
U.C. Berkeley — CS170: Intro to CS Theory Handout N12
Professor Luca Trevisan October 11, 2001 (revised Oct. 23)

Notes for Lecture 12

1 Analysis of Union-Find

(Replaces Section 2 in the handout of October 9)
Suppose we initialize the data structure with n makeset operations, so that we have n

elements each forming a different set of size 1, and let us suppose we do a sequence of k
operations of the type union or find. We want to get a bound on the total running time to
perform the k operations. Each union performs two find and then does a constant amount
of extra work. So it will be enough to get a bound on the running time needed to perform
m ≤ 2k find operations.

Let us consider at how the data structure looks at the end of all the operations, and let
us see what is the rank of each of the n elements. First, we have the following result.

Lemma 1
If an element has rank k, then it is the root of a subtree of size at least 2k.
Proof: An element of rank 0 is the root of a subtree that contains at least itself (and so
is of size at least 1). An element u can have rank k + 1 only if, at some point, it had rank
k and it was the root of a tree that was joined with another tree whose root had rank k.
Then u became the root of the union of the two trees. Each tree, by inductive hypothesis
was of size at least 2k, and so now u is the root of a tree of size at least 2k+1. 2

Let us now group our n elements according to their final rank. We will have a group
0 that contains elements of rank 0 and 1, group 1 contains elements of rank 2, group 2
contains elements of rank in the range {3, 4}, group 3 contains elements of rank between
5 and 16, group 4 contains elements of rank between 17 and 216 and so on. (In practice,
of course, no element will belong to group 5 or higher.) Formally, each group contains
elements of rank in the range (k, 2k], where k itself is a power of a power . . . of a power of
2. We can see that these groups become sparser and sparser.

Lemma 2
No more than n/2k elements have rank in the range (k, 2k].
Proof: We have seen that if an element has rank r, then it is the root of a subtree of size
at least 2r. It follows that there cannot be more than n/2r elements of rank r. The total
number of elements of rank between k + 1 and 2k is then at most

n
2k∑

r=k+1

1
2r

< n
∞∑

r=k+1

1
2r

=
n

2k

∞∑

i=1

1
2i

=
n

2k

2

By definition, there are no more than log∗ n groups.



Notes for Lecture 12 2

To compute the running time of our m operations, we will use the following trick. We
will assign to each element u a certain number of “tokens,” where each token is worth O(1)
running time. We will give out a total of n log∗ n tokens.

We will show that each find operation takes O(log∗ n) time, plus some additional time
that is paid for using the tokens of the vertices that are visited during the find operation.
In the end, we will have used at most O((m + n) log∗ n) time.

Let us define the token distribution. If an element u has (at the end of the m operations)
rank in the range (k, 2k] then we will give (at the beginning) 2k tokens to it.

Lemma 3
We are distributing a total of at most n log∗ n tokens.
Proof: Consider the group of elements of rank in the range (k, 2k]: we are giving 2k tokens
to them, and there are at most n/2k elements in the group, so we are giving a total of n
tokens to that group. In total we have at most log∗ n groups, and the lemma follows. 2

We need one more observation to keep in mind.

Lemma 4
At any time, for every u that is not a root, rank[u] < rank[p[u]].
Proof: After the initial series of makeset, this is an invariant that is maintained by each
find and each union operation. 2

We can now prove our main result

Theorem 5
Any sequence of operations involving m find operations can be completed in O((m +
n) log∗ n) time.

Proof: Apart from the work needed to perform find, each operation only requires constant
time (for a total of O(m) time). We now claim that each find takes O(log∗ n) time, plus
time that is paid for using tokens (and we also want to prove that we do not run out of
tokens).

The accounting is done as follows: the running time of a find operation is a constant
times the number of pointers that are followed until we get to the root. When we follow
a pointer from u to v (where v = p[u]) we charge the cost to find if u and v belong to
different groups, or if u is a root, or if u is a child of a root; and we charge the cost to u
if u and v are in the same group (charging the cost to u means removing a token from u’s
allowance) . Since there are at most log∗ n groups, we are charging only O(log∗ n) work to
find. How can we make sure we do not run out of coins? When find arrives at a node
u and charges u, it will also happen that u will move up in the tree, and become a child
of the root (while previously it was a grand-child or a farther descendent); in particular,
u now points to a vertex whose rank is larger than the rank of the vertex it was pointing
to before. Let k be such that u belongs to the range group (k, 2k], then u has 2k coins at
the beginning. At any time, u either points to itself (while it is a root) or to a vertex of
higher rank. Each time u is charged by a find operation, u gets to point to a parent node
of higher and higher rank. Then u cannot be charged more than 2k time, because after that
the parent of u will move to another group. 2



Notes for Lecture 12 3

2 Introduction to Dynamic Programming

Recall our first algorithm for computing the n-th Fibonacci number Fn; it just recursively
applied the definition Fn = Fn−1 + Fn−2, so that a function call to compute Fn resulted in
two functions calls to compute Fn−1 and Fn−2, and so on. The problem with this approach
was that it was very expensive, because it ended up calling a function to compute Fj for each
j < n possibly very many times, even after Fj had already been computed. We improved
this algorithm by building a table of values of Fibonacci numbers, computing Fn by looking
up Fn−1 and Fn−2 in the table and simply adding them. This lowered the cost of computing
Fn from exponential in n to just linear in n.

