π that minimizes[∑
S∈Π

(
|S| ·

∑
i∈S

pi

)]
+ α|Π| (9)

This captures the trade-off between the transmission cost and the file creation overhead. Again, α
designates the relative importance of the two objectives.

Proposition 1 The optimum solution partitions the pi’s sorted in decreasing order and can be
found in O(n2) time by dynamic programming.

Now, assume that pi’s are i.i.d. from a distribution f . Suppose that the optimal partitions
S1, . . . , Sk have sizes si = |Si| and the average item in Si is ai.

Lemma 3 si + si+1 ≥
√

α/ai and si ≤
√

2α/ai

The proof uses that, by optimality, it is not advantageous to merge two sets or to split one in the
middle.

Now consider the cumulative distribution Φ of f and its inverse Ψ (Ψ(x) is the least y for
which Pr[z ≤ y] ≥ x). It may be useful to view Ψ(y/n) as the expected number of elements with
popularity smaller than y. Let g = Ψ(log n/n).

Lemma 4 In the optimum solution, that are at least y/2
√

2α/g sets of size at least 1
2

√
α/Ψ(2y/n)

almost certainly.
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Sketch of proof: With high probability, the popularity of the smallest element is no bigger than g.
For large enough y ≤ n, there are at least y elements with popularities smaller than Ψ(2y/n). By the
previous lemma, the sets that contain these elements have sizes that satisfy si+si+1 ≤

√
α/Ψ(2y/n)

and si ≤
√

2α/g. Thus, these elements are divided into at least y/
√

(2α/g) sets (by the second
equality), half of them of size at least 1

2

√
α/Ψ(2y/n) (by the first inequality). �

From this lemma, we get

Pr
[
size of a file ≥ 1

2

√
α/Ψ(2y/n)

]
≥ y/2n

√
2α/g (10)

Set x = 1
2

√
α/Ψ(2y/n) ⇒ Ψ(2y/n) = α/4x2 ⇒ 2y/n = Φ(α/4x2) ⇒ y = nΦ(α/4x2)/2.

Therefore,

Theorem 4 In the distribution of file sizes induced by the optimal solution,

Pr [size of a file ≥ x] ≥ Φ(α/4x2)
√

g/32α. (11)

Therefore, if limz→0Φ(z)/zc > 0 for some c > 0 then the file sizes have a power law distribution.
Any continuous distribution f that has f(0) > 0 (e.g. exponential, normal, uniform etc.) gives a
power law.
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