U.C. Berkeley — CS170: Intro to CS Theory Handout N4
Professor Luca Trevisan September 6, 2001

Notes for Lecture 4

1 Depth-First Search

We will start by studying two fundamental algorithms for searching a graph: depth-first
search and breadth-first search. To better understand the need for these algorithms, let us
imagine the computer’s view of a graph that has been input into it: it can examine each
of the edges adjacent to a vertex in turn, by traversing its adjacency list; it can also mark
vertices as “visited.” This corresponds to exploring a dark maze with a flashlight and a
piece of chalk. You are allowed to illuminate any corridor of the maze emanating from the
current room, and you are also allowed to use the chalk to mark the current room as having
been “visited.” Clearly, it would not be easy to find your way around without the use of
any additional data structures.

Mythology tells us that the right data structure for exploring a maze is a ball of string.
Depth-first search is a technique for exploring a graph using as a basic data structure a
stack—the cyberanalog of a ball of string. It is not hard to visualize why a stack is the
right way to implement a ball of string in a computer. A ball of string allows two primitive
steps: unwind to get into a new room (the stack analog is push the new room) and rewind
to return to the previous room—the stack analog is pop.

Actually, we shall present depth-first search not as an algorithm explicitly manipulating
a stack, but as a recursive procedure, using the stack of activation records provided by
the programming language. We start by defining a recursive procedure explore. When
explore is invoked on a vertex v, it explores all previously unexplored vertices that are
reachable from v.

1. procedure explore(v: vertex)

2. visited(v) := true

3. previsit(v)

4. for each edge (v,w) out of v do

5. {if not visited(w) then explore(w)}

6. postvisit(v)

7. algorithm dfs(G = (V,E): graph)

8. for each v in V do {visited(v) := false}
9. for each v in V do

10. {if not visited(v) then explore(v)}}

previsit (v) and postvisit(v) are two routines that perform at most some constant
number of operations on the vertex v. As we shall see, by varying these routines depth-first
search can be tuned to accomplish a wide range of important and sophisticated tasks.

Depth-first search takes O(n + e) steps on a graph with n vertices and e edges, because
the algorithm performs at most some constant number of steps per each vertexr and edge of



Notes for Lecture 4 2

the graph. To see this clearly, let us go through the exercise of “charging” each operation
of the algorithm to a particular vertex or edge of the graph. The procedure explore (lines
1 through 6) is called at most once—in fact, ezactly once—for each vertex; the boolean
variable visited makes sure each vertex is visited only once. The finite amount of work
required to perform the call explore(v) (such as adding a new activation record on the
stack and popping it in the end) is charged to the vertex v. Similarly, the finite amount
of work in the routines previsit(v) and postvisit(v) (lines 3 and 6) is charged to the
vertex v. Finally, the work done for each outgoing edge (v, w) (looking it up in the adjacency
list of v and checking whether v has been visited, lines 4 and 5) is charged to that edge.
Each edge (v, w) is processed only once, because its tail (also called source) v is visited
only once—in the case of an undirected graph, each edge will be visited twice, once in each
direction. Hence, every element (vertex or edge) of the graph will end up being charged at
most some constant number of elementary operations. Since this accounts for all the work
performed by the algorithm, it follows that depth-first search takes O(n + e) work—it is a
linear-time algorithm.

This is the fastest possible running time of any algorithm solving a nontrivial problem,
since any decent problem will require that each data item be inspected at least once.! It
means that a graph can be searched in time comparable to the time it takes to read it into
the memory of a computer!

Here is an example of DF'S on an undirected graph, with vertices labeled by the order in
which they are first visited by the DFS algorithm. DF'S defines a tree in a natural way: each
time a new vertex, say w, is discovered, we can incorporate w into the tree by connecting
w to the vertex v it was discovered from via the edge (v, w). If the graph is disconnected,
and thus depth-first search has to be restarted, a separate tree is created for each restart.
The edges of the depth-first search tree(s) are called tree edges; they are the edges through
which the control of the algorithm flows. The remaining edges, shown as broken lines, go
from a vertex of the tree to an ancestor of the vertex, and are therefore called back edges.
If there is more than one tree, the collection of all of them is called a forest.

!There is an exception to this, namely database queries, which can often be answered without examining
the whole database (for example, by binary search). Such procedures, however, require data that have been
preprocessed and structured in a particular way, and so cannot be fairly compared with algorithms, such as
depth-first search, which must work on unpreprocessed inputs.