This worked because we could sort the problems of computing Fn simply by increasing
n, and compute and store the Fibonacci numbers with small n before computing those with
large n.

Dynamic programming uses exactly the same idea:

1. Express the solution to a problem in terms of solutions to smaller problems.

2. Solve all the smallest problems first and put their solutions in a table, then solve the
next larger problems, putting their solutions into the table, solve and store the next
larger problems, and so on, up to the problem one originally wanted to solve. Each
problem should be easily solvable by looking up and combining solutions of smaller
problems in the table.

For Fibonacci numbers, how to compute Fn in terms of smaller problems Fn−1 and
Fn−2 was obvious. For more interesting problems, figuring out how to break big problems
into smaller ones is the tricky part. Once this is done, the the rest of algorithm is usually
straightforward to produce. We will illustrate by a sequence of examples, starting with
“one-dimensional” problems that are most analogous to Fibonacci.

3 String Reconstruction

Suppose that all blanks and punctuation marks have been inadvertently removed from a
text file, and its beginning was polluted with a few extraneous characters, so the file looks
something like ”lionceuponatimeinafarfarawayland...” You want to reconstruct the file using
a dictionary.

This is a typical problem solved by dynamic programming. We must define what is
an appropriate notion of subproblem. Subproblems must be ordered by size, and each
subproblem must be easily solvable, once we have the solutions to all smaller subproblems.
Once we have the right notion of a subproblem, we write the appropriate recursive equation
expressing how a subproblem is solved based on solutions to smaller subproblems, and the
program is then trivial to write. The complexity of the dynamic programming algorithm
is precisely the total number of subproblems times the number of smaller subproblems we
must examine in order to solve a subproblem.

In this and the next few examples, we do dynamic programming on a one-dimensional
object—in this case a string, next a sequence of matrices, then a set of strings alphabetically
ordered, etc. The basic observation is this: A one-dimensional object of length n has about



Notes for Lecture 12 4

n2 sub-objects (substrings, etc.), where a sub-object is defined to span the range from i to
j, where i, j ≤ n. In the present case a subproblem is to tell whether the substring of the
file from character i to j is the concatenation of words from the dictionary. Concretely, let
the file be f [1 . . . n], and consider a 2-D array of Boolean variables T (i, j), where T (i, j)
is true if and only if the string f [i . . . j] is the concatenation of words from the dictionary.
The recursive equation is this:

T (i, j) = dict(x[i . . . j]) ∨
∨

i≤k<j

[T (i, k) ∧ T (k + 1, j)]

In principle, we could write this equation verbatim as a recursive function and execute it.
The problem is that there would be exponentially many recursive calls for each short string,
and 3n calls overall.

Dynamic programming can be seen as a technique of implementing such recursive pro-
grams, that have heavy overlap between the recursion trees of the two recursive calls, so
that the recursive function is called once for each distinct argument; indeed the recursion
is usually “unwound” and disappears altogether. This is done by modifying the recursive
program so that, in place of each recursive call a table is consulted. To make sure the
needed answer is in the table, we note that the lengths of the strings on the right hand side
of the equation above are k− i+1 and j−k, a both of which are shorter than the string on
the left (of length j − i + 1). This means we can fill the table in increasing order of string
length.

for d := 0 to n−1 do ... d+1 is the size (string length) of the subproblem being solved
for i := 1 to n− d do ... the start of the subproblem being solved
j = i + d
if dict(x[i . . . j]) then T (i, j) :=true else

for k := i to j − 1 do
if T (i, k) =true and T (k + 1, j) =true then do {T (i, j) :=true}

The complexity of this program is O(n3): three nested loops, ranging each roughly over n
values.

Unfortunately, this program just returns a meaningless Boolean, and does not tell us
how to reconstruct the text. Here is how to reconstruct the text. Just expand the innermost
loop (the last assignment statement) to

{T [i, j] :=true, first[i, j] := k, exit for}
where first is an array of pointers initialized to nil. Then if T [i, j] is true, so that the

substring from i to j is indeed a concatenation of dictionary words, then first[i, j] points to
the end of the first word. Notice that this improves the running time, by exiting the for loop
after the first match; more optimizations are possible. This is typical of dynamic program-
ming algorithms: Once the basic algorithm has been derived using dynamic programming,
clever modifications that exploit the structure of the problem speed up its running time.


