
U.C. Berkeley — CS170: Intro to CS Theory Handout N23
Professor Luca Trevisan November 29, 2001

Notes for Lecture 23

1 NP-completeness of Circuit-SAT

We will prove that the circuit satisfiability problem CSAT described in the previous notes
is NP-complete.

Proving that it is in NP is easy enough: The algorithm V () takes in input the descrip-
tion of a circuit C and a sequence of n Boolean values x1, . . . xn, and V (C, x1, . . . , xn) =
C(x1, . . . , xn). I.e. V simulates or evaluates the circuit.

Now we have to prove that for every decision problem A in NP, we can find a reduction
from A to CSAT. This is a difficult result to prove, and it is impossible to prove it really
formally without introducing the Turing machine model of computation. We will prove the
result based on the following fact, of which we only give an informal proof.

Theorem 1
Suppose A is a decision problem that is solvable in p(n) time by some program P, where n
is the length of the input. Also assume that the input is represented as a sequence of bits.

Then, for every fixed n, there is a circuit Cn of size about O((p(n)2) · (log p(n))O(1))
such that for every input x = (x1, . . . , xn) of length n, we have

A(x) = Cn(x1, . . . , xn)

That is, circuit Cn solves problem A on all the inputs of length n.
Furthermore, there exists an efficient algorithm (running in time polynomial in p(n))

that on input n and the description of P produces Cn.

The algorithm in the “furthermore” part of the theorem can be seen as the ultimate
CAD tool, that on input, say, a C++ program that computes a boolean function, returns the
description of a circuit that computes the same boolean function. Of course the generality
is paid in terms of inefficiency, and the resulting circuits are fairly big.
Proof: [Sketch] Without loss of generality, we can assume that the language in which P
is written is some very low-level machine language (as otherwise we can compile it).

Let us restrict ourselves to inputs of length n. Then P runs in at most p(n) steps. It
then accesses at most p(n) cells of memory.

At any step, the “global state” of the program is given by the content of such p(n) cells
plus O(1) registers such as program counter etc. No register/memory cell needs to contain
numbers bigger than log p(n) = O(log n). Let q(n) = (p(n) + O(1))O(log n) denote the size
of the whole global state.

We maintain a q(n)× p(n) “tableau” that describes the computation. The row i of the
tableau is the global state at time i. Each row of the tableau can be computed starting
from the previous one by means of a small circuit (of size about O(q(n))). In fact the
microprocessor that executes our machine language is such a circuit (this is not totally
accurate). 2



Notes for Lecture 23 2

Now we can argue about the NP-completeness of CSAT. Let us first think of how the
proof would go if, say, we want to reduce the Hamiltonian cycle problem to CSAT. Then,
given a graph G with n vertices and m edges we would construct a circuit that, given in
input a sequence of n vertices of G, outputs 1 if and only if the sequence of vertices is a
Hamiltonian cycle in G. How can we construct such a circuit? There is a computer program
that given G and the sequence checks if the sequence is a Hamiltonian cycle, so there is also
a circuit that given G and the sequence does the same check. Then we “hard-wire” G into
the circuit and we are done. Now it remains to observe that the circuit is a Yes-instance of
CSAT if and only if the graph is Hamiltonian.

The example should give an idea of how the general proof goes. Take an arbitrary
problem A in NP. We show how to reduce A to Circuit Satisfiability.

Since A is in NP, there is some polynomial-time computable algorithm VA and a
polynomial pA such that A(x) = YES if and only if there exists a y, with length(y) ≤
pA(length(x)), such that V (x, y) outputs YES.

Consider now the following reduction. On input x of length n, we construct a circuit C
that on input y of length p(n) decides whether V (x, y) outputs YES or NOT.

Since V runs in time polynomial in n+p(n), the construction can be done in polynomial
time. Now we have that the circuit is satisfiable if and only if x ∈ A.

2 Proving More NP-completeness Results

Now that we have one NP-complete problem, we do not need to start “from scratch” in
order to prove more NP-completeness results. Indeed, the following result clearly holds:

Lemma 2
If A reduces to B, and B reduces to C, then A reduces to C.

