1. Let a, b, and c be positive and real numbers. Show that $a^\log_b c = c^{\log_b a}$.

Proof. First note that

$$\log_b c = \log_b c / \log_b a + \log_b a = \log_a c \ast \log_b a.$$

Then we have

$$a^{\log_b c} = a^{\log_a c \ast \log_b a} = (a^{\log_a c})^{\log_b a} = c^{\log_b a}.$$

2. Let b be a real number greater than 1, and let x and y be positive real numbers. Show that $\log_b (x^y) = y \log_b x$.

Proof. Let $z = \log_b x$. By definition, this means that $b^z = x$. Therefore $b^{zy} = x^y$. Taking the logarithm of both sides, we find that

$$\log_b b^{zy} = \log_b x^y,$$

So

$$zy = \log_b x^y.$$

Substituting back for z gives the desired claim.

3. Let a and b be real numbers greater than 1, and let x be a positive real number. Show $\log_a x = \log_b x / \log_b a$.

1
Proof. Let \(\log_a x = u \), so \(x = a^u \). Also, let \(\log_b x = v \), so we have \(x = b^v \) and let \(\log_b a = w \), so \(a = b^w \). It follows that

\[
x = a^u = b^v \Rightarrow (b^w)^u = b^v \Rightarrow b^{wu} = b^v.
\]

But exponentiation is one-to-one, so it follows that \(wu = v \) and therefore \(\log_a x = \log_b x / \log_b a \).

4. Let \(m \) be a positive integer. Show that \(a \equiv b \pmod{m} \) if \(a \equiv b \pmod{m} \).

Proof. If \(a \equiv b \pmod{m} \), then \(a \) and \(b \) have the same remainder when divided by \(m \). Hence \(a = q_1 m + r \) and \(b = q_2 m + r \), where \(0 \leq r < m \). It follows that \(a - b = (q_1 - q_2)m \) so that \(m | (a - b) \). It follows that \(a \equiv b \pmod{m} \).

5. Let \(m \) be a positive integer. Show that if \(a \equiv b \pmod{m} \) and \(c \equiv d \pmod{m} \) then \(a + c \equiv b + d \pmod{m} \) and \(ac \equiv bd \pmod{m} \).

Proof. Since \(a \equiv b \pmod{m} \) and \(c \equiv d \pmod{m} \), there are integers \(s \), and \(t \) with \(b = a + sm \) and \(d = c + tm \). Hence,

\[
b + d = (a + sm) + (c + tm) = (a + c) + m(s + t)
\]

and

\[
bd = (a + sm)(c + tm) = ac + m(at + cs + stm).
\]

Hence,

\[
a + c \equiv b + d \pmod{m}
\]

and

\[
ac \equiv bd \pmod{m}
\]

6. Find \(2^{1744} \pmod{127} \).

Notice that \(2^7 = 128 = 1 \pmod{127} \). Then,

\[
2^{1744} \pmod{127} \equiv 2^{7 \cdot 249} \cdot 2 \pmod{127} \\
\equiv (2^7 \pmod{127})^{249} \cdot 2 \pmod{127} \\
\equiv 1^{249} \cdot 2 \pmod{127} \\
\equiv 2 \pmod{127}.
\]
7. Find the unit’s digit of 287^{3503}.

First notice that $287^{3503} \pmod{10}$ is the unit’s digit, and this is equivalent to $(287 \pmod{10})^{3503} \equiv 7^{3503} \pmod{10}$.

If we look at successive powers of 7 mod 10, we find $7^0 \equiv 1 \pmod{10}$, $7^1 \equiv 7 \pmod{10}$, $7^2 \equiv 9 \pmod{10}$, $7^3 \equiv 7^2 \cdot 7 \equiv 9 \cdot 7 \equiv 3 \pmod{10}$, and then $7^4 \equiv 7^3 \cdot 7 \equiv 3 \cdot 7 \equiv 1 \pmod{10}$. At this point the sequence $\{1, 7, 9, 3\}$ just repeats for successive powers of 7, so $7^{4k} \equiv 1 \pmod{10}$ for every integer k. Therefore,

$$287^{3503} \pmod{10} \equiv 7^{3503} \pmod{10}$$
$$\equiv (7^{4 \cdot 875} \cdot 7^3) \pmod{10}$$
$$\equiv 1^{875} \cdot 7^3 \pmod{10}$$
$$\equiv 3 \pmod{10}.$$

8. What is $3^{602} \pmod{7}$? (Hint: Use Fermat’s little theorem.)

Fermat’s little theorem tells us

$$3^6 \equiv 1 \pmod{7}.$$

This tells us that

$$3^{602} \equiv 3^{6 \cdot 100 + 2} \pmod{7}$$
$$\equiv (3^6 \pmod{7})^{100} \cdot 3^2 \pmod{7}$$
$$\equiv 1^{100} \cdot 3^2 \pmod{7}$$
$$\equiv 2 \pmod{7}.$$