Notes for Lecture 4 3

Original Undirected Graph

Resultsof DFS  (Order of vertex previsit shown)

Tree Edges: e

Nontree (Back) edges: _ _ _ _ g
By modifying the procedures previsit and postvisit, we can use depth-first search
to compute and store useful information and solve a number of important problems. The
simplest such modification is to record the “time” each vertex is first seen by the algorithm,
i.e. produce the labels on the vertices in the above picture. We do this by keeping a counter
(or clock), and assigning to each vertex the “time” previsit was executed (postvisit does
nothing). This would correspond to the following code:
procedure previsit(v: vertex)
pre(v) := clock++

Naturally, clock will have to be initialized to zero in the beginning of the main algo-
rithm. If we think of depth-first search as using an explicit stack, pushing the vertex being
visited next on top of the stack, then pre(v) is the order in which vertex v is first pushed
on the stack. The contents of the stack at any time yield a path from the root to some
vertex in the depth first search tree. Thus, the tree summarizes the history of the stack
during the algorithm.

More generally, we can modify both previsit and postvisit to increment clock and
record the time vertex v was first visited, or pushed on the stack (pre(v)), and the time
vertex v was last visited, or popped from the stack (post(v)):

procedure previsit(v: vertex)
pre(v) := clock++

procedure postvisit(v: vertex)
post(v) := clock++

Let us rerun depth-first search on the undirected graph shown above. Next to each
vertex v we showing the numbers pre(v) /post (v) computed as in the last code segment,



Notes for Lecture 4 4

next to each vertex wv.
Results of DFS (pre(v)/post(v) shown next to each vertex x)

/18 2/17 8/9 7114 10/13
| , / N N
| / \
| 7 N
4/5 3/16 6/15 11/12
Tree Edges: -
Nontree (Back) edges. _ _ _ _ g

How would the nodes be numbered if previsit () did not do anything?

Notice the following important property of the numbers pre(v) and post(v) (when
both are computed by previsit and postvisit: Since [prel[v],post[v]] is essentially
the time interval during which v stayed on the stack, it is always the case that

o two intervals [pre[ul ,post[ul] and [prelv],postlv]] are either disjoint, or one
contains another.

In other words, any two such intervals cannot partially overlap. We shall see many
more useful properties of these numbers.

One of the simplest feats that can accomplished by appropriately modifying depth-first
search is to subdivide an undirected graph to its connected components, defined next. A path
in a graph G = (V, E) is a sequence (vg,v1,...,v,) of vertices, such that (v;_1,v;) € E for
1=1,...,n. An undirected graph is said to be connected if there is a path between any two
vertices.? If an undirected graph is disconnected, then its vertices can be partitioned into
connected components. We can use depth-first search to tell if a graph is connected, and, if
not, to assign to each vertex v an integer, ccnum[v], identifying the connected component
of the graph to which v belongs. This can be accomplished by adding a line to previsit.

procedure previsit(v: vertex)
pre(v) := clock++
ccnum(v) := cc

Here cc is an integer used to identify the various connected components of the graph;
it is initialized to zero just after line 7 of dfs, and increased by one just before each call of
explore at line 10 of dfs.

2 As we shall soon see, connectivity in directed graphs is a much more subtle concept.



Notes for Lecture 4 5

2 Applications of Depth-First Searching

We can represent the tasks in a business or other organization by a directed graph: each
vertex u represents a task, like manufacturing a widget, and each directed edge (u,v) means
that task u must be completed before task v can be done (such as shipping a widget to a
customer). The simplest question one can ask about such a graph is: in what orders can I
complete the tasks, satisfying the precedence order defined by the edges, in order to run the
business? We say “orders” rather than “order” because there is not necessarily a unique
order (can you give an example?) Furthermore it may be that no order is legal, in which
case you have to rethink the tasks in your business (can you give an example?). In the
language of graph theory, answering these questions involves computing strongly connected
components and topological sorting.

Here is a slightly more difficult question that we will also answer eventually: suppose
each vertex is labeled by a positive number, which we interpret as the time to execute the
task it represents. Then what is the minimum time to complete all tasks, assuming that
independent tasks can be executed simultaneously?

The tool to answer these questions is DFS.

3 Depth-first Search in Directed Graphs

We can also run depth-first search on a directed graph, such as the one shown below.

