CS 3510 - Honors Algorithms
Homework 8 - Solutions

1. (Dominating Set)

Clearly Dominating Set is in NP. Given a dominating set, one can
verify in polynomial time if that is a dominating set. This can be done
by taking each vertex and checking if it is either in the given set or one
of its edges travel into the set.

To show that is NP-complete, first of all notice that a dominating set
has to include all isolated vertices (those which have no edges from
them). So let us assume that our graph does not have any isolated
vertices. We will show that Dominating Set is NP-complete using a
reduction from Vertex Cover. Given a graph G, we will construct a
graph G’ as follows. GG’ has all edges and vertices of GG. Also, for every
edge {u,v} € G, we add intermediate node on a parallel path in G'.
Keeping {u,v} intact in G’, we add vertex w and edges {u,w} and
{w,v} in G'. Now we will show that G has a vertex cover of size k if
and only if G’ has a dominating set of the same size.

If S is a vertex cover in GG, we will show that S is a dominating set for
G'. S is a vertex cover, this means that every edge in G has atleast
one of its end points in S. Consider v € G'. If v is an original node in
G, then either v € S or there must be some edge connecting v to some
other vertex u. Since S is a vertex cover, is v ¢ S, then « must be in
S, and hence there is an adjacent vertex of v in S. So v is covered by
some element in S. However, if w is an additional node in G’, then w
has two adjacent vertices u,v € G and using the above argument at
least one of them is in S. So the additional nodes are also covered by
S. So if G has a vertex cover, then G’ has a dominating set of at most
the same size (in fact the same set itself would do).

If G’ has a dominating set D of size k, then look at all the additional
vertices w € D. Notice that w must be connected to exactly 2 vertices
u,v € G. Now see that we can safely replace w by one of u or v. w
in D will help us dominate only u,v,w € G'. But these three edges
form a 3-cycle, and we can as well pick u or v and still dominate all the
vertices that w used to dominate. So we can eliminate all the additional
vertices as above. Since all the additional vertices correspond to one of

the edges in GG, and since all of the additional vertices are covered by
the modified D, this means that all the edges in GG are covered by the
set. So if G' has a dominating set of size k, then G has a vertex cover
of size atmost k.

So we have proved both sides of equivalence. A dominating set of size
k exists in G” if and only if a vertex cover of size k exists in GG. Since we
know that vertex cover is an NP-complete problem, Dominating Set is
also NP-complete.

2. (Steiner Minimum Tree)

Consider the Minimum Steiner Tree 7' of the graph G and terminal
nodes V’. Now think of the tour of the vertices in the tree T" as follows.
We start from some leaf in T', and do a DFS. Include all the DFS edges
in the tour. When we hit a dead end, include the edge in the reverse
direction. This way, we cover every edge in the tree T' exactly twice.
So the cost of this tour is 2w(T"). Note that this tour will contain all
the Steiner nodes as well.

Now obtain a Hamiltonian cycle of the vertices in V' as follows. For
every Steiner node, we will skip that node and jump directly from the
preceding vertex to the next vertex. Since the edge weights satisfy
triangular inequality, the cost can only decrease from the tour. Now
we have a Hamiltonian cycle through all the terminal nodes. If we
remove any edge in the cycle, we get a spanning tree Ty for the set of
terminal nodes V’. Now we have the following string of inequalities.

w(MST T") < w(Tp) < w(H-cycle) < 2w(T)
3. (Generalizations of Max-Flow)

(a) We can solve this problem by taking the original graph G, and
adding a new source node s and new sink . We create an infinity
capacity edge from the new source node s to each of the original
source nodes in (G, and an infinity capacity edge from each sink
node to the new sink ¢. We can run the usual max flow algorithm,
and it is easy to see that sum of the flows from the sources to the
sinks in the original graph is maximized if and only if the the flow
is maximized from s to ¢ in the new graph.

(b) This can be solved by linear programming. We start from the
linear programming formulation of the max flow problem, and
also add the additional constraints, which are the lower bound
requirements. For any edge (u,v) with lower bound ,,, we add
the constraint f(u,v) > l,,. The linear program will now find a
max flow subject to the lower bound constraints as well.

(c) Here also we can use linear programming. We need to replace
the original flow conservation constraints to say that for every
v e V\{st}, (1=) Soguer F000) = Snomen F0.0) =
0 (recollect that in the original case the constraints were that
the flow was balanced). We can leave the other constraints and
objective the same, then we will have a flow that maximizes the
flow out of s while taking the loss into account.

(d) We can solve this using two linear programs. We can find the
max flow by using the standard max flow linear program. Assume
that the maximum flow possible is M. Then we write another
program, where the objective is to minimize the cost of the flow
> (uwyer €ost(w, v)« f(u, v), and an added constraint being that the
flow must be equal to the maximum value . \cp f(s,v) = M.
The usual flow conservation constraint, capacity constraint and
the non negativity constraints are there. Solving this LP will get
us a maximum flow with minimum cost.

4. (Max Flow Verification)

We can use the following fact. If there is no s — t path in the residual
graph, then the flow is optimal. Else we can improve by pushing the
minimum flow in that path, so it is not optimal.

Assume that the given flow is a valid flow, i.e., the flow at each edge is
at most the capacities. Else we can check that at each edge in O(|E|)
time.

We can construct the residual graph, this can be done in time O(|E|)
(for every edge with capacity ¢ and flow f, add a back edge of capacity
f, and reduce the capacity of the forward edge to ¢ — f). Then we can
use DF'S from s to check if there is a path to t. DFS running time is
O(|E| + |V|), linear in the number of edges and vertices. If there is a
path from s to ¢, then the given flow is not max flow. If there is no

path, then it is indeed the max flow. All the steps are linear time, so
the verification is in linear time.

