
Dynamic Programming II

Dynamic Programming in Trees

Trees provide another structure where we can frequently bound the number of subproblems.
Consider a rooted tree T with n vertices. How many subtrees does T have? Since each subtree
consists of all the descendants of a particular vertex in T , there are as many subtrees as
number of vertices in T . i.e. n in all. This is the basis of the following dynamic programming
algorithm:
Maximum Independent set: Given a graph G(V;E), the maximum independent set in G

is a subset I � V such that no two vertices in I are adjacent in G, and such that I is as large
as possible. It is immensely di�cult to solve this problem in general. Indeed, it is one of the
NP-complete problems (a class of problems we will talk about later in the semester).

We will show that if the given graph G(V;E) is a tree, then using dynamic programming,
the maximum independent set problem can be solved in linear time. Here is how the algorithm
proceeds:

Root the tree at an arbitrary vertex. Now each vertex de�nes a subtree (the one hanging
from it). Dynamic programming proceeds, as always, from smaller to larger subproblems |
that is to say, bootom-up in the rooted tree. Suppose that we know the size of the largest
independent set of all subtrees below a node j. What is the maximum independent set in
the subtree hanging from j? Two cases: either j is in the maximum independent set, or it
is not. If it is not, then the maximum independent set is simply the union of the maximum

independent sets of the subtrees of the children of j. If j is in the maximum independent set,
then the maximum independent set consists of j, plus the union of the maximum independent

sets of the subtrees of the grandchildren of j.

The recursive equation is now easy to write: Let I(j) be the size of the maximum inde-
pendent set in the subtree rooted at vertex j.

I(j) := maxf
X

k child of j

I(k); 1+
X

k grandchild of j

I(k)g:

It might seem at �rst that the complexity of this algorithm is O(n2) | since there are n
entries to be �lled in, and the maximum time to compute an entry can be as large as �(n)
(since a vertex j might have �(n) grandchildren). However, there is a clever argument showing
that the total number of steps is only O(n): For each vertex, the algorithm only looks at its
children and its grandchildren; hence, each vertex j is looked at only three times: when the
algorithm is processing vertex j, when it is processing j0s parent, and when it is processing j0s
grandparent. Since each vertex is looked at only a constant number of times, the total number
of steps is O(n).

2. Travelling Salesman Problem:

The traveling salesman problem. Suppose that you are given n cities and the distances dij

between any two cities; you wish to �nd the shortest tour that takes you from your home city
to all cities and back.

Naturally, the TSP can be solved in time O(n!), by enumerating all tours |but this is
very impractical. Since the TSP is one of the NP-complete problems, we have little hope of
developing a polynomial-time algorithm for it. Dynamic programming gives an algorithm of
complexity O(n22n) |exponential, but much faster than n!.

We de�ne the following subproblem: Let S be a subset of the cities containing 1 and at
least one other city, and let j be a city in S other than one. De�ne C(S; j) to be the shortest

path that starts from 1, visits all nodes in S, and ends up in j. The program now writes itself:



for all j do C(f1; jg; j) := d1j
for s := 3 to n do (the size of the subsets considered this round)
for all subsets S of f1; : : : ; ng of size n and containing 1 do
for all j 2 S; j 6= 1 do
fC(S; j) := mini6=j;i2S [C(S � fjg; i)+ dij ]g

opt:= minj 6=1[C(f1; 2; : : : ; ng; j) + dj1.

As always, we can also recover the optimum tour by remembering the i's that achieve the
minima. The complexity is O(n22n): The table has n2n entries (one per set and city), and it
takes about n time to �ll each entry.

Chain matrix multiplication

Suppose next that you want to multiply four matrices A�B � C �D of dimensions 40� 20,
20�300, 300�10, and 10�100, respectively. Multiplying an m�n matrix by an n�p matrix
takes mnp multiplications (a good enough estimate of the running time).

To multiply these matrices as (((A�B)�C)�D) takes 40�20�300+40�300�10+40�10�100 =
380; 000. A more clever way would be to multiply them as (A � ((B � C) � D)), with total
cost 20 � 300 � 10 + 20 � 10 � 100 + 40 � 20 � 100 = 160; 000. An even better order would be
((A� ((B�C))�D) with total cost 20 � 300 � 10+ 40 � 20 � 10+ 40 � 10 � 100 = 108; 000. Among
the �ve possible orders (the �ve possible binary trees with four leaves) this latter method is
the best.

How can we automatically pick the best among all possible orders for multiplying n given
matrices? Exhaustively examining all binary trees is impractical: There are C(n) = 1
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such trees (C(n) is called the Catalan number of n). Naturally enough, dynamic pro-

gramming is the answer.
Suppose that the matrices are A1 � A2 � � � � � An, with dimensions, respectively, m0 �

m1; m1 � m2; : : :mn�1 � mn. De�ne a subproblem (remember, this is the most crucial and
nontrivial step in the design of a dynamic programming algorithm the rest is usually automatic)
to be to multiply the matrices Ai � � � � � Aj , and let M(i; j) be the optimum number of
multiplications for doing so. Naturally, M(i; i) = 0, since it takes no e�ort to multiply a chain
consisting of one matrix. The recursive equation is

M(i; j) = min
i�k<j

[M(i; k) +M(k + 1; j) +mi�1 �mk �mj ]:

Naturally, M(i; i) = 0, since it takes no e�ort to multiply a chain consisting of the ith matrix.
This equation de�nes the program and its complexity |O(n3).

for i := 1 to n do M(i; i) := 0
for d := 1 to n� 1 do
for i := 1 to n� d do
fj = i+ d;M(i; j) =1, best(i; j) :=nil
for k := i to j � 1 do
if M(i; j) > M(i; k) +M(k + 1; j) +mi�1 �mk �mj then
fM(i; j) :=M(i; k) +M(k+ 1; j) +mi�1 �mk �mj , best(i; j) := kgg

As usual, improvements are possible (in this case, down to O(n logn)).
Run this algorithm in the simple example of four matrices givem to verify that the claimed

order is the best!

Optimum binary search trees. Suppose that you know the frequency with which keywords

appear in programs in a language:



begin 5%
do 40%
else 8%
end 4%
if 10%
then 10%
while 23%

We want to organize them in a binary search tree, such that the keyword in the root is
lexicographically bigger than all keywords in its left subtree and smaller than all keywords in
its right subtree (and the same for all other nodes) as shown below:

while

end

do then

begin else if

Figure 1: Binary search tree

The cost of this tree is 2:42 |that is to say, the average keyword �nds its position after
2:42 comparisons (1 comparison with probability 4% for `end', 2 comparisons with probability
40+10 = 50% for `do' and `then', and so on. The optimum binary search tree is shown below;
it uses 2.18 comparisons on the average, and can be found by dynamic programming.

Let pi be the probability of the ith keyword, and de�ne Pij =
Pj

k=i pk. Once more, let
T (i; j) be the average number of comparisons in the optimum tree for keywords i through j.
It is easy to see that

T (i; j) = min
i�r�j

[T (i; r� 1) + T (r + 1; j) + Pij ]:

Here r is the root of the optimum tree (to be determined by minimization). The equation
states that any keyword in the range i : : : j would cost us one for a comparison with the root,
and, if it is not the root, T (i; r � 1) + T (r + 1; j) for the comparisons performed in the left
or right subtrees. As always, the program is easy to write now (the initialization here is
T (i; i� 1) = 0).



end

do

begin while

if

else then

Figure 2: The optimum binary search tree