Proof: If A reduces to B, there is a polynomial time computable function f such that
A(x) = B(f(x)); if B reduces to C it means that there is a polynomial time computable
function g such that B(y) = C(g(y)). Then we can conclude that we have A(x) = C(g(f(x)),
where g(f()) is computable in polynomial time. So A does indeed reduce to C. 2

Suppose that we have some problem A in NP that we are studying, and that we are
able to prove that CSAT reduces to A. Then we have that every problem N in NP reduces
to CSAT, which we have just proved, and CSAT reduces to A, so it is also true that every
problem in NP reduces to A, that is, A is NP-hard. This is very convenient: a single
reduction from CSAT to A shows the existence of all the infinitely many reductions needed
to establish the NP-hardness of A. This is a general method:

Lemma 3
Let C be an NP-complete problem and A be a problem in NP. If we can prove that C
reduces to A, then it follows that A is NP-complete.

Right now, literally thousands of problems are known to be NP-complete, and each
one (except for a few “root” problems like CSAT) has been proved NP-complete by way
of a single reduction from another problem previously proved to be NP-complete. By the
definition, all NP-complete problems reduce to each other, so the body of work that lead



Notes for Lecture 23 3

to the proof of the currently known thousands of NP-complete problems, actually implies
millions of pairwise reductions between such problems.

3 NP-completeness of SAT

We defined the CNF Satisfiability Problem (abbreviated SAT) above. SAT is clearly in
NP. In fact it is a special case of Circuit Satisfiability. (Can you see why?) We want to
prove that SAT it is NP-hard, and we will do so by reducing from Circuit Satisfiability.

First of all, let us see how not to do the reduction. We might be tempted to use the
following approach: given a circuit, transform it into a Boolean CNF formula that computes
the same Boolean function. Unfortunately, this approach cannot lead to a polynomial time
reduction. Consider the Boolean function that is 1 iff an odd number of inputs is 1. There
is a circuit of size O(n) that computes this function for inputs of length n. But the smallest
CNF for this function has size more than 2n.

This means we cannot translate a circuit into a CNF formula of comparable size that
computes the same function, but we may still be able to transform a circuit into a CNF
formula such that the circuit is satisfiable iff the formula is satifiable (although the circuit
and the formula do compute somewhat different Boolean functions).

We now show how to implement the above idea. We will need to add new variables.
Suppose the circuit C has m gates, including input gates, then we introduce new variables
g1, . . . , gm, with the intended meaning that variable gj corresponds to the output of gate j.

We make a formula F which is the AND of m + 1 sub-expression. There is a sub-
expression for every gate j, saying that the value of the variable for that gate is set in
accordance to the value of the variables corresponding to inputs for gate j.

We also have a (m + 1)-th term that says that the output gate outputs 1. There is no
sub-expression for the input gates.

For a gate j, which is a NOT applied to the output of gate i, we have the sub-expression

(gi ∨ gj) ∧ (ḡi ∨ ḡj)

For a gate j, which is a AND applied to the output of gates i and l, we have the
sub-expression

(ḡj ∨ gi) ∧ (ḡj ∨ gl) ∧ (gj ∨ ḡi ∨ ḡl)

Similarly for OR.
This completes the description of the reduction. We now have to show that it works.

Suppose C is satisfiable, then consider setting gj being equal to the output of the j-th gate
of C when a satisfying set of values is given in input. Such a setting for g1, . . . , gm satisfies
F .

Suppose F is satisfiable, and give in input to C the part of the assignment to F corre-
sponding to input gates of C. We can prove by induction that the output of gate j in C is
also equal to gj , and therefore the output gate of C outputs 1.

So C is satisfiable if and only if F is satisfiable.



