
CS 3510 - Spring 2009

Homework 3

Due: March 25

1. Problem 5.2 from [DPV]. You do not need to use path compression.

(a)

Set S A B C D E F G H
{} 0/nil ∞/nil ∞/nil ∞/nil ∞/nil ∞/nil ∞/nil ∞/nil
A 1/A ∞/nil ∞/nil 4/A 8/A ∞/nil ∞/nil

A, B 2/B ∞/nil 6/B 6/B ∞/nil
A, B, C 3/C 6/B 2/C ∞/nil

A, B, C, G 1/G 1/G 1/G
A, B, C, G, D

A, B, C, G, D, F
A, B, C, G, D, F , H

A, B, C, G, D, F , H, E

(b)
F 0 G0 H0A0 B0 C0 E0D0

F 0

G1

H0A0

B1

C0 E0D0

1



F 0

G2

H0

A0

B1

C0

D0 E0

2. Problem 5.5 from [DPV]

(a) Suppose that the minimum spanning tree was initially T . After each
edge weight is increased by 1, the MST changes to T̂ . Therefore there
will be at least one edge (u, v) ∈ T but (u, v) /∈ T̂ . Suppose we add
edge (u, v) to the tree T̂ . T ∗ = T̂ + (u, v). Since (u, v) was not in T̂ ,
(u, v) must therefore be the longest edge in the cycle formed in T ∗.
Since (u, v) is the longest edge in this cycle, it will be the longest edge
in the same cycle in T because all edges in the cycle are decreased by
the same amount, 1. Therefore (u, v) will not be in T either. This
contradicts (u, v) ∈ T . So T and T̂ are equivalent.

(b) Consider the following counter-example. Intially, the shortest path
from A to D is of length 3, ABCD. However, once we increase each
edge weight by 1, the previous shortest path is now length 6 and the
new shortest path is of length 5, AD.

4
1 1

1

A

CB

D

3. Problem 5.14 from [DPV]

(a)

Symbol Codeword
a 0
b 10
c 111
d 1100
e 1101

2



(b) 1000000 ∗ (1/2) ∗ 1 bit +1000000 ∗ (1/4) ∗ 2 bits +1000000 ∗ (1/8) ∗ 3
bits +1000000∗ (1/16)∗4 bits +1000000∗ (1/16)∗4 bits = 1, 875, 000
bits

4. Problem 5.23 from [DPV]

(a) (e /∈ E′ and ŵ(e) > w(e)): If we run Kruskal’s algorithm with the
new weights we will end up choosing the same edges as with the
original weights, so the MST will remain the same. When we ran
Kruskal’s algorithm with the original weights we did not add the
edge e, so it must form a cycle by the time we have considered all
lighter edges. With the new weight we will be considering it at the
same time, or later, so it will again form a cycle and not be included
in the MST. Therefore the tree stays the same and no update is nec-
essary.

(b) (e /∈ E′ and ŵ(e) < w(e)): The edge e, may now enter the MST, forc-
ing out some other edge. We look at the cycle that e induces in the
original graph and if there is some edge with a larger weight than
the new value for e, then it will be replaced by e in the MST. It is
possible that this cycle includes all nodes of the original graph and
so that each must be checked to find the edge with maximum weight
on the cycle, leading to a worst case O(n) running time.

(c) (e ∈ E′ and ŵ(e) < w(e)): The edge e, may now have a lower weight
than some edge considered previously (when running Kruskal’s al-
gorithm). However, since e is in the MST, this earlier edge did not
form a cycle with e. This remains true even if we change the order
of the selection of these edges to occur after we select e. As a result,
the MST remains the same.

