CS 3510 - Honors Algorithms
Homework 8
Assigned April 19
Do not hand this in, but please do it!!!

1. For a graph V = (G, E), we say D C V is a dominating set if every vertex v € V
is either in D or adjacent to at least one member of D. Notice that a triangle has
a dominating set of size 1, but the minimum vertex cover has size 2.

The dominating set problem (DS) is: Given G = (V, E) and an integer k, does
there exist a dominating set of size at most k. Show that DS is NP-complete.

(Hint: Consider using Vertex Cover for your reduction. Notice that a vertex cover
is a set of vertices that covers all of the edges, and a dominating set is a set of
vertices that covers all the vertices (by edge adjacencies). Thus, it seems to make
sense to try to add “dummy” vertices along the edges of the original graph. But
this isn’t quite enough yet. Think about it carefully.)

2. We will consider the Steiner Minimum Tree (SMT) problem. We are given a graph
G = (V, E) with weight function w, and a set of vertices V' C V of terminal nodes.
We want to find a minimum-cost tree 7' C G that spans the vertices of V'. The
tree T' may use nodes in V' — V', For instance, consider the graph, where the dark
vertices are in V' and the middle vertex is not:

2

Notice that the minimum tree for connecting the dark vertices in V’ without using
other vertices has total weight 4, but using the middle vertex we can achieve this
with weight 3. The tree that achieves the minimum weight (possibly using vertices
in V' — V") is called the Steiner tree and any vertex in 7" but not in V' is called
a Steiner node. The SMT problem takes input G = (V, E), V' C V,C and asks
whether or not there is a Steiner tree of weight at most C.

Let us suppose our graph satisfies the triangle inequality: w(x,y) + w(y,z) >
w(z, z) for all z,y,z € V. Let T" be the minimum spanning tree on V’. Show that
T" is a 2-approximation for the SMT problem (i.e., if 7" is a minimum SMT, then
w(T") < 2w(T)). there is a Steiner tree



3. The max-flow problem can be generalized in many ways. Some examples are:

(a) There are many sourcs and sinks, and we wish to maximize the total flow
from all sources to all sinks.

(b) Each edge has not only a capacity, but also a lower bound on the flow it must
carry.

(¢) The outgoing flow from each vertex v is not the same as the incoming flow,
but it is smaller by a factor of (1 —¢,), where €, is a loss coefficient associated
with the vertex v.

(d) Each edge has a cost per unit flow associated with it, and we must find,
among all flows of maximum value, the one that minimizes the total cost.

In each case, show how to solve the more general problem by (1) reducing it
to the original max-flow problem whenever possible, or (2) reducing it to linear
programming in the remaining cases. (Recall that we could solve max-flow by
setting up a series of linear inequalities and giving a linear objective function to
maximize or minimize. If you cannot see a direct reduction to the original max-flow
problem, try to modify the linear program given in class and in the notes.)

(Careful: if you want actual algorithms, think about which way your reductions
need to go!)

4. Suppose someone presents you with a solution to the max-flow problem on some
network. Give a linear time algorithm to determine whether the solution does
indeed give a maximum flow.

(Here assume that the input is just the graph and the solution is to the optimization
problem, not the decision version of the problem.)