Notes for Lecture 23 4

4 NP-completeness of 3SAT

SAT is a much simpler problem than Circuit Satisfiability, if we want to use it as a starting
point of NP-completeness proofs. We can use an even simpler starting point: 3-CNF
Formula Satisfiability, abbreviated 3SAT. The 3SAT problem is the same as SAT, except
that each OR is on precisely 3 (possibly negates) variables. For example, the following is
an instance of 3SAT:

(x2 ∨ x̄4 ∨ x5) ∧ (x1 ∨ x̄3 ∨ x̄4) ∧ (x̄2 ∨ x3 ∨ x5) (1)

Certainly, 3SAT is in NP, just because it’s a special case of SAT.
In the following we will need some terminology. Each little OR in a SAT formula is

called a clause. Each occurrence of a variable, complemented or not, is called a literal.
We now prove that 3SAT is NP-complete, by reduction from SAT. Take a formula F

of SAT. We transform it into a formula F ′ of 3SAT such that F ′ is satisfiable if and only if
F is satisfiable.

Each clause of F is transformed into a sub-expression of F ′. Clauses of length 3 are left
unchanged.

A clause of length 1, such as (x) is changed as follows

(x ∨ y1 ∨ y2) ∧ (x ∨ y1 ∨ ȳ2)(x ∨ ȳ1 ∨ y2) ∧ (x ∨ ȳ1 ∨ ȳ2)

where y1 and y2 are two new variables added specifically for the transformation of that
clause.

A clause of length 2, such as x1 ∨ x2 is changed as follows

(x1 ∨ x2 ∨ y) ∧ (x1 ∨ x2 ∨ ȳ)

where y is a new variable added specifically for the transformation of that clause.
For a clause of length k ≥ 4, such as (x1 ∨ · · · ∨ xk), we change it as follows

(x1 ∨ x2 ∨ y1) ∧ (ȳ1 ∨ x3 ∨ y2) ∧ (ȳ2 ∨ x4 ∨ y4) ∧ · · · ∧ (ȳk−3 ∨ xk−1 ∨ xk)

where y1, · · · , yk−3 are new variables added specifically for the transformation of that clause.
We now have to prove the correctness of the reduction.

• We first argue that if F is satisfiable, then there is an assignment that satisfies F ′.

For the shorter clauses, we just set the y-variables arbitrarily. For the longer clause
it is slightly more tricky.

• We then argue that if F is not satisfiable, then F ′ is not satisfiable.

Fix an assignment to the x variables. Then there is a clause in F that is not satisfied.
We argue that one of the derived clauses in F ′ is not satisfied.



Notes for Lecture 23 5

5 Some NP-complete Graph Problems

5.1 Independent Set

Given an undirected non-weighted graph G = (V, E), an independent set is a subset I ⊆ V
of the vertices such that no two vertices of I are adjacent. (This is similar to the notion of
a matching, except that it involves vertices and not edges.)

We will be interested in the following optimization problem: given a graph, find a largest
independent set. We have seen that this problem is easily solvable in forests. In the general
case, unfortunately, it is much harder.

The problem models the execution of conflicting tasks, it is related to the construction
of error-correcting codes, and it is a special case of more interesting problems. We are going
to prove that it is not solvable in polynomial time unless P = NP.

First of all, we need to formulate it as a decision problem:

• Given a graph G and an integer k, does there exist an independent set in G with at
least k vertices?

It is easy to see that the problem is in NP. We have to see that it is NP-hard. We will
reduce 3SAT to Maximum Independent Set.

Starting from a formula φ with n variables x1, . . . , xn and m clauses, we generate a
graph Gφ with 3m vertices, and we show that the graph has an independent set with at
least m vertices if and only if the formula is satisfiable. (In fact we show that the size
of the largest independent set in Gφ is equal to the maximum number of clauses of φ
that can be simultaneously satisfied. — This is more than what is required to prove the
NP-completeness of the problem)

The graph Gφ has a triangle for every clause in φ. The vertices in the triangle correspond
to the three literals of the clause.

Vertices in different triangles are joined by an edge iff they correspond to two literals
that are one the complement of the other. In Figure 1 we see the graph resulting by applying
the reduction to the following formula:

(x1 ∨ ¬x5 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (x3 ∨ x2 ∨ x4)

To prove the correctness of the reduction, we need to show that:

• If φ is satisfiable, then there is an independent set in Gφ with at least m vertices.

