CS 3510 Honors Algorithms
Solutions : Homework 3

Problem 1. [Shortest Paths|

()

Let s be the vertex from which the proposed shortest path tree, say T,
is constructed. First, we can traverse the tree in linear time and find
the distances dr(s,v) in T from s to any vertex v € V (Check that
this can be done in linear time). Then we can verify, for each directed
edge (u,v) € E, whether dr(s,u) + weight(u,v) > dr(s,v).

If this is not true, this means that T is not the shortest path tree,
because there exists a shorter path to v from s, which is not given by
T. Indeed, it can also be proved that if T" is not the shortest path tree
from s, then we can find an edge, where the above inequality does not
hold.

We can easily check that this verification requires O(| E|) running time,
once we have all the dp values calculated.

Consider the graph where there are two paths from s to £. One con-
taining two edges, of weight 2 and -1 each and then a direct edge from
s to t of weight 2. Clearly the two edge path is shorter.

Assume that, by the suggested scheme, we are forced to add 5 to all
edge weights to make it nonnegative. The two edge path has weights
7 and 4, summing to 11 now and the direct edge is of weight 7. If we
run Dijkstra’s algorithm, it will return the single edge as the shortest
path, which was not the case in the original graph.

Since the edges might be negative, we need to do a more exhaustive
procedure here. But we can take advantage of the fact that the shortest
path has atmost k& edges.

As part of the initialization, we start from w, assigning d(u) = 0 and
d(w) = 00, Yw # u. Run through all the directed edges (z, y), updating
the distances as follows, d(y) = min(d(y), d(z) + weight(z,y)). Note
that this takes O(|E|) steps, and returns the shortest path distances,
for which the shortest path consists of atmost one edge.

Repeat this k times, we would get the shortest path distances for the
vertices, for which the shortest path consists of atmost k edges. The
running time now becomes O(k|E|). (Note that this the Bellman
Ford algorithm restricted to just k iterations.)

Problem 2. [One Negative Edge]

Here we can modify Dijkstra’s algorithm to get the shortest path. Suppose
we want to find the shortest path from s to t. Let e = (y, z) be the negative
weighted edge.

We can start the Dijkstra’s algorithm from s and proceed as usual till we
reach y, say at a distance d(s,y). Assuming that we have no negative cycles
(Think on why this is a reasonable assumption to make), run a Dijkstra’s
algorithm starting from y and find the distance d(y,t). (Exercise : Show
that when all the negative edges are outgoing edges from y, Dijkstra’s will
still work.)

Another claim that can be made is that if the shortest path from s to ¢
contains the negative edge e, then the path is given by combining the shortest
path from s to y and that from y to ¢ (Exercise : Prove this claim). So if the
shortest path from s to ¢ contains e, then d(s,t) = d(s,y) + d(y,t). Observe
that we are doing just two Dijkstra’s here, so the running time complexity is
the same as that of the Dijkstra’s algorithm.

If the shortest path does not contain the negative edge, then we can run
Dijkstra’s on the graph with the negative edge removed and this will still
return the same shortest path from s to . (Why?) So in either case that
the shortest path contains the negative edge or no, we can find out the d(s, t)
in time which is the same order as that of Dijkstra’s algorithm. We just do
each of the above two procedures, and take the smaller of the two values.

Problem 3. [Bounded Edge Weights]

We can use the following modified version of BFS. Instead of queueing the
vertices, we queue it in such a way that we can take care of the weight of the
edges as well. We queue each vertex with a latency equivalent to the weight
of the last edge. Whenever we pop a vertex with the latency greater than 1,
we decrement latency by 1, and put the vertex back at the end of the queue.
Else we do the same operations on it similar to the usual BFS.

ModifiedBFS(G,s)
dist(s) :=0;
dist(v) :=inf for all other v;

Q=[(s,1)]
while Q is not empty {
(v,lat) = eject(Q);
if lat>1, then inject(Q, (v,lat-1));
else {
for all edges (v,w) in E
if dist(w) < dist(v) + weight(v,w) {
dist(w) = dist(v) + weight(v,w);
parent(w) = v;
if w already in Q, then w.lat = weight(v,w);
else inject(Q, (w,weight(v,w));

}

We can maintain the latency valyes and the distances in another data struc-
ture and use a simple queue structure for Q. Note that a given vertex might
be injected to the queue atmost ¢ times. Every edge is traversed atmost once.
So the running time is O(c|V| + | E|).

