CS 3510 Honors Algorithms
Solutions : Homework 2

Problem 1. [Running SCC]

(a)

We can try out by constructing G¥, which has the edges in reverse
direction as compared to G. When we do DFS in G, starting from
the vertex C', we will see that we reach vertices C, D, A, B, H, GG, in that
order. Then we see that we have to start exploring from an unexplored
vertex. Picking K and exploring, we reach I, E, J, I, L in that order.
The pre/post numbers are as in the below table.

AT 3/6 B[4/5
Cl1/12| D 2/T [E[15/20 | F | 17/18
G 9/10 | H | 8/11 || I [14/23 7] J | 16/19
K | 13/24 | L | 21/22

In the first iteration of the loop, the algorithm picks K. The connected
component K, L, I is removed from G’. Then vertex FE is picked. The
vertices E, I, J form an SCC and are removed. Then vertex C'is picked
and the SCC C, G, H are removed. Then D is picked, and all of the
remaining vertices D, B, A form another Strongly Connected Compo-
nent. Then no vertex remains in G’ and the algorithm exits from the
while loop. (Verify!)

The SCC’s are output as mentioned in the last part. The resulting
DAG is as follows. From the SCC (A, B, D) there are two directed
edges going out to the SCC’s (C,G, H) and (FE, F,J). From each of
the SCC’s (C,G, H) and (E, F, J), there is a directed edge to the SCC
(K, L,I). The SCC (A, B, D) is a source and SCC (K, L, I) is a sink.

Problem 2. [Timing with Hourglasses]

(a)

First of all, we make an interesting observation. The claim is that
we can measure a time interval of ¢ minutes if and only if it can be
represented in the form ¢ = 11a+7b+5¢, where a, b, ¢ € Z (ie., a, b, c are

1

integers, positive or negative). [Exercise :Try and prove this claim,
note that you have to prove both directions.|

So note that any possible measurement of 13 minutes could be rep-
resented in terms of a, b, ¢ where 13 = 11a + 7b + b5c. If a, b, c are all
positive, it is very easy to see how we can measure the required time. If
we have to measure time of the form f — g, where f and g are both pos-
itive, we can measure g and start the measurement from the time when
g gets over till the time when f is over. Observe that |a| + |b| + |¢|
corresponds to the total number of turns of the hourglasses. So the
problem is to find (a, b, ¢) such that 11a+7b+ 5¢ = 13 and |a|+ |b| + |¢|
is minimized.

We could have a graph with nodes corresponding to triplets (a, b, c).
From each node in the graph, we could move to the node where (at-
most) one of a,b,c differs from its previous value by 1. For exam-
ple, (5,4,—3) has edges to the nodes (4,4,—3), (6,4,-3), (5,3,—3),
(5,5,-3), (5,4,—2), (5,4, —4). (This construction is to ensure that
every edge corresponds to one turn of an hour glass.) The time mea-
sured by a triplet (a, b, ¢) is given by 1la + 7b + 5¢. The problem can
be restated in terms of this graph as follows.

Given graph G of triplets (a,b,c), where there exists an
edge from (a, b, c) to (a’, b,) if and only if |a —a'|+ |b—b'| +
|c — | = 1, find the node closest to the point o = (0,0, 0),
such that 11a + 7b + 5¢ = 13.

Since the problem is to find the closest node which has a certain
property, we could use BFS starting from (0,0,0) to compute the an-
swer. Note that as we traverse each node, we check to see if the sum
11a 4+ 7b + 5¢ is 13. We will terminate at the first node which gives
us the required sum. Since we are traversing the nodes in the order of
proximity to (0,0,0), BFS assures us that |a| + |b| 4 |¢| is minimized.

Constructing the graph as we proceed, starting from (0,0,0, we can
see that none of the nodes which are at a distance 1 or 2 measure 13
minutes. But the triplet (1,1, —1) is at a distance 3 from (0,0,0) and
measure 13 minutes. This corresponds to a measurement as follows.

Start the 7 minute and 5 minute clocks (2 turns). After
the 5 minute clock is done, start measuring time. Start the 11

minute clock immediately after the 7 minute clock is over(1
turn). The measurement stops when the 11 minute clock
stops. Total time measured is (7 — 5) 4+ 11 = 13 minutes.

Problem 3. [Problem Set Multitasking|

First note that we can hire as many friends as we want. First we model this
in a graph, where there is a directed edge from problem i to problem j if
and only if the problem j depends on problem i. Assuming we have enough
people to go through all the nodes, we have to find out when is the earliest
time in which we can complete each problem. Note that we cannot have
a cycle in this graph, else we will have a cycle of dependencies which will
render the problem set insolvable. (Think!)

To find out a schedule that completes all the problems in the shortest
time, we need to first sort the problems in a topological order. This will
make sure that we get the nodes in the order of dependencies. ie., If problem
i depends on problem j, then the sorting will ensure V[j] < V|[i], where
V'[j], V[i] are the nodes corresponding to the problems i,7. Then we will
determine when the problems can be done. We are representing the graph GG
as an array of vertices V', where each V[i] has an associated field V[i].time,
which denotes the earliest time in which we can do the problem.

Schedule(Array structure V representing G)
Array V’ = TopologicalSort (V)
For i=1 to n {
earliesttime = 1;
For all nodes V’[j] with an edge pointing to V’[i] {
if (earliesttime < V’[j].time + 1)
earliesttime = V’[j].time + 1;
}
V’ [i] .time = earliesttime;
}
Return V’[i].time for all i
Return Maximum (over all i) V’[i].time

Now we are left to show that the V'[i].time is computed correctly. We will
use induction to show the same. When there is only problem, the algorithm
returns V'[i].time = 1, so it is correct. For inductive step, assume for all
j < i, V'[j].time is computed correctly. The earliest time that we can do

3

problem V’[i] is 1 plus the time needed to complete all the problems V’[j] on
which problem V'[i] depends. Since we have ordered the graph topologically,
we would have computed all the V'[j].time values correctly before we come
to V'[i]. Thus V'[i].time is calculated correctly.

Problem 4. [U.S.Geography]

(a)

The articulation points are the ones, on removal of which the number of
connected components of the graphs increase. The articulation points

in this graph are NY and NH.
The only valid 4-tuples are (AZ,UT,CO,NM) and (WI,MLIN,IL).

A way of going about it is to search from all the vertices w for a 4-cycle
(w,x,y, z), and then check for the no-edge conditions.

4tuplefind(G)
For all vertices w in G {
For all neighbors x of w {
For all neighbors y of x {
For all neighbors z of y {
if ((w,z) is an edge AND

(w,y) is not an edge AND
(x,z) is not an edge)
Output (w,x,y,2);

Py

This is a brute force algorithm which checks all possible 4-tuples. As-
suming n vertices, the first for loop takes n iterations. Each of the three
inner for loops run for atmost d iterations, where d is the maximum
degree. So the total running time is O(nd?).