• If there is an independent set in G with at least m vertices, then φ is satisfiable.

From Satisfaction to Independence. Suppose we have an assignment of Boolean values
to the variables x1, . . . , xn of φ such that all the clauses of φ are satisfied. This means that
for every clause, at least on of its literals is satisfied by the assignment. We construct an
independent set as follows: for every triangle we pick a node that corresponds to a satisfied
literal (we break ties arbitrarily). It is impossible that two such nodes are adjacent, since
only nodes that corresponds to a literal and its negation are adjacent; and they cannot be
both satisfied by the assignment.



Notes for Lecture 23 6

x1 not x3

not x5
x2

x3 x4

not x1

x3

x4

Figure 1: The reduction from 3SAT to Independent Set.

From Independence to Satisfaction. Suppose we have an independent set I with m
vertices. We better have exactly one vertex in I for every triangle. (Two vertices in the
same triangle are always adjacent.) Let us fix an assignment that satisfies all the literals
that correspond to vertices of I. (Assign values to the other variables arbitrarily.) This is a
consistent rule to generate an assignment, because we cannot have a literal and its negation
in the independent set). Finally, we note how every clause is satisfied by this assignment.

Wrapping up:

• We showed a reduction φ → (Gφ,m) that given an instance of 3SAT produces an
instance of the decision version of Maximum Independent Set.

• We have the property that φ is satisfiable (answer YES for the 3SAT problem) if and
only if Gφ has an independent set of size at least m.

• We knew 3SAT is NP-hard.

• Then also Max Independent Set is NP-hard; and so also NP-complete.

5.2 Maximum Clique

Given a (undirected non-weighted) graph G = (V, E), a clique K is a set of vertices K ⊆ V
such that any two vertices in K are adjacent. In the Maximum Clique problem, given a
graph G we want to find a largest clique.

In the decision version, given G and a parameter k, we want to know whether or not G
contains a clique of size at least k. It should be clear that the problem is in NP.

We can prove that Maximum Clique is NP-hard by reduction from Maximum Indepen-
dent Set. Take a graph G and a parameter k, and consider the graph G′, such that two



Notes for Lecture 23 7

vertices in G′ are connected by an edge if and only if they are not connected by an edge in
G. We can observe that every independent set in G is a clique in G′, and every clique in
G′ is an independent set in G. Therefore, G has an independent set of size at least k if and
only if G′ has a clique of size at least k.

5.3 Minimum Vertex Cover

Given a (undirected non-weighted) graph G = (V, E), a vertex cover C is a set of vertices
C ⊆ V such that for every edge (u, v) ∈ E, either u ∈ C or v ∈ C (or, possibly, both). In
the Minimum Vertex Cover problem, given a graph G we want to find a smallest vertex
cover.

In the decision version, given G and a parameter k, we want to know whether or not G
contains a vertex cover of size at most k. It should be clear that the problem is in NP.

We can prove that Minimum Vertex Cover is NP-hard by reduction from Maximum
Independent Set. The reduction is based on the following observation:

Lemma 4
If I is an independent set in a graph G = (V, E), then the set of vertices C = V − I that are
not in I is a vertex cover in G. Furthermore, if C is a vertex cover in G, then I = V −C is
an independent set in G.
Proof: Suppose C is not a vertex cover: then there is some edge (u, v) neither of whose
endpoints is in C. This means both the endpoints are in I and so I is not an independent
set, which is a contradiction. For the “furthermore” part, suppose I is not an independent
set: then there is some edge (u, v) ∈ E such that u ∈ I and v ∈ I, but then we have an
edge in E neither of whose endpoints are in C, and so C is not a vertex cover, which is a
contradiction. 2

Now the reduction is very easy: starting from an instance (G, k) of Maximum Indepen-
dent set we produce an instance (G,n− k) of Minimum Vertex Cover.


