
Exponentiation and Primality

1 Exponentiation

We are asked to compute xy mod z, where x; y; z are given integers. The obvious iterative
algorithm (multiply by x y times) is too slow, it takes time exponential in the number of bits
of the given integers. The right way to do it is this:

Repeatedly square x blog yc times to compute x2 mod z; x4 mod z; x8 mod z; : : : ; x2
blog yc

mod
z.

Compute xy mod z from these numbers by multiplying together, always modulo z,

the powers that correspond to ones in the binary representation of y.

For example, to compute 2320 mod 10 we would compute 232 mod 10; 234 mod 10; 238 mod
10; 2316 mod 10, and then we would multiply 234 � 2316 mod 10 to obtain the result.

This takes at most 2 log y arithmetic operations of integers modulo z, and is therefore
e�cient.

Another way to view the same algorithm: Remember the multiplication algorithm in the
�rst lecture (recursive version):

mult(x,y)

if y = 1 then return(x)

else return(mult(x+x,b y/2 c)+odd(y)�x)
The same \control structure" exponentiates, just change + to *:

exp(x,y,z)

if y = 1 then return(x mod z)

else return(exp(x*x,b y/2 c)*x " odd(y) mod z)

2 Primality

We shall study the complexity of two very fundamental, and intimately related, computational
problems:

Primality Given an integer n, is it a prime?

Factoring Given an integer n, what are its prime factors?

Obviously, Primality cannot be harder than Factoring, since, if we knew how to factor,
we would de�nitely know how to test for primality. What is surprising and fundamental |and
the basis of modern cryptography| is that Primality is easy while Factoring is hard!

Primality can be trivially solved in O(n) time |in fact, O(
p
n) is easy, we need only test

factors up to
p
n. But these are exponential algorithms |in the number of bits of n. In fact,

pursuing this line will get us nowhere: Since Factoring is hard, our only hope for �nding a
fast Primality algorithm is to look for an algorithm that decides whether n is prime without
discovering a factor of n in case the answer is \no."

We describe such an algorithm next. We start with four facts from number theory on
which this algorithm |and also the RSA cryptosystem| is based. We shall only prove facts
1 and 4.

Fact 1. (Fermat's Little Theorem.) If p is prime, then for all a 6= 0 mod p ap�1 = 1 mod p.

Fact 2. If p is not a prime, and if p is not a Carmichael number, then formost a 6= 0 mod p

ap�1 6= 1 mod p.

Fact 3. The density of primes around n is about 1
lnn . In other words, among all numbers

with D decimal digits, the chances of being prime is one in (a little more than) 2D. \One in
about twenty social security numbers are prime."

Fact 4. If p and q are primes, then for all a 6= 0 mod p; q a(p�1)�(q�1) = 1 mod p � q.
Let us prove Fact 1, by example. Take p = 7, and consider the nonzero numbers modulo

7, f1; 2; 3; 4; 5; 6g. Pick an a in this set, and multiply all these numbers by a, modulo 7, we get
(say, a = 5) f5; 3; 1; 6; 4; 2g|the same numbers! We should expect this: If a � i = a � j mod p,
then, by premultiplying by a�1 |in this case 3| we get i = j.

So, by multiplying this set by a we get the same set.
Now multiply together the numbers in the two sets (which we know are equal) fi : 0 < i <

pg and fa � i mod p : 0 < i < pg. We must get the same product. So,

1 � 2 � 3 � � � � (p� 1) = a � 1 � a � 2 � a � 3 � � � � a � (p� 1) mod p;

and if we multiply both sides by the inverses of all numbers 1�1; 2�1; : : : ; (p�1)�1 we get that

ap�1 = 1 mod p;

which is Fact 1.
Fact 2 is a weak converse of Fact 1: It says that if p is composite, and if p does not happen

to be among a set of extremely rare exceptions called Carmichael numbers,1 then the primality
test suggested by Fermat's Little Theorem will fail with probability at leat 50%.

Fermat's Little Theorem suggests the following randomized algorithm for primality:

primality(p)

repeat

f pick an integer a between 0 and p at random

if ap�1 6= 1 mod p then return(p ``is not a prime'') g
until satisfied

return(p ``is a almost certainly a prime'')

By repeating the test 100 times, we establish primality to a degree of con�dence (:999 : : :
up to thirty nines) that surpasses all other aspects of life and computation. The test takes
O(log3 p) steps |fewer if fast multiplication is used.

Incidentally Fact 4's proof is exactly the same as Fact 1's, except that we consider the
set of all numbers between 0 and p � q that are relatively prime to p � q. Notice that there are
(p� 1) � (q� 1) such numbers |check it out, one in every p of the numbers between 0 and p � q
are divisible by p, and one every q by q.

1A number c is a Carmichael number if it is not a prime, and still djc implies d � 1jc � 1. The smallest

Carmichael number is 561.

