U.C. Berkeley — CS170: Intro to CS Theory Handout N2
Professor Luca Trevisan August 30, 2001

Notes for Lecture 2

1 Integer Multiplication

The standard multiplication algorithm takes time ©(n?) to multiply together two n digit
numbers. This algorithm is so natural that we may think that no algorithm could be better.
Here, we will show that better algorithms exist (at least in terms of asymptotic behavior).
Imagine splitting each number = and y into two parts: z = 2/2a + b,y = 2/2¢ + d.
Then:
zy = 2"ac + 2?(ad + be) + bd.

The additions and the multiplications by powers of 2 (which are just shifts!) can all be
done in linear time. So the algorithm is

function Mul(x,y)
n = common bit length of x and y
if n small enough
return x*y
else
write x = 27 (n/2)a+b and y = 27 (n/2)*c+d ... no cost for this
pl = Mul(a,c)

p2 = Mul(a,d) + Mul(b,c)

p3 = Mul(b,d)

return 2°n*pl + 27 (n/2)*p2 + p3
end

We have therefore reduced our multiplication into four smaller multiplications problems,
so the recurrence for the time T'(n) to multiply two n-digit numbers becomes

T(n) =4T(n/2) + ©(n).

Unfortunately, when we solve this recurrence, the running time is still ©(n?), so it seems
that we have not gained anything. (Again, we explain the solution of this recurrence later.)
The key thing to notice here is that four multiplications is too many. Can we somehow
reduce it to three? It may not look like it is possible, but it is using a simple trick. The
trick is that we do not need to compute ad and bc separately; we only need their sum ad+ be.
Now note that
(a+b)(c+d) = (ad+ bc) + (ac + bd).

So if we calculate ac,bd, and (a + b)(c + d), we can compute ad + bc by the subtracting the
first two terms from the third! Of course, we have to perform more additions, but since the
bottleneck to speeding up the algorithm was the number of multiplications, that does not
matter. This means the 3 lines computing p1, p2, and p3 above should be replaced by



Notes for Lecture 2 2

pl = Mul(a,c)
p3 = Mul(b,d)
p2 = Mul(a+b,c+d) - pl - p3

The recurrence for T'(n) is now
T(n) =3T(n/2) + O(n),

and we find that T'(n) is ©(n!°823) or approximately ©(n!-*?), improving on the quadratic
algorithm (later we will show how we solved this recurrence).

If one were to implement this algorithm, it would probably be best not to divide the
numbers down to one digit. The conventional algorithm, because it uses fewer additions, is
more efficient for small values of n. Moreover, on a computer, there would be no reason to
continue dividing once the length n is so small that the multiplication can be done in one
standard machine multiplication operation!

It also turns out that using a more complicated algorithm (based on a similar idea, but
with each integer divided into many more parts) the asymptotic time for multiplication can
be made very close to linear — O(n - logn - loglogn) (Schénhage and Strassen, 1971). Note
that this can also be written O(n'*€) for any € > 0.

2 Solving Divide-and Conquer Recurrences

A typical divide-and-conquer recurrence is of the following form:

T(n) :a-T<%> + f(n),

where we assume that T'(1) = O(1). This corresponds to a recursive algorithm that in order
to solve an instance of size n, generates and recursively solves a instances of size n/b, and
then takes f(n) time to recover a solution for the original instance from the solutions for
the smaller instances. For simplicity in the analysis, we further assume that n is a power of
b: n = b™, where of course m is log, n. This allows us to sweep under the rug the question
“what happens if n is not exactly divisible by b” either in the first or subsequent recursive
calls. We can always “round n up” to the next power of b to make sure this is the case (but,
of course, in a practical implementation we would have to take care of the case in which
the problem would have to be split in slightly unbalanced subproblems).

Certainly, we have T'(n) > f(n), since f(n) is just the time that it takes to “combine”
the solutions at the top level of the recursion.

Let us now consider the number of distinct computations that are recursively generated.
At each level that we go down the recursion tree, the size of instance is divided by b, so the
recursion tree has m levels, where m = log,n. For each instance in the recursion tree, a
instances are generated at the lower level, which means that ™ = a!°%™ = n!°8 ¢ instances
of size 1 are generated while solving an instance of size n. Clearly, n'° ¢ is also a lower
bound for the running time 7'(n).

Indeed, in most cases, '8 % or f(n) can also be tight upper bound (up to a multiplicative
constant) for T'(n).

Specifically:



Notes for Lecture 2 3

e If there is an € > 0 such that f(n) = O(n!°897€), then T'(n) = ©(n'°82).
e If f(n) = @(nlogb @), then T'(n) = @(nlOgb @),
e If there is an € > 0 such that f(n) = Q(n'°% 2%€), then T'(n) = O(f(n)).

CLR calls this the “Master Theorem” (section 4.3 of CLR). The Master theorem applies
if f(n) are exactly of the same order of magnitude, or if their ratio grows at least like n¢, for
some € > 0, but there are possible values for a, b and f(n) such that neither case applies.