The resulting pre [v] /post [v] numbers and depth-first search tree are shown. Notice,
however, that not all non-tree edges of the graph are now back edges, going from a vertex in
the tree to an ancestor. The non-tree edges of the graph can be classified into three types:

e Forward edges: these go from a vertex to a descendant (other than child) in the
depth-first search tree. You can tell such an edge (v, w) because pre[v] < prelw].

e Back edges: these go from a vertex to an ancestor in the depth-first search tree. You
can tell such an edge (v, w) because, at the time it is traversed, pre[v] > prel[w],
and post [w] is undefined.

e Cross edges: these go from “right to left,” from a newly discovered vertex to a vertex
that lies in a part of the tree whose processing has been concluded. You can tell such
an edge (v, w), because, at the time it is traversed, pre[v] > prel[w], and post [w]
is defined. Can there be cross edges in an undirected graph?

Why do all edges fall into one of these four categories (tree, forward, back, cross)?



Notes for Lecture 4 6

DFS of a Directed Graph
1 2 3 1 2 3

1724

3/18
/119720 1 2122

/ 1 \
I ]
1 1
! /

8/11 12/13

9/10
(tree and non-tree edges shown) (pre/post number s shown)

4 Directed Acyclic Graphs

A cycle in a directed graph is a path (vg,v1,...,v,) such that (v,,vo) is also an edge. A
directed graph is acyclic, or a dag, if it has no cycles. See CLR page 88 for a more careful
definition.

CrAam 1

A directed graph is acyclic if and only if depth-first search on it discovers no backedges.

PROOF: If (u,v) is a backedge, then (u,v) together with the path from v to u in the
depth-first search tree form a cycle.

Conversely, suppose that the graph has a cycle, and consider the vertex v on the cycle
assigned the lowest pre[v] number, i.e. v is the first vertex on the cycle that is visited.



Notes for Lecture 4 7

Then all the other vertices on the cycle must be descendants of v, because there is path
from v to each of them. Let (w,v) be the edge on the cycle pointing to v; it must be a
backedge. O

It is therefore very easy to use depth-first search to see if a graph is acyclic: Just check
that no backedges are discovered. But we often want more information about a dag: We
may want to topologically sort it. This means to order the vertices of the graph from top to
bottom so that all edges point downward. (Note: This is possible if and only if the graph
is acyclic. Can you prove it? One direction is easy; and the topological sorting algorithm
described next provides a proof of the other.) This is interesting when the vertices of the
dag are tasks that must be scheduled, and an edge from u to v says that task u must
be completed before v can be started. The problem of topological sorting asks: in what
order should the tasks be scheduled so that all the precedence constraints are satisfied. The
reason having a cycle means that topological sorting is impossible is that having « and v on
a cycle means that task © must be completed before task v, and task v must be completed
before task u, which is impossible.

To topologically sort a dag, we simply do a depth-first search, and then arrange the
vertices of the dag in decreasing post [v]. That this simple method correctly topologically
sorts the dag is a consequence of the following simple property of depth-first search:

LEMMA 2

For each edge (u,v) of G, post(u) < post(v) if and only if (u,v) is a back edge.

PRrooF: Edge (u,v) must either be a tree edge (in which case descendent v is popped before
ancestor u, and so post (u) >post (v)), or a forward edge (same story), or a cross edge (in
which case u is in a subtree explored after the subtree containing v is explored, so v is both
pushed and popped before u is pushed and popped, i.e. pre(v) and post(v) are both less
pre(u) and post (u)), or a back edge (u is pushed and popped after v is pushed and before
v is popped, i.e. pre(v)<pre(u) <post(u) <post(v)). O

This property proves that our topological sorting method correct. Because take any
edge (u,v) of the dag; since this is a dag, it is not a back edge; hence post[u] > post[v].
Therefore, our method will list u before v, as it should. We conclude that, using depth-first
search we can determine in linear time whether a directed graph is acyclic, and, if it is, to
topologically sort its vertices, also in linear time.

Dags are an important subclass of directed graphs, useful for modeling hierarchies and
causality. Dags are more general than rooted trees and more specialized than directed
graphs. It is easy to see that every dag has a sink (a vertex with no outgoing edges). Here
is why: Suppose that a dag has no sink; pick any vertex v; in this dag. Since it is not
a sink, there is an outgoing edge, say (v1,v2). Consider now vs, it has an outgoing edge
(v2,v3). And so on. Since the vertices of the dag are finite, this cannot go on forever,
vertices must somehow repeat—and we have discovered a cycle! Symmetrically, every dag
also has a source, a vertex with no incoming edges. (But the existence of a source and a
sink does not of course guarantee the graph is a dag!)

The existence of a source suggests another algorithm for outputting the vertices of a
dag in topological order:

e Find a source, output it, and delete it from the graph. Repeat until the
graph is empty.



Notes for Lecture 4 8

Can you see why this correctly topologically sorts any dag? What will happen if we run
it on a graph that has cycles? How would you implement it in linear time?