To see the correctness of this algorithm, notice that this algorithm is
structurally similar to BF'S and Dijkstra’s algorithm. For an edge of weight
w, we push the vertex in the queue with a latency w. This is a trick that
we use to convert the weight of the edges into a suitable form, so that we
can still use the queue structure. Think of the latency as splitting up the
edges into pieces with weight 1. The difference here is that for this auxiliary
edges, we don’t need to do any processing. So we just decrement the latency
and push it back in the queue.

Problem 4. [Network of Roads|

(a) Consider the network of the capital city and the villages. Take the part
in the graph corresponding to this. The minimum spanning tree of the
relevant part of G would be the required least cost network. We can
use either Prim’s or Kruskal’s algorithm to find out the MST. Using

'Note that this is not the same as splitting up the edges to pieces of weight 1. Most
of you have split up the edges and have got a running time of O(|V|+ ¢|E|). This is
not the same as O(c|V| + |E|). To notice the difference, think of a dense graph where
O(IE|) = O(|V).

Prim’s algorithm, starting from the capital city, the running time is
O([V]log V| + | El).

If the network still required the old capital city to be a part of it, then
there is no change. Otherwise part of the network which is connected
to the capital would change.

The bottleneck is given by the heaviest edge in any of the MST. To
prove that, we need to observe the Kruskal’s algorithm. Note that
we are traversing the edges in the ascending order of their weights.
Every edge is checked if it reduces the number of forests. We add the
edge if and only if it reduces the number of forests. The last edge
added will be the heaviest edge in the MST. If there were a network of
nodes (not necessarily a tree) which had a smaller bottleneck, we could
find a subset of this network, forming a tree, which still has the same
bottleneck. Note that this is a spanning tree and has lesser bottleneck.
Also note that all the edges in this spanning tree have lesser weights
than the Kruskal’s MST. This means that the set of all edges with
weights less than or equal to the bottleneck are connected. But we
had to proceed further when we did Kruskal’s, which means that all
those edges did not help in reducing the number of forests. This is a
contradiction, and so we have proved that the heaviest edge in an MST
is indeed the bottleneck. We can use Kruskal’s to compute this. We can
just keep track of the weight of the edge added last. Verify for yourself
that running time is within the required O((|V'| + |E|) log(|V| + | E])).

Problem 5. [Timing with Hourglasses]

(a)

Consider a problem where we have two hourglasses, one of 1 minute
and another one of 5 minutes. To measure a time of 4 minutes, the
fastest way just takes 4 minutes and 4 turns of the 1 minute hour-
glass. If we have to minimize the number of turns, we could turn both
the hourglasses together and measure time from the stoppage of the 1
minute hourglass to that of the 5 minute hourglass. Here minimizing
the number of turns and time taken leads to different answers.

We could modify the algorithm as follows. We could still use the same
graph to walk through and find out a valid solution. But the conditions

4

change, so we have to change the distances of each node. When we move
to a node in the graph with a positive change we make the edge weight
to be 11 o 7 or 5, depending upon which of (a, b, ¢) changed. For either
one of (a, b, c) decreasing on an edge, let the edge weight be 0. This is
the only change needed from the last solution.

Note that when we compute only the positive coefficients of 11a+7b+5c,
and neglect the negative coefficients, we get the total time taken to
reach the solution. So the new graph is modified taking exactly these
parameters into account. Every node is at a distance from (0,0, 0)
depending on what is the total time to execute that triplet (a,b,c).
Now we can start walking in the new graph, starting from (0,0, 0)
and execute Dijkstra’s with the new weights. We can check if 13 =
11a+7b+5c¢ (note that here we need to take all coefficients into account,
positive and negative) at each node that we reach. The first node which
gives t = 13 will be the one which measures 13 minutes in the shortest
time.