(d) (e ∈ E′ and ŵ(e) > w(e)): Since the weight of the edge e has in-
creased, it is possible that it will be replaced in the MST by some
edge currently not in the tree. Removing e from the MST, will create
two disconnected subgraphs and we must examine all edges that con-
nect these two subgraphs. If the weight of an edge is less than that of
e, then it will fill e’s role as connecting the subgraphs with the min-
imum cost. To find the lightest edge connecting the two subgraphs
we need to examine each edge and determine, in linear time, whether
both endpoints are in the same connected component. Now we recall
that we can find connected components in linear time using DFS!!
Just run DFS on the MST with e removed, and label all the vertices
with “cc1” if they are in the first part of the tree and “cc2” if they
are in the other part of the tree. Now that we have these labels, we

3



just examine all the edges and, among the ones with different labels
on their endpoints, we find the lightest edge e′. The new MST is
E′ \ {e} ∪ {e′}.

5. Problem 6.1 from [DPV]

We want to compute intermediate sums starting at the initial position. If
the running sum ever drops below zero, then we know that if a new max-
imum sum does exist, it will occur starting at the position j + 1, where j
was the position that the running sum dropped below zero. So we start a
new running sum beginning at position j + 1.

maximum-sum(int[] sequence)
1 max = 0, sum = 0
2 for i = 1 to sequence.length
3 if (sum > max) //update max
4 max = sum
5 elseif(sum < 0) //negative sum
6 sum = 0 //reset running sum
7 return max

This algorithm loops n times and contains only constant time operations
so it is O(n).

6. Problem 6.4 from [DPV]

(a) Consider a 2-D array of boolean values T (i, j), where T (i, j) is true if
and only if s[1 . . . j] can be reconstituted as a sequence of valid words.
The fact that the current word s[i..j] is only a valid reconstitution if
its prefix is one allows us to express T in terms of this subproblem,
T (i, j) = T (1, i− 1)∧ dict[s[i . . . j]]. Since the first row has no prefix,
it is initalized to dict[s[1 . . . j]] for j = 1 to n. So if we walk through
the matrix row by row, we can compute all values for T in O(n2)
time.
has-recon(s[1 . . . n])
1 Create an n x n Matrix T
2 for j = 1 to n
3 T(1, j) = dict[s[1 . . . j]]
4 for i = 2 to n
5 for j = i to n
6 T (i, j) = T (1, i− 1)∧ dict[s[i . . . j]]
7 if j equals n and T (i, j) is true
8 return true
9 return false

4



(b) In order to accommodate finding this sequence of words, we can alter
T so that it contains pointers to the last word in the reconstitution up
to position j, and null otherwise. Once we satisfy the truth condition,
we can return the last word sn. We can retrieve each subsequent
word in the following way, sj−1 = T (1, j - length(sj)) and so on until
j − length(sj) becomes zero.This returns the words in reverse order,
but they can be easily reversed.

7. Problem 6.8 from [DPV]

Given two strings, S of length m and T of length n, find the longest strings
which is a substring of both S and T . You first find the longest common
suffix for all pairs of prefixes of the strings. The longest common suffix is

lcsuffix(S1...p, T1...q) =
{

lcsuffix(S1...p−1, T1...q−1) + 1) ifS[p] = T [q]
0 otherwise

The maximal of these longest common suffixes of possible prefixes must
be the longest common substrings of S and T .

8. Problem 6.17 from [DPV]

We define D(v) as a predicate which evaluates to true if it is possible to
make change for v using available demoninations x1, x2, . . . , xn. If it is
possible to make change, then it is possible to make change for v − xi,
using the same dominations with one coin of xi fixed. Since we do not
know, for which i that this condition holds, we will do a logical or over all
i. The recursive definition of D(v) written as follows.

D(v) = V1≤i≤n

{
D(v − xi) xi ≤ v
false xi > v

Using this definition, the algorithm is as follows.

make-change(x1, . . . , v)
1 Create an array D of size v + 1
2 D[0] = true
3 for i = 1 to v
4 for j = 1 to n
5 if xj ≤ i
6 D[i] = D[i] ∨D[i− xj ]
7 else
8 D[i] = false
9 return D[v]

The outer loop runs v times, while the inner loop runs n giving an overall
O(nv) algorithm.

5